Genomic Analysis of 96 Paenibacillus larvae Bacteriophages Including 26 from Aotearoa, New Zealand
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Phage Geographical Locations, Sources and Life Cycle
3.2. New Zealand P. larvae Phages
3.3. Clustering of New Zealand P. larvae Phages
3.3.1. Clustering Using Percent Nucleotide Identity
3.3.2. Clustering Using Dot Plot Analyses
3.3.3. Pairwise Genome Map Comparisons NZ Phages with Phamerator
3.4. Clustering of All 96 P. larvae Phages
3.4.1. Global P. larvae Phage Clustering Using PNI and Total ANI
3.4.2. Pairwise Genome Map Comparisons Global Phages with Phamerator
3.5. P. larvae Phage Gene Product Functions
3.6. Analysis of P. larvae Phage Toxin Plx1
3.7. CRISPR Protospacer Sequences in the 26 New Zealand P. larvae Phages
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Genersch, E. American Foulbrood in Honeybees and Its Causative Agent, Paenibacillus larvae. J. Invertebr. Pathol. 2010, 103, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Boncristiani, H.; Ellis, J.D.; Bustamante, T.; Graham, J.; Jack, C.; Kimmel, C.B.; Mortensen, A.; Schmehl, D.R. World Honey Bee Health: The Global Distribution of Western Honey Bee (Apis mellifera L.) Pests and Pathogens. Bee World 2021, 98, 2–6. [Google Scholar] [CrossRef]
- Haseman, L. How Long Can Spores of American Foulbrood Live. Am. Bee J. 1961, 101, 289–299. [Google Scholar]
- Brady, T.S.; Merrill, B.D.; Hilton, J.A.; Payne, A.M.; Stephenson, M.B.; Hope, S. Bacteriophages as an Alternative to Conventional Antibiotic Use for the Prevention or Treatment of Paenibacillus larvae in Honeybee Hives. J. Invertebr. Pathol. 2017, 150, 94–100. [Google Scholar] [CrossRef]
- Murray, D.; Aronstein, K.A. Oxytetracycline-Resistance in the Honey Bee Pathogen Paenibacillus larvae Is Encoded on Novel Plasmid PMA67. J. Apic. Res. 2006, 47, 207–214. [Google Scholar] [CrossRef]
- Miyagi, T.; Peng, C.Y.; Chuang, R.Y.; Mussen, E.C.; Spivak, M.S.; Doi, R.H. Verification of Oxytetracycline-Resistant American Foulbrood Pathogen Paenibacillus larvae in the United States. J. Invertebr. Pathol. 2000, 75, 95–96. [Google Scholar] [CrossRef]
- Alippi, A.M.; López, A.C.; Reynaldi, F.J.; Grasso, D.H.; Aguilar, O.M. Evidence for Plasmid-Mediated Tetracycline Resistance in Paenibacillus larvae, the Causal Agent of American Foulbrood (AFB) Disease in Honeybees. Vet. Microbiol. 2007, 125, 290–303. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, L.; Nezami, S.; Yost, D.; Tsourkas, P.; Amy, P.S. Isolation and Characterization of a Novel Phage Lysin Active against Paenibacillus larvae, a Honeybee Pathogen. Bacteriophage 2015, 5, e1080787-16. [Google Scholar] [CrossRef] [PubMed]
- Yost, D.G.; Tsourkas, P.; Amy, P.S. Experimental Bacteriophage Treatment of Honeybees (Apis mellifera) Infected with Paenibacillus larvae, the Causative Agent of American Foulbrood Disease. Bacteriophage 2016, 6, e11122698. [Google Scholar] [CrossRef]
- Ghorbani-Nezami, S.; LeBlanc, L.; Yost, D.G.; Amy, P.S. Phage Therapy Is Effective in Protecting Honeybee Larvae from American Foulbrood Disease. J. Insect Sci. 2015, 15, 84–85. [Google Scholar] [CrossRef] [PubMed]
