The Impact of Antiretroviral Therapy on Liver Function Among Pregnant Women Living with HIV in Co-Existence with and Without Pre-Eclampsia
Abstract
:1. Introduction
1.1. Inflammatory Response and the Pathogenesis of Pre-Eclampsia
1.2. Genetic Factors and the Pathogenesis of Pre-Eclampsia
1.3. The Role of HIV Infection and Antiretroviral Therapy in the Development of Pre-Eclampsia
1.4. The Role of HIV and ART in Liver Function
2. Limitations and Recommendations
3. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organisation Maternal Mortality. Available online: https://www.who.int/news-room/fact-sheets/detail/maternal-mortality (accessed on 19 July 2024).
- Khan, B.; Allah Yar, R.; khan Khakwani, A.; Karim, S.; Arslan Ali, H. Preeclampsia Incidence and Its Maternal and Neonatal Outcomes With Associated Risk Factors. Cureus 2022, 14, e31143. [Google Scholar] [CrossRef] [PubMed]
- Jikamo, B.; Adefris, M.; Azale, T.; Alemu, K. Incidence, Trends and Risk Factors of Preeclampsia in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. Pan Afr. Med. J. One Health 2023, 11, 1. [Google Scholar] [CrossRef]
- Moodley, J.; Onyangunga, O.A.; Maharaj, N.R. Hypertensive Disorders in Primigravid Black South African Women: A One-Year Descriptive Analysis. Hypertens. Pregnancy 2016, 35, 529–535. [Google Scholar] [CrossRef]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V.; Roos-Hesselink, J.W.; Bauersachs, J.; Blomström-Lundqvist, C.; Cífková, R.; De Bonis, M.; Iung, B.; Johnson, M.R.; Kintscher, U.; Kranke, P.; et al. 2018 ESC Guidelines for the Management of Cardiovascular Diseases during Pregnancy. Eur. Heart J. 2018, 39, 3165–3241. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, E.; Rolnik, D.L.; Zhou, W.; Estrada-Gutierrez, G.; Koga, K.; Francisco, R.P.V.; Whitehead, C.; Hyett, J.; da Silva Costa, F.; Nicolaides, K.; et al. Pre-Eclampsia. Nat. Rev. Dis. Prim. 2023, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Schlaudecker, E.P.; Munoz, F.M.; Bardají, A.; Boghossian, N.S.; Khalil, A.; Mousa, H.; Nesin, M.; Nisar, M.I.; Pool, V.; Spiegel, H.M.L.; et al. Small for Gestational Age: Case Definition & Guidelines for Data Collection, Analysis, and Presentation of Maternal Immunisation Safety Data. Vaccine 2017, 35, 6518–6528. [Google Scholar] [PubMed]
- Burton, G.J.; Jauniaux, E. Pathophysiology of Placental-Derived Fetal Growth Restriction. Am. J. Obstet. Gynecol. 2018, 218, S745–S761. [Google Scholar] [CrossRef]
- King, V.J.; Bennet, L.; Stone, P.R.; Clark, A.; Gunn, A.J.; Dhillon, S.K. Fetal Growth Restriction and Stillbirth: Biomarkers for Identifying at Risk Fetuses. Front. Physiol. 2022, 13, 959750. [Google Scholar] [CrossRef]
- Koulouraki, S.; Paschos, V.; Pervanidou, P.; Christopoulos, P.; Gerede, A.; Eleftheriades, M. Short- and Long-Term Outcomes of Preeclampsia in Offspring: Review of the Literature. Children 2023, 10, 826. [Google Scholar] [CrossRef]
- Turbeville, H.R.; Sasser, J.M. Preeclampsia beyond Pregnancy: Long-Term Consequences for Mother and Child. Am. J. Physiol.-Ren. Physiol. 2020, 318, F1315. [Google Scholar] [CrossRef] [PubMed]
- Gathiram, P.; Moodley, J. Pre-Eclampsia: Its Pathogenesis and Pathophysiolgy. Cardiovasc. J. Afr. 2016, 27, 71–78. [Google Scholar] [CrossRef]
- Weng, J.; Couture, C.; Girard, S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. Biology 2023, 12, 402. [Google Scholar] [CrossRef]
- Tyrmi, J.S.; Kaartokallio, T.; Lokki, A.I.; Jääskeläinen, T.; Kortelainen, E.; Ruotsalainen, S.; Karjalainen, J.; Ripatti, S.; Kivioja, A.; Laisk, T.; et al. Genetic Risk Factors Associated with Preeclampsia and Hypertensive Disorders of Pregnancy. JAMA Cardiol. 2023, 8, 674–683. [Google Scholar] [CrossRef]
- Kalumba, V.M.S.; Moodley, J.; Naidoo, T.D. Is the Prevalence of Pre-Eclampsia Affected by HIV/AIDS? A Retrospective Case-Control Study. Cardiovasc. J. Afr. 2013, 24, 24–27. [Google Scholar] [CrossRef]