- Tsourkas, P.K. Paenibacillus larvae Bacteriophages: Obscure Past, Promising Future. Microb. Genom. 2020, 6, e000329. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Melo, L.D.R.; Kropinski, A.M.; Azeredo, J. Complete Genome Sequence of the Broad-Host-Range Paenibacillus larvae Phage PhilBB_P123. Genome Announc. 2013, 1, E00438-13. [Google Scholar] [CrossRef] [PubMed]
- Philipson, C.W.; Voegtly, L.J.; Lueder, M.R.; Long, K.A.; Rice, G.K.; Frey, K.G.; Biswas, B.; Cer, R.Z.; Hamilton, T.; Bishop-Lilly, K.A. Characterizing Phage Genomes for Therapeutic Applications. Viruses 2018, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.G.; Melo, L.D.R.; Oliveira, H.; Boon, M.; Lavigne, R.; Noben, J.-P.; Azeredo, J.; Oliveira, A. Characterization of a New Podovirus Infecting Paenibacillus larvae. Sci. Rep. 2019, 9, 20355. [Google Scholar] [CrossRef]
- Beims, H.; Bunk, B.; Erler, S.; Mohr, K.I.; Spröer, C.; Pradella, S.; Günther, G.; Rohde, M.; von der Ohe, W.; Steinert, M. Discovery of Paenibacillus larvae ERIC V: Phenotypic and Genomic Comparison to Genotypes ERIC I-IV Reveal Different Inventories of Virulence Factors Which Correlate with Epidemiological Prevalences of American Foulbrood. Int. J. Med. Microbiol. 2020, 310, 151394. [Google Scholar] [CrossRef] [PubMed]
- Beims, H.; Wittmann, J.; Bunk, B.; Spröer, C.; Rohde, C.; Günther, G.; Rohde, M.; von der Ohe, W.; Steinert, M. Paenibacillus larvae-Directed Bacteriophage HB10c2 and Its Application in American Foulbrood-Affected Honey Bee Larvae. Appl. Environ. Microbiol. 2015, 81, 5411–5419. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.K.; Merrill, B.D.; Berg, J.A.; Dhalai, A.; Dingman, D.W.; Fajardo, C.P.; Graves, K.; Hill, H.L.; Hilton, J.A.; Imahara, C.; et al. Complete Genome Sequences of Paenibacillus larvae Phages BN12, Dragolir, Kiel007, Leyra, Likha, Pagassa, PBL1c, and Tadhana. Genome Announc. 2018, 6, e01602-17. [Google Scholar] [CrossRef]
- Merrill, B.D.; Fajardo, C.P.; Hilton, J.A.; Payne, A.M.; Ward, A.T.; Walker, J.K.; Dhalai, A.; Imahara, C.; Mangohig, J.; Monk, J.; et al. Complete Genome Sequences of 18 Paenibacillus larvae Phages from the Western United States. Microbiol. Resour. Announc. 2018, 7, e00966-18. [Google Scholar] [CrossRef] [PubMed]
- Carson, S.; Bruff, E.; DeFoor, W.; Dums, J.; Groth, A.; Hatfield, T.; Iyer, A.; Joshi, K.; McAdams, S.; Miles, D.; et al. Genome Sequences of Six Paenibacillus larvae Siphoviridae Phages. Genome Announc. 2015, 3, e00101-15. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.; Bousquet, A.-C.; Bruff, E.; Carson, N.; Clark, A.; Connell, A.; Davis, Z.; Dums, J.; Everington, C.; Groth, A.; et al. Paenibacillus larvae Phage Tripp Genome Has 378-Base-Pair Terminal Repeats. Genome Announc. 2016, 4, e01498-15. [Google Scholar] [CrossRef] [PubMed]
- Tsourkas, P.K.; Yost, D.G.; Krohn, A.; LeBlanc, L.; Zhang, A.; Stamereilers, C.; Amy, P.S. Complete Genome Sequences of Nine Phages Capable of Infecting Paenibacillus larvae, the Causative Agent of American Foulbrood Disease in Honeybees: TABLE 1. Genome Announc. 2015, 3, e01120-15. [Google Scholar] [CrossRef] [PubMed]
- Yost, D.G.; Chang, C.; LeBlanc, L.; Cassin, E.; Peterman, C.; Rai, P.; Salisbury, A.; Barroga, N.; Cisneros, R.; Fersini, J.; et al. Complete Genome Sequences of Paenibacillus larvae Phages Halcyone, Heath, Scottie, and Unity from Las Vegas, Nevada. Microbiol. Resour. Announc. 2018, 7, e00977-18. [Google Scholar] [CrossRef] [PubMed]
- Stamereilers, C.; LeBlanc, L.; Yost, D.; Amy, P.S.; Tsourkas, P.K. Comparative Genomics of 9 Novel Paenibacillus larvae Bacteriophages. Bacteriophage 2016, 6, e1220349. [Google Scholar] [CrossRef] [PubMed]
- Stamereilers, C.; Fajardo, C.; Walker, J.; Mendez, K.; Castro-Nallar, E.; Grose, J.; Hope, S.; Tsourkas, P. Genomic Analysis of 48 Paenibacillus larvae Bacteriophages. Viruses 2018, 10, 377. [Google Scholar] [CrossRef] [PubMed]
- Jończyk-Matysiak, E.; Owczarek, B.; Popiela, E.; Świtała-Jeleń, K.; Migdał, P.; Cieślik, M.; Łodej, N.; Kula, D.; Neuberg, J.; Hodyra-Stefaniak, K.; et al. Isolation and Characterization of Phages Active against Paenibacillus larvae Causing American Foulbrood in Honeybees in Poland. Viruses 2021, 13, 1217. [Google Scholar] [CrossRef]
- Bozdeveci, A.; Akpınar, R.; Karaoğlu, Ş.A. Isolation, Characterization, and Comparative Genomic Analysis of VB_PlaP_SV21, New Bacteriophage of Paenibacillus larvae. Virus Res. 2021, 305, 198571. [Google Scholar] [CrossRef] [PubMed]
- Kok, D.N.; Turnbull, J.; Takeuchi, N.; Tsourkas, P.K.; Hendrickson, H.L. In Vitro Evolution to Increase the Titers of Difficult Bacteriophages: RAMP-UP Protocol. Phage 2023, 4, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Kok, D.N.; Turnbull, J.; Takeuchi, N.; Tsourkas, P.K.; Hendrickson, H.L. Paenibacillus larvae and Their Phages; a Community Science Approach to Discovery and Initial Testing of Prophylactic Phage Cocktails against American Foulbrood in New Zealand. Microbiome Res. Rep. 2023, 2, 30. [Google Scholar] [CrossRef]
- Jończyk-Matysiak, E.; Popiela, E.; Owczarek, B.; Hodyra-Stefaniak, K.; Świtała-Jeleń, K.; Łodej, N.; Kula, D.; Neuberg, J.; Migdał, P.; Bagińska, N.; et al. Phages in Therapy and Prophylaxis of American Foulbrood—Recent Implications From Practical Applications. Front. Microbiol. 2020, 11, 1913. [Google Scholar] [CrossRef]
- Gillingham, A. Beekeeping. Te Ara—The Encyclopedia of New Zealand. Available online: https://teara.govt.nz/en/beekeeping (accessed on 20 January 2024).
- Kok, D.N.; Hendrickson, H.L. Save Our Bees: Bacteriophages to Protect Honey Bees against the Pathogen Causing American Foulbrood in New Zealand. N. Z. J. Zool. 2023, 52, 144–159. [Google Scholar] [CrossRef]
- Lester, P. Healthy Bee, Sick Bee: The Influence of Parasites, Pathogens, Predators and Pesticides on Honey Bees; Victoria University of Wellington Press: Wellington, New Zealand, 2021; ISBN 9781776564057. [Google Scholar]
- Biosecurity Act 1993. No 95 (as at 01 July 2022), Public Act Contents—New Zealand Legislation. Available online: https://www.legislation.govt.nz/act/public/1993/0095/latest/DLM314623.html (accessed on 12 August 2022).