- Naidoo, N.; Moodley, J.; Naicker, T. Maternal Endothelial Dysfunction in HIV-Associated Preeclampsia Comorbid with COVID-19: A Review. Hypertens. Res. 2021, 44, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef] [PubMed]
- Gedefaw, A.; Tadesse, B.T.; Berhan, Y.; Makonnen, E.; Vella, S.; Aklillu, E. The Safety of a Dolutegravir (DTG)-Based Antiretroviral Treatment (ART) Regimen for Pregnancy and Birth Outcomes in Ethiopia: Evidence from Multicenter Cohort Study. BMC Infect. Dis. 2024, 24, 901. [Google Scholar] [CrossRef] [PubMed]
- Tooke, L.; Riemer, L.; Matjila, M.; Harrison, M. Antiretrovirals Causing Severe Pre-Eclampsia. Pregnancy Hypertens. 2016, 6, 266–268. [Google Scholar] [CrossRef]
- Mei, J.Y.; Afshar, Y. Hypertensive Complications of Pregnancy: Hepatic Consequences of Preeclampsia through HELLP Syndrome. Clin. Liver Dis. 2023, 22, 195–199. [Google Scholar] [CrossRef]
- Dacaj, R.; Izetbegovic, S.; Stojkanovic, G.; Dreshaj, S. Elevated Liver Enzymes in Cases of Preeclampsia and Intrauterine Growth Restriction. Med. Arch. 2016, 70, 44–47. [Google Scholar] [CrossRef]
- Phipps, E.A.; Thadhani, R.; Benzing, T.; Karumanchi, S.A. Pre-Eclampsia: Pathogenesis, Novel Diagnostics and Therapies. Nat. Rev. Nephrol. 2019, 15, 275–289. [Google Scholar] [CrossRef]
- Lamarca, B. Endothelial Dysfunction; an Important Mediator in the Pathophysiology of Hypertension during Preeclampsia. Minerva Ginecol. 2012, 64, 309. [Google Scholar] [PubMed]
- Harmon, A.C.; Cornelius, D.C.; Amaral, L.M.; Faulkner, J.L.; Cunningham, M.W.; Wallace, K.; LaMarca, B. The Role of Inflammation in the Pathology of Preeclampsia. Clin. Sci. 2016, 130, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, M.; Celewicz, A.; Celewicz, M.; Wozniakowska-Gondek, P.; Rzepka, R. The Role of Inflammation in the Pathogenesis of Preeclampsia. Mediat. Inflamm. 2020, 2020, 3864941. [Google Scholar] [CrossRef] [PubMed]
- Deer, E.; Herrock, O.; Campbell, N.; Cornelius, D.; Fitzgerald, S.; Amaral, L.M.; LaMarca, B. The Role of Immune Cells and Mediators in Preeclampsia. Nat. Rev. Nephrol. 2023, 19, 257–270. [Google Scholar] [CrossRef]
- Geldenhuys, J.; Rossouw, T.M.; Lombaard, H.A.; Ehlers, M.M.; Kock, M.M. Disruption in the Regulation of Immune Responses in the Placental Subtype of Preeclampsia. Front. Immunol. 2018, 9, 1659. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.A.; Khalil, R.A. Bioactive Factors in Uteroplacental and Systemic Circulation Link Placental Ischemia to Generalized Vascular Dysfunction in Hypertensive Pregnancy and Preeclampsia. Biochem. Pharmacol. 2015, 95, 211–226. [Google Scholar] [CrossRef]
- Possomato-Vieira, J.S.; Khalil, R.A. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. In Advances in Pharmacology; Academic Press Inc.: New York, NY, USA, 2016; Volume 77, pp. 361–431. ISBN 9780128043967. [Google Scholar]
- Maynard, S.E.; Min, J.-Y.; Merchan, J.; Lim, K.-H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess Placental Soluble Fms-like Tyrosine Kinase 1 (SFlt1) May Contribute to Endothelial Dysfunction, Hypertension, and Proteinuria in Preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Jena, M.K.; Sharma, N.R.; Petitt, M.; Maulik, D.; Nayak, N.R. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules 2020, 10, 953. [Google Scholar] [CrossRef]
- Boeldt, D.S.; Bird, I.M. Vascular Adaptation in Pregnancy and Endothelial Dysfunction in Preeclampsia. J. Endocrinol. 2017, 232, R27–R44. [Google Scholar] [CrossRef]
- Ristovska, E.C.; Genadieva-Dimitrova, M.; Todorovska, B.; Milivojevic, V.; Rankovic, I.; Samardziski, I.; Bojadzioska, M. The Role of Endothelial Dysfunction in Pathogenesis of Pregnancy-Related Pathological Conditions: A Review. Prilozi 2023, 44, 113–137. [Google Scholar] [CrossRef] [PubMed]
- Onat, T.; Yalçın, S.; Kırmızı, D.A.; Başer, E.; Ercan, M.; Kara, M.; Esinler, D.; Yalvaç, E.S.; Çaltekin, M.D. The Relationship between Oxidative Stress and Preeclampsia. The Serum Ischemia-Modified Albumin Levels and Thiol/Disulfide Homeostasis. Turk. J. Obstet. Gynecol. 2020, 17, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Mooli, R.G.R.; Mukhi, D.; Ramakrishnan, S.K. Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. Compr. Physiol. 2022, 12, 3167–3192. [Google Scholar] [CrossRef] [PubMed]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver Enzyme Alteration: A Guide for Clinicians. CMAJ Can. Med. Assoc. J. 2005, 172, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Vachliotis, I.D.; Polyzos, S.A. The Role of Tumor Necrosis Factor-Alpha in the Pathogenesis and Treatment of Nonalcoholic Fatty Liver Disease. Curr. Obes. Rep. 2023, 12, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Pandey, C.K.; Karna, S.T.; Pandey, V.K.; Tandon, M. Acute Liver Failure in Pregnancy: Challenges and Management. Indian J Anaesth. 2015, 59, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Eastabrook, G.; Brown, M.; Sargent, I. The Origins and End-Organ Consequence of Pre-Eclampsia. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.N.; Lee, G.A.; Grunfeld, C. Metabolic Abnormalities Associated with the Use of Protease Inhibitors and Non-Nucleoside Reverse Transcriptase Inhibitors. Am. J. Infect. Dis. 2006, 2, 159–166. [Google Scholar] [CrossRef]
- Williams, P.J.; Broughton Pipkin, F. The Genetics of Pre-Eclampsia and Other Hypertensive Disorders of Pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, P.C.F.M.; Leão, M.D.; Queiroz, J.W.; Melo, E.M.D.; Pereira, F.V.M.; Nóbrega, M.H.; Jeronimo, A.K.; Ferreira, L.C.; Jerônimo, S.M.B.; De Araújo, A.C.P.F. Family History of Hypertension as an Important Risk Factor for the Development of Severe Preeclampsia. Acta Obstet. Gynecol. Scand. 2010, 89, 612–617. [Google Scholar] [CrossRef]
- Kivioja, A.; Toivonen, E.; Tyrmi, J.; Ruotsalainen, S.; Ripatti, S.; Huhtala, H.; Jääskeläinen, T.; Heinonen, S.; Kajantie, E.; Kere, J.; et al. Increased Risk of Preeclampsia in Women With a Genetic Predisposition to Elevated Blood Pressure. Hypertension 2022, 79, 2008–2015. [Google Scholar] [CrossRef]
- Rigó, J.; Boze, T.; Derzsy, Z.; Derzbach, L.; Treszl, A.; Lázár, L.; Sobel, G.; Vásárhelyi, B. Family History of Early-Onset Cardiovascular Disorders Is Associated with a Higher Risk of Severe Preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2006, 128, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Lihme, F.; Basit, S.; Sciera, L.K.; Andersen, A.M.N.; Bundgaard, H.; Wohlfahrt, J.; Boyd, H.A. Association between Preeclampsia in Daughters and Risk of Cardiovascular Disease in Parents. Eur. J. Epidemiol. 2023, 38, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, K.M.; Morel, A.; Parada-Niño, L.; Alejandra González-Rodriguez, M.; Flórez, S.; Bolívar-Salazar, D.; Becerra-Bayona, S.; Aguirre-García, A.; Gómez-Murcia, T.; Fernanda Castillo, L.; et al. Identifying New Potential Genetic Biomarkers for HELLP Syndrome Using Massive Parallel Sequencing. Pregnancy Hypertens. 2020, 22, 181–190. [Google Scholar] [CrossRef]
- Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, K.E.; Giani, J.F.; Shen, X.Z.; Gonzalez-Villalobos, R.A. Renal Angiotensin-Converting Enzyme and Blood Pressure Control. Curr. Opin. Nephrol. Hypertens. 2014, 23, 106–112. [Google Scholar] [CrossRef]
- Zhang, L.; Miyaki, K.; Araki, J.; Song, Y.; Kimura, T.; Omae, K.; Muramatsu, M. Interaction of Angiotensin I-Converting Enzyme Insertion-Deletion Polymorphism and Daily Salt Intake Influences Hypertension in Japanese Men. Hypertens. Res. 2006, 29, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Khan, H.; Haque, S.; Ahmad, S.; Srivastava, N.; Khan, A. Angiotensin-Converting Enzyme and Hypertension: A Systemic Analysis of Various ACE Inhibitors, Their Side Effects, and Bioactive Peptides as a Putative Therapy for Hypertension. JRAAS-J. Renin-Angiotensin-Aldosterone Syst. 2023, 2023, 7890188. [Google Scholar] [CrossRef]