- Binney, B.M.; Pragert, H.; Foxwell, J.; Gias, E.; Birrell, M.L.; Phiri, B.J.; Quinn, O.; Taylor, M.; Ha, H.J.; Hall, R.J. Genomic Analysis of the Population Structure of Paenibacillus larvae in New Zealand. Front. Microbiol. 2023, 14, 1161926. [Google Scholar] [CrossRef] [PubMed]
- Lazeroff, M.; Ryder, G.; Harris, S.L.; Tsourkas, P.K. Phage Commander, an Application for Rapid Gene Identification in Bacteriophage Genomes Using Multiple Programs. Phage 2021, 2, 204–213. [Google Scholar] [CrossRef]
- Pope, W.H.; Jacobs-Sera, D. Annotation of Bacteriophage Genome Sequences Using DNA Master: An Overview. Methods Mol. Biol. 2018, 1681, 217–229. [Google Scholar]
- Salisbury, A.; Tsourkas, P.K. A Method for Improving the Accuracy and Efficiency of Bacteriophage Genome Annotation. Int. J. Mol. Sci. 2019, 20, 3391. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F.; Jacobs-Sera, D.; Lawrence, J.G.; Pope, W.H.; Russell, D.A.; Ko, C.-C.; Weber, R.J.; Patel, M.C.; Germane, K.L.; Edgar, R.H.; et al. Comparative Genomic Analysis of 60 Mycobacteriophage Genomes: Genome Clustering, Gene Acquisition, and Gene Size. J. Mol. Biol. 2010, 397, 119–143. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Krumsiek, J.; Arnold, R.; Rattei, T. Gepard: A Rapid and Sensitive Tool for Creating Dotplots on Genome Scale. Bioinformatics 2007, 23, 1026–1028. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, S.; Fullmer, M.S.; Feng, Y.; Gogarten, J.P. Improving Phylogenies Based on Average Nucleotide Identity, Incorporating Saturation Correction and Nonparametric Bootstrap Support. Syst. Biol. 2022, 71, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Bryant, D.; Moulton, V. Neighbor-Net: An Agglomerative Method for the Construction of Phylogenetic Networks. Mol. Biol. Evol. 2004, 21, 255–265. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.-I.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Merrill, B.D.; Ward, A.T.; Grose, J.H.; Hope, S. Software-Based Analysis of Bacteriophage Genomes, Physical Ends, and Packaging Strategies. BMC Genom. 2016, 17, 679. [Google Scholar] [CrossRef]
- Accession No. MW927523.1, Paenibacillus Phage Picard, Complete Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/2044628096 (accessed on 8 April 2024).
- Ebeling, J.; Fünfhaus, A.; Genersch, E. The Buzz about ADP-Ribosylation Toxins from Paenibacillus larvae, the Causative Agent of American Foulbrood in Honey Bees. Toxins 2021, 13, 151. [Google Scholar] [CrossRef] [PubMed]
- Fünfhaus, A.; Poppinga, L.; Genersch, E. Identification and Characterization of Two Novel Toxins Expressed by the Lethal Honey Bee Pathogen Paenibacillus larvae, the Causative Agent of American Foulbrood. Environ. Microbiol. 2013, 15, 2951–2965. [Google Scholar] [CrossRef]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The Reference Centre for Bacterial Insertion Sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [PubMed]
- Stamereilers, C.; Wong, S.; Tsourkas, P.K. Characterization of CRISPR Spacer and Protospacer Sequences in Paenibacillus larvae and Its Bacteriophages. Viruses 2021, 13, 459. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Alfenas-Zerbini, P.; Davison, A.J.; Dempsey, D.M.; Dutilh, B.E.; García, M.L.; et al. Changes to Virus Taxonomy and to the International Code of Virus Classification and Nomenclature Ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. 2021, 166, 2633–2648. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.G.; Nilsson, A.; Melo, L.D.R.; Oliveira, A. Analysis of Intact Prophages in Genomes of Paenibacillus larvae: An Important Pathogen for Bees. Front. Microbiol. 2022, 13, 903861. [Google Scholar] [CrossRef] [PubMed]