- Gonzalez Caldito, N. Role of Tumor Necrosis Factor-Alpha in the Central Nervous System: A Focus on Autoimmune Disorders. Front. Immunol. 2023, 14, 1213448. [Google Scholar] [CrossRef] [PubMed]
- Dahmer, M.K.; Cornell, T.; Quasney, M.W. Genetic and Epigenetic Factors in the Regulation of the Immune Response. Curr. Opin. Pediatr. 2016, 28, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Diedisheim, M.; Carcarino, E.; Vandiedonck, C.; Roussel, R.; Gautier, J.F.; Venteclef, N. Regulation of Inflammation in Diabetes: From Genetics to Epigenomics Evidence. Mol. Metab. 2020, 41, 101041. [Google Scholar] [CrossRef] [PubMed]
- Spence, T.; Allsopp, P.J.; Yeates, A.J.; Mulhern, M.S.; Strain, J.J.; McSorley, E.M. Maternal Serum Cytokine Concentrations in Healthy Pregnancy and Preeclampsia. J. Pregnancy 2021, 2021, 6649608. [Google Scholar] [CrossRef] [PubMed]
- Nishida, N.; Arizumi, T.; Takita, M.; Kitai, S.; Yada, N.; Hagiwara, S.; Inoue, T.; Minami, Y.; Ueshima, K.; Sakurai, T.; et al. Reactive Oxygen Species Induce Epigenetic Instability through the Formation of 8-Hydroxydeoxyguanosine in Human Hepatocarcinogenesis. Dig. Dis. 2013, 31, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Vona, R.; Pallotta, L.; Cappelletti, M.; Severi, C.; Matarrese, P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants 2021, 10, 201. [Google Scholar] [CrossRef]
- Nikuei, P.; Malekzadeh, K.; Rajaei, M.; Nejatizadeh, A.; Ghasemi, N. The Imbalance in Expression of Angiogenic and Anti-Angiogenic Factors as Candidate Predictive Biomarker in Preeclampsia. Iran. J. Reprod. Med. 2015, 13, 251–262. [Google Scholar] [PubMed]
- Krysiak, O.; Bretschneider, A.; Zhong, E.; Webb, J.; Hopp, H.; Verlohren, S.; Fuhr, N.; Lanowska, M.; Nonnenmacher, A.; Vetter, R.; et al. Soluble Vascular Endothelial Growth Factor Receptor-1 (SFLT-1) Mediates Downregulation of FLT-1 and Prevents Activated Neutrophils from Women with Preeclampsia from Additional Migration by VEGF. Circ. Res. 2005, 97, 1253–1261. [Google Scholar] [CrossRef]
- Honigberg, M.C.; Truong, B.; Khan, R.R.; Xiao, B.; Bhatta, L.; Vy, H.M.T.; Guerrero, R.F.; Schuermans, A.; Selvaraj, M.S.; Patel, A.P.; et al. Polygenic Prediction of Preeclampsia and Gestational Hypertension. Nat. Med. 2023, 29, 1540–1549. [Google Scholar] [CrossRef] [PubMed]
- McElwain, C.J.; Tuboly, E.; McCarthy, F.P.; McCarthy, C.M. Mechanisms of Endothelial Dysfunction in Pre-Eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front. Endocrinol. 2020, 11, 655. [Google Scholar] [CrossRef]
- Sikhosana, M.L.; Suchard, M.; Kuonza, L.; Cutland, C.; Slogrove, A.; Otwombe, K.; Motaze, N.V. Association between Preeclampsia and HIV: A Case-Control Study in Urban South Africa. AJOG Glob. Rep. 2022, 2, 100056. [Google Scholar] [CrossRef]
- Modjadji, P.; Mokgalaboni, K.; Nonterah, E.A.; Lebelo, S.L.; Mchiza, Z.J.R.; Madiba, S.; Kengne, A.P. A Systematic Review on Cardiometabolic Risks and Perinatal Outcomes among Pregnant Women Living with HIV in the Era of Antiretroviral Therapy. Viruses 2023, 15, 1441. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Han, L.; Huang, P.; Chen, Y.; Wang, Y.; Xue, F. Syncytiotrophoblast-Derived Extracellular Vesicles in Pathophysiology of Preeclampsia. Front. Physiol. 2019, 10, 1236. [Google Scholar] [CrossRef]
- Balasubramaniam, M.; Pandhare, J.; Dash, C. Immune Control of HIV. J. Life Sci. 2019, 1, 4–37. [Google Scholar] [CrossRef]