- Dingman, D.W.; Bakhiet, N.; Field, C.C.; Stahly, D.P. Isolation of Two Bacteriophages from Bacillus Larvae, PBL1 and PBL0.5, and Partial Characterization of PBL1. J. Gen. Virol. 1984, 65 Pt 6, 1101–1105. [Google Scholar] [CrossRef] [PubMed]
- Ares-Arroyo, M.; Coluzzi, C.; Moura de Sousa, J.A.; Rocha, E.P.C. Hijackers, Hitchhikers, or Co-Drivers? The Mysteries of Mobilizable Genetic Elements. PLoS Biol. 2024, 22, e3002796. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Leite, M.; Kluskens, L.D.; Santos, S.B.; Melo, L.D.R.; Azeredo, J. The First Paenibacillus larvae Bacteriophage Endolysin (PlyPl23) with High Potential to Control American Foulbrood. PLoS ONE 2015, 10, e0132095-16. [Google Scholar] [CrossRef] [PubMed]
- Young, R. Phage Lysis: Three Steps, Three Choices, One Outcome. J. Microbiol. 2014, 52, 243–258. [Google Scholar] [CrossRef]
- Davies, C.G.; Reilly, K.; Altermann, E.; Hendrickson, H.L. PLAN-M; Mycobacteriophage Endolysins Fused to Biodegradable Nanobeads Mitigate Mycobacterial Growth in Liquid and on Surfaces. Front. Microbiol. 2021, 12, 562748. [Google Scholar] [CrossRef] [PubMed]
Phage Name | Genome Length (bp) | No. of Genes | GC Content (%) | Cluster | Accession No. |
---|---|---|---|---|---|
ABAtENZ | 44,419 | 82 | 42.97 | Vegas | OP503968 |
AJG77 | 44,417 | 82 | 42.98 | Vegas | OP503969 |
ApiWellbeing | 44,429 | 82 | 43.01 | Vegas | OP503970 |
BarryFoster_ Benicio | 44,421 | 82 | 42.98 | Vegas | OP503543 |
Bloomfield | 44,419 | 82 | 42.98 | Vegas | OP503971 |
Bob | 43,553 | 80 | 43.03 | Vegas | OP503972 |
Callan | 44,768 | 77 | 39.69 | Harrison | OP503989 |
Carlos | 44,430 | 83 | 42.98 | Vegas | OP503973 |
Dante | 44,420 | 82 | 42.98 | Vegas | OP503974 |
Dash | 44,599 | 79 | 39.39 | Harrison | OP503990 |
FutureBees | 44,417 | 83 | 42.98 | Vegas | OP503975 |
GaryLarson | 44,420 | 82 | 42.98 | Vegas | OP503976 |
GIW2016 | 43,555 | 80 | 43.01 | Vegas | OP503977 |
Jacinda | 44,419 | 82 | 42.97 | Vegas | OP503978 |
Lena | 44,420 | 82 | 42.97 | Vegas | OP503979 |
Lilo | 40,941 | 70 | 40.33 | Harrison | OP503991 |
Logan | 44,419 | 82 | 42.99 | Vegas | OP503980 |
LunBun | 44,421 | 82 | 42.97 | Vegas | OP494865 |
NHScienceFair | 44,419 | 82 | 42.98 | Vegas | OP503981 |
Ollie | 44,420 | 83 | 42.98 | Vegas | OP503982 |
Rae.2Bee1 | 44,420 | 82 | 42.97 | Vegas | OP503983 |
Rosalind | 43,556 | 80 | 43.00 | Vegas | OP503984 |
Ted | 44,419 | 82 | 42.99 | Vegas | OP503985 |
TonyLawson77 | 44,420 | 82 | 42.96 | Vegas | OP503986 |
UtuhinaGold_ Zacery | 44,420 | 82 | 42.97 | Vegas | OP503987 |
Wildcape | 44,430 | 82 | 42.98 | Vegas | OP503988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kok, D.N.; Gosselin, S.P.; Howard, B.; Cresawn, S.G.; Tsourkas, P.K.; Hendrickson, H.L. Genomic Analysis of 96 Paenibacillus larvae Bacteriophages Including 26 from Aotearoa, New Zealand. Viruses 2025, 17, 137. https://doi.org/10.3390/v17020137
Kok DN, Gosselin SP, Howard B, Cresawn SG, Tsourkas PK, Hendrickson HL. Genomic Analysis of 96 Paenibacillus larvae Bacteriophages Including 26 from Aotearoa, New Zealand. Viruses. 2025; 17(2):137. https://doi.org/10.3390/v17020137
Chicago/Turabian StyleKok, Danielle N., Sophia P. Gosselin, Brenham Howard, Steven G. Cresawn, Philippos K. Tsourkas, and Heather L. Hendrickson. 2025. "Genomic Analysis of 96 Paenibacillus larvae Bacteriophages Including 26 from Aotearoa, New Zealand" Viruses 17, no. 2: 137. https://doi.org/10.3390/v17020137
APA StyleKok, D. N., Gosselin, S. P., Howard, B., Cresawn, S. G., Tsourkas, P. K., & Hendrickson, H. L. (2025). Genomic Analysis of 96 Paenibacillus larvae Bacteriophages Including 26 from Aotearoa, New Zealand. Viruses, 17(2), 137. https://doi.org/10.3390/v17020137