- Osuji, F.N.; Onyenekwe, C.C.; Ahaneku, J.E.; Ukibe, N.R. The Effects of Highly Active Antiretroviral Therapy on the Serum Levels of Pro-Inflammatory and Anti-Inflammatory Cytokines in HIV Infected Subjects. J. Biomed. Sci. 2018, 25, 88. [Google Scholar] [CrossRef] [PubMed]
- Nou, E.; Lo, J.; Grinspoon, S.K. Inflammation, Immune Activation, and Cardiovascular Disease in HIV. AIDS 2016, 30, 1495–1509. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, K.V.; Karthigeyan, K.P.; Tripathi, S.P.; Hanna, L.E. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front. Immunol. 2017, 8, 580. [Google Scholar] [CrossRef]
- Kornfield, M.S.; Gurley, S.B.; Vrooman, L.A. Increased Risk of Preeclampsia with Assisted Reproductive Technologies. Curr. Hypertens. Rep. 2023, 25, 251–261. [Google Scholar] [CrossRef]
- Almasi-Hashiani, A.; Omani-Samani, R.; Mohammadi, M.; Amini, P.; Navid, B.; Alizadeh, A.; Khedmati Morasae, E.; Maroufizadeh, S. Assisted Reproductive Technology and the Risk of Preeclampsia: An Updated Systematic Review and Meta-Analysis. BMC Pregnancy Childbirth 2019, 19, 149. [Google Scholar] [CrossRef]
- Lohman-Payne, B.; Koster, J.; Gabriel, B.; Chilengi, R.; Forman, L.S.; Heeren, T.; Duffy, C.R.; Herlihy, J.; Crimaldi, S.; Gill, C.; et al. Persistent Immune Activation in Human Immunodeficiency Virus-Infected Pregnant Women Starting Combination Antiretroviral Therapy after Conception. J. Infect. Dis. 2022, 225, 1162–1167. [Google Scholar] [CrossRef]
- Akoto, C.; Norris, S.A.; Hemelaar, J. Maternal HIV Infection Is Associated with Distinct Systemic Cytokine Profiles throughout Pregnancy in South African Women. Sci. Rep. 2021, 11, 10079. [Google Scholar] [CrossRef] [PubMed]
- Naicker, T.; Govender, N.; Abel, T.; Naidoo, N.; Moodley, M.; Pillay, Y.; Singh, S.; Khaliq, O.P.; Moodley, J. HIV Associated Preeclampsia: A Multifactorial Appraisal. Int. J. Mol. Sci. 2021, 22, 9157. [Google Scholar] [CrossRef] [PubMed]
- Vyas, P.; Mathad, J.S.; Leu, C.S.; Naik, S.; Alexander, M.; Araújo-Pereira, M.; Kulkarni, V.; Deshpande, P.; Yadana, S.; Andrade, B.B.; et al. Impact of HIV Status on Systemic Inflammation during Pregnancy. AIDS 2021, 35, 2259–2268. [Google Scholar] [CrossRef] [PubMed]
- Sherman, K.E.; Thomas, D.L. HIV and Liver Disease: A Comprehensive Update. Top. Antivir. Med. 2022, 30, 547–558. [Google Scholar] [PubMed]
- Zicari, S.; Sessa, L.; Cotugno, N.; Ruggiero, A.; Morrocchi, E.; Concato, C.; Rocca, S.; Zangari, P.; Manno, E.C.; Palma, P. Immune Activation, Inflammation, and Non-AIDS Co-Morbidities in HIV-Infected Patients under Long-Term ART. Viruses 2019, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; He, Q.; Zhu, L.; Feng, Z.; Sun, M.; Jiang, J.; Yuan, X.; Shen, Y.; Di, J. Associations between Systemic Inflammation Indicators and Nonalcoholic Fatty Liver Disease: Evidence from a Prospective Study. Front. Immunol. 2024, 15, 1389967. [Google Scholar] [CrossRef]
- Toktogulova, N.; Tuhvatshin, R.; Mainazarova, E. Dynamics of Pro- and Anti-Inflammatory Cytokines in Experimental Animals with Non-Alcoholic Fatty Liver Disease under Conditions of Hypobaric Hypoxia. Open Access Maced. J. Med. Sci. 2021, 9, 822–826. [Google Scholar] [CrossRef]
- Chwiki, S.; Campos, M.M.; McLaughlin, M.E.; Kleiner, D.E.; Kovacs, J.A.; Morse, C.G.; Abu-Asab, M.S. Adverse Effects of Antiretroviral Therapy on Liver Hepatocytes and Endothelium in HIV Patients: An Ultrastructural Perspective. Ultrastruct. Pathol. 2017, 41, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Corcorran, M.A.; Kim, N.H. Chronic Hepatitis B and HIV Coinfection. Top. Antivir. Med. 2023, 31, 14–22. [Google Scholar] [PubMed]
- Ward, A.R.; Mota, T.M.; Jones, R.B. Immunological Approaches to HIV Cure. Semin. Immunol. 2021, 51, 101412. [Google Scholar] [CrossRef]
- Funderburg, N.T.; Huang, S.S.Y.; Cohen, C.; Ailstock, K.; Cummings, M.; Lee, J.C.; Ng, B.; White, K.; Wallin, J.J.; Downie, B.; et al. Changes to Inflammatory Markers during 5 Years of Viral Suppression and during Viral Blips in People with HIV Initiating Different Integrase Inhibitor Based Regimens. Front. Immunol. 2024, 15, 1488799. [Google Scholar] [CrossRef]
- Lv, T.; Cao, W.; Li, T. HIV-Related Immune Activation and Inflammation: Current Understanding and Strategies. J. Immunol. Res. 2021, 2021, 7316456. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Jiang, J.; Qin, C.; Huang, Y.; Liang, B.; Xu, Y.; Huang, J.; Xu, Z.; Ning, C.; Liao, Y.; et al. Liver Damage in Patients Living with HIV on Antiretroviral Treatment with Normal Baseline Liver Function and without HBV/HCV Infection: An 11-Year Retrospective Cohort Study in Guangxi, China. BMJ Open 2019, 9, e023140. [Google Scholar] [CrossRef]
- Lee, T.H.; Kim, W.R.; Poterucha, J.J. Evaluation of Elevated Liver Enzymes. Clin. Liver Dis. 2012, 16, 183–198. [Google Scholar] [CrossRef]
- Borato, D.C.K.; Kalva-Filho, C.A.; Machado, E.P.; Barbosa, C.R.; Vellosa, J.C.R. Effect of Non-Nucleoside Reverse Transcriptasinhibitors and Protease Inhibitors on Serum Levels of Myeloperoxidase and C-Reactive Protein in HIV-Infected Individuals. Braz. J. Pharm. Sci. 2022, 58, e18780. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Peng, K.; Zhou, H. HIV Protease Inhibitors in Gut Barrier Dysfunction and Liver Injury. Curr. Opin. Pharmacol. 2014, 19, 61–66. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Hamilton, J.P.; Hopkins, J. Drug-Induced Liver Injury. US Gastroenterol. Hepatol. Rev. 2010, 6, 73–80. [Google Scholar]
- Abongwa, L.E.; Nyamache, A.K.; Charles, F.; Torimiro, J.; Emmanuel, N.; Domkam, I.; Eyongetah, M.; Jude, B.; Mua, F.H.; Bella, S.; et al. Risk Factors of Severe Hepatotoxicity among HIV-1 Infected Individuals Initiated on Highly Active Antiretroviral Therapy in the Northwest Region of Cameroon. BMC Gastroenterol. 2022, 22, 286. [Google Scholar] [CrossRef]
- Morse, C.G.; McLaughlin, M.; Matthews, L.; Proschan, M.; Thomas, F.; Gharib, A.M.; Abu-Asab, M.; Orenstein, A.; Engle, R.E.; Hu, X.; et al. Nonalcoholic Steatohepatitis and Hepatic Fibrosis in HIV-1-Monoinfected Adults with Elevated Aminotransferase Levels on Antiretroviral Therapy. Clin. Infect. Dis. 2015, 60, 1569–1578. [Google Scholar] [CrossRef]
- Joshi, D.; O’Grady, J.; Dieterich, D.; Gazzard, B.; Agarwal, K. Increasing Burden of Liver Disease in Patients with HIV Infection. Lancet 2011, 377, 1198–1209. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Kahraman, A.; Ross, B.; Beste, M.; Gerken, G. Evaluation of Quantitative Liver Function Tests in HIV-Positive Patients under Antiretroviral Therapy. Eur. J. Med. Res. 2009, 14, 369–377. [Google Scholar] [CrossRef]
- Shiferaw, M.B.; Tulu, K.T.; Zegeye, A.M.; Wubante, A.A. Liver Enzymes Abnormalities among Highly Active Antiretroviral Therapy Experienced and HAART Naïve HIV-1 Infected Patients at Debre Tabor Hospital, North West Ethiopia: A Comparative Cross-Sectional Study. AIDS Res. Treat. 2016, 2016, 1985452. [Google Scholar] [CrossRef]
- Baumgart, S.J.; Haendler, B. Exploiting Epigenetic Alterations in Prostate Cancer. Int. J. Mol. Sci. 2017, 18, 1017. [Google Scholar] [CrossRef] [PubMed]
- Mihajlovic, M.; Vinken, M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int. J. Mol. Sci. 2022, 23, 3315. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.L.; Tan, J.M.E.; Jonker, M.J.; Jongejan, A.; Buissink, T.; Veldhuijzen, S.; Van Kampen, A.H.C.; Brul, S.; Van Der Spek, H. Beyond the Polymerase-γ Theory: Production of ROS as a Mode of NRTI-Induced Mitochondrial Toxicity. PLoS ONE 2017, 12, e0187424. [Google Scholar] [CrossRef]
- Holec, A.D.; Mandal, S.; Prathipati, P.K.; Destache, C.J. Nucleotide Reverse Transcriptase Inhibitors: A Thorough Review, Present Status and Future Perspective as HIV Therapeutics. Curr. HIV Res. 2017, 15, 411–421. [Google Scholar] [CrossRef]
- Mastroianni, C.M.; Lichtner, M.; Mascia, C.; Zuccalà, P.; Vullo, V. Molecular Mechanisms of Liver Fibrosis in HIV/HCV Coinfection. Int. J. Mol. Sci. 2014, 15, 9184–9208. [Google Scholar] [CrossRef]
- Biały, M.; Czarnecki, M.; Inglot, M. Impact of Combination Antiretroviral Treatment on Liver Metabolic Health in HIV-Infected Persons. Viruses 2023, 15, 2432. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, D.M.; Venter, W.D.F.; Van Rie, A.; Feldman, C. Immune Reconstitution Inflammatory Syndrome (IRIS): Review of Common Infectious Manifestations and Treatment Options. AIDS Res. Ther. 2007, 4, 9. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Premkumar, A.; Dude, A.M.; Haddad, L.B.; Yee, L.M. Combined Antiretroviral Therapy for HIV and the Risk of Hypertensive Disorders of Pregnancy: A Systematic Review. Pregnancy Hypertens. 2019, 17, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Tamuno-Boma, O.; Obioma, A.; Harris, O.B.; Popnen GP, T.; Umanu, G.-B.C.; Nnenna, I.; Brantley, A.U.; Muhammad, A. Assessment on Liver Function Biomarkers in HIV Positive Pregnant and Non-Pregnant Women on Antiretroviral Therapy in Rivers State, Nigeria. J. HIV Clin. Sci. Res. 2023, 10, 001–005. [Google Scholar] [CrossRef]
- Ebele, I.J.; Ibegbu, M.D.; Onyekwelu, K.C. Liver-Enzyme-Activities-in-Hiv-Seropositive-Pregnant-Women-on-Highly-Active-Antiretroviral-Therapy-Haart. Int. J. HIV AIDS Res. 2019, 2, 7–10. [Google Scholar]
- Onyeka, P.; Emmanuel, U.; Udujih, E.; Nwabueze; Udujih, H. Liver Protein and Enzymes in HIV Infected Pregnant and Non-Pregnant Women on Antiretroviral Therapy. Br. J. Med. Med. Res. 2016, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, D.W.; Brogly, S.B.; Lu, M.; Shapiro, D.E.; Hershow, R.C.; French, A.L.; Leighty, R.M.; Thompson, B.; Tuomala, R.E. Lack of Increased Hepatotoxicity in HIV-Infected Pregnant Women Receiving Nevirapine Compared with Other Antiretrovirals. AIDS 2010, 24, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, N.R.; Phulukdaree, A.; Nagiah, S.; Ramkaran, P.; Tiloke, C.; Chuturgoon, A.A. Pro-Inflammatory Cytokine Levels in HIV Infected and Uninfected Pregnant Women with and without Preeclampsia. PLoS ONE 2017, 12, e0170063. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, D.W.; Shapiro, D.E.; Lu, M.; Brogly, S.B.; French, A.L.; Leighty, R.M.; Thompson, B.; Tuomala, R.E.; Hershow, R.C. Increased Risk of Hepatotoxicity in HIV-Infected Pregnant Women Receiving Antiretroviral Therapy Independent of Nevirapine Exposure. AIDS 2009, 23, 2425–2430. [Google Scholar] [CrossRef] [PubMed]
- Delicio, A.M.; Lajos, G.J.; Amaral, E.; Lopes, F.; Cavichiolli, F.; Myioshi, I.; Milanez, H. Adverse Effects of Antiretroviral Therapy in Pregnant Women Infected with HIV in Brazil from 2000 to 2015: A Cohort Study. BMC Infect. Dis. 2018, 18, 485. [Google Scholar] [CrossRef]
- Huntington, S.; Thorne, C.; Newell, M.L.; Anderson, J.; Taylor, G.P.; Pillay, D.; Hill, T.; Tookey, P.A.; Sabin, C.; Ainsworth, J.; et al. Pregnancy Is Associated with Elevation of Liver Enzymes in HIV-Positive Women on Antiretroviral Therapy. AIDS 2015, 29, 801–809. [Google Scholar] [CrossRef]
- Sibiude, J.; Warszawski, J.; Tubiana, R.; Le Chenadec, J.; Meier, F.; Faye, A.; Blanche, S.; Mandelbrot, L. Liver Enzyme Elevation in Pregnant Women Receiving Antiretroviral Therapy in the ANRS-French Perinatal Cohort. JAIDS J. Acquir. Immune Defic. Syndr. 2019, 81, 83–94. [Google Scholar] [CrossRef]
- Smith, S.J.; Zhao, X.Z.; Passos, D.O.; Lyumkis, D.; Burke, T.R.; Hughes, S.H. Integrase Strand Transfer Inhibitors Are Effective Anti-Hiv Drugs. Viruses 2021, 13, 205. [Google Scholar] [CrossRef]
- Odegbemi, O.B.; Olaniyan, M.F.; Muhibi, M.A. Hepatic Toxicity Assessment in HIV’s Interaction with Reverse Transcriptase and Integrase Strand Transfer Inhibitors at a Military Hospital, Southsouth Nigeria. Egypt. Liver J. 2024, 14, 77. [Google Scholar] [CrossRef]
- Mengistu, E.F.; Malik, D.T.; Molla, M.D.; Adugna, A.; Jemal, M. Liver Function Tests, CD4+ Counts, and Viral Load among People Living with HIV on Dolutegravir Compared to Efavirenz-Based CART; a Comparative Cross-Sectional Study. Heliyon 2024, 10, e33054. [Google Scholar] [CrossRef] [PubMed]
Authors, Year | Country | Study Design | Range/Mean Age (Years) | Sample and Population | Summary of Findings |
---|---|---|---|---|---|
Hungtigton et al. 2015 [110] | United Kingdom and Ireland | Cohort | 29–39 | 3815 PWLWHIV on ART. | There was no significant difference in ALT in pregnant women on ART. |
Joy et al. 2019 [104] | Nigeria | Cohort | 20–40 | 30 PWLWHIV on HAART 30 HAART-naïve PWLWHIV 30 HIV-negative. | Significant increase in ALT, AST, and ALP in PWLWHIV on HAART compared to the ART-naïve or negative at the 1st, 2nd, and 3rd trimesters. |
Maharaj et al. 2017 [107] | South Africa | Cohort | 24.8 ± 5.3 28.7 ± 7.3 24.6 ± 6.4 28 ± 6.4 | 53 HIV-negative with PE 45 PWLWHIV with PE 50 normotensive and HIV-negative 45 normotensive and PWLWHIV. | There is no significant difference in AST and ALT between PE-PWLWHIV and HIV-negative. The gamma-glutamyl transferase increased in PWLWHIV with PE compared to negative. |
Onyeka et al. 2016 [105] | Nigeria | In vivo experimental | 30 ± 3.0 | 21 PWLWHIV on ART 25 NPWLWHIV. | There were no significant differences between the pregnant and non-pregnant groups in the AST, ALP, and ALT levels. |
Sibiude et al. 2019 [111] | France | Cohort | <25 25–39 ≥40 | 5748 PWLWHIV on ART, of which 147 had PE. | Among PWLWHIV on ART at conception, the risk of unexplained LEE was lower with NNRTI compared to PI-based regimens. |
Tamuno-Bona et al. 2023 [103] | Nigeria | Cross-sectional | 15–60 | 83 PWLWHIV on ART 82 NPWLHIV on ART 84 PWLWHIV-negative 81 NPHIV-negative. | Significantly higher ALT, AST and ALP levels in PWLWHIV compared to non-PWLWHIV. Lower AST, ALT, and ALP in HIV-negative pregnant women compared to non-pregnant HIV-negative. |
Ouyang et al. 2010 [106] | United States | Prospective cohort | 27.84 28.02 | 218 PWLWHIV on nevirapine (NVP) 1011 non-NVP PWLWHIV. | No significant liver elevation was observed in the NVP compared to the non-NVP group. |
Ouyang et al. 2009 [108] | United States | Prospective cohort | 27.99 35.96 | 1229 PWLWHIV on NVP 821 NPWLWHIV on NVP. | Significant decrease in baseline in liver enzyme elevation in PWLWHIV compared to NPWLWHIV. |
Delicio et al.2018 [109] | Brazil | Cohort | 13–46 | 801 PWLWHIV with 793 on known ART and eight on unknown ART. | NVP, nelfinavir and atazanavir regimens increased the risk of liver abnormalities. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strauss, K.-L.E.; Phoswa, W.N.; Mokgalaboni, K. The Impact of Antiretroviral Therapy on Liver Function Among Pregnant Women Living with HIV in Co-Existence with and Without Pre-Eclampsia. Viruses 2025, 17, 28. https://doi.org/10.3390/v17010028
Strauss K-LE, Phoswa WN, Mokgalaboni K. The Impact of Antiretroviral Therapy on Liver Function Among Pregnant Women Living with HIV in Co-Existence with and Without Pre-Eclampsia. Viruses. 2025; 17(1):28. https://doi.org/10.3390/v17010028
Chicago/Turabian StyleStrauss, Kay-Lee E., Wendy N. Phoswa, and Kabelo Mokgalaboni. 2025. "The Impact of Antiretroviral Therapy on Liver Function Among Pregnant Women Living with HIV in Co-Existence with and Without Pre-Eclampsia" Viruses 17, no. 1: 28. https://doi.org/10.3390/v17010028
APA StyleStrauss, K.-L. E., Phoswa, W. N., & Mokgalaboni, K. (2025). The Impact of Antiretroviral Therapy on Liver Function Among Pregnant Women Living with HIV in Co-Existence with and Without Pre-Eclampsia. Viruses, 17(1), 28. https://doi.org/10.3390/v17010028