Chronic Systemic SARS-CoV-2 Infection Without Respiratory Involvement in an Immunocompromised Patient
Abstract
:1. Introduction
2. Case Report
2.1. Patient History
2.2. Genomic Analysis
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, B.; Choudhary, M.C.; Regan, J.; Sparks, J.A.; Padera, R.F.; Qiu, X.; Solomon, I.H.; Kuo, H.H.; Boucau, J.; Bowman, K.; et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised patient. N. Engl. J. Med. 2020, 383, 2291–2293. [Google Scholar] [CrossRef] [PubMed]
- Sepulcri, C.; Dentone, C.; Mikulska, M.; Bruzzone, B.; Lai, A.; Fenoglio, D.; Bozzano, F.; Bergna, A.; Parodi, A.; Altosole, T.; et al. The Longest Persistence of Viable SARS-CoV-2 with Recurrence of Viremia and Relapsing Symptomatic COVID-19 in an Immunocompromised Patient-A Case Study. Open Forum Infect. Dis. 2021, 8, ofab217. [Google Scholar] [CrossRef] [PubMed]
- Meijer, S.E.; Paran, Y.; Belkin, A.; Ben-Ami, R.; Maor, Y.; Nesher, L.; Hussein, K.; Rahav, G.; Brosh-Nissimov, T. Persistent COVID-19 in immunocompromised patients-Israeli society of infectious diseases consensus statement on diagnosis and management. Clin. Microbiol. Infect. 2024, 30, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.R.; Ramelli, S.C.; Grazioli, A.; Chung, J.Y.; Singh, M.; Yinda, C.K. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 2022, 612, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ebi.ac.uk (accessed on 6 July 2023).
- Perumal, R.; Shunmugam, L.; Naidoo, K.; Wilkins, D.; Garzino-Demo, A.; Brechot, C.; Vahlne, A.; Nikolich, J. Biological mechanisms underpinning the development of Long COVID. iScience 2023, 26, 106935. [Google Scholar] [CrossRef] [PubMed]
- Sigal, A.; Neher, R.A.; Lessells, R.J. The consequences of SARS-CoV-2 within host persistence. Nat. Rev. Microbiol. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Bordoy, A.E.; Saludes, V.; Panisello Yagüe, D.; Clarà, G.; Soler, L.; Paris de León, A.; Casañ, C.; Blanco-Suárez, A.; Guerrero-Murillo, M.; Rodríguez-Ponga, B.; et al. Monitoring SARS-CoV-2 variant transitions using differences in diagnostic cycle threshold values of target genes. Sci. Rep. 2022, 12, 21818. [Google Scholar] [CrossRef] [PubMed]
- González Alba, J.M.; Perez-Martinez, Z.; Boga, J.A.; Rojo-Alba, S.; Gomez de Oña, J.; Alvarez-Argüelles, M.E. Emergence of new SARS-CoV-2 Omicron variants after the change of surveillance and control strategy. Microorganisms 2022, 10, 1954. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Shah, M.K.; Hoyos, D.; Solovyov, A.; Douglas, M.; Taur, Y.; Maslak, P.; Babady, N.E.; Greenbaum, B.; Kamboj, M.; et al. Prolonged SARS-CoV-2 infection in patients with lymphoid malignancies. Cancer Discov. 2022, 12, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Foschi, A.; Bracchitta, F.; Faggion, I.; Salari, F.; Borgonovo, F.; Fusetti, C.; Mileto, D.; Rizzardini, G.; Lombardi, A.; et al. Persistent detection and sequencing of SARS-CoV-2 in the bloodstream of an immunocompromised patient. J. Med. Virol. 2023, 95, e28381. [Google Scholar] [CrossRef] [PubMed]
- Carabelli, A.M.; Peacock, T.P.; Thorne, L.G.; Harvey, W.T.; Hughes, J.; COVID-19 Genomics UK Consortium; Peacock, S.J.; Barclay, W.S.; de Silva, T.I.; Towers, G.J.; et al. SARS-CoV-2 variant biology: Immune scape, transmission and fitness. Nat. Rev. Microbiol. 2023, 21, 162–177. [Google Scholar] [PubMed]
- Avanzato, V.A.; Matson, M.J.; Seifert, S.N.; Pryce, R.; Williamson, B.N.; Anzick, S.L.; Barbian, K.; Judson, S.D.; Fischer, E.R.; Martens, C.; et al. Case study: Prolongued infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer. Cell 2020, 183, 1901–1912. [Google Scholar] [CrossRef] [PubMed]
- Petereit, H.F.; Rubbert-Roth, A. Rituximab levels in cerebrospinal fluid of patients with neurological autoimmune disorders. Mult. Scler. 2009, 15, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.gov.uk/government/publications/regulatory-approval-of-xevudy-sotrovimab/summary-of-product-characteristics-for-xevudy#pharmaceutical-form (accessed on 6 July 2023).
Date | 11 February 2022 | 6 June | 11 July | 24 August | 14 September | 18 October | 2 December | 22 March 2023 |
---|---|---|---|---|---|---|---|---|
Hemoglobin (g/dL) | 14.5 | 14.1 | 14.5 | 14 | 13.9 | 14.4 | 13.9 | 14.1 |
Leukocyte (10 × 103/µL) | 5.6 | 4 | 4.5 | 7.1 | 4.7 | 3.5 | 3 | 4.2 |
Neutrophil (10 × 103/µL) | 4.8 | 3.2 | 3.1 | 5.7 | 4.1 | 2.4 | 1.7 | 3.5 |
Lymphocyte (10 × 103/µL) | 0.4 | 0.5 | 1.1 | 0.8 | 0.5 | 0.7 | 0.9 | 0.4 |
Platelets (10 × 103/µL) | 176 | 185 | 171 | 182 | 179 | 181 | 167 | 181 |
INR | 1.1 | 1.15 | 1.09 | 1.1 | 1.13 | 1.15 | ||
Fibrinogen (mg/dL) | 353 | 349 | 373 | 348 | 351 | 356 | ||
Glucose (mg/dL) | 103 | 100 | 101 | 80 | 109 | 107 | 76 | 106 |
Serum creatinine (mg/dL) | 0.72 | 0.83 | 0.83 | 0.87 | 0.87 | 0.83 | 0.94 | 0.75 |
ALT (U/L) | 20 | 19 | 18 | 13 | 14 | 12 | 15 | 14 |
Albumin (g/dL) | 4 | 3.8 | 4.2 | 4.1 | 4.1 | 4 | 3.8 | 4.1 |
Ferritin (µg/L) | 71 | 86 | 90 | 59 | 52 | 104 | 62 | |
Transferrin (mg/dL) | 194 | 178 | 196 | 190 | 181 | 176 | 181 | |
IST (%) | 45% | 38% | 52% | 39% | 45% | 46% | 34% | |
PCR (mg/L) | <4 | <4 | <4 | <4 | <4 | |||
IL6 (pg/mL) | 3.2 | 3.1 | 2.4 | <1.5 | ||||
IL-1 beta (pg/mL) | <5 | <5 | <5 | <5 | ||||
TNF alpha (pg/mL) | 4.9 | 6.2 | 4.4 | 9.4 | ||||
CD3+ T (cells/µL) | 328 (90.7%) | 516 (93.6%) | 1020 (94.2%) | 783 (94.3%) | 411 (92.6%) | 785 (94.4% | 935 (95.6%) | 460 (94.4%) |
CD3+/CD4+ T (cells/µL) | 178 (50.6%) | 344 (62.2%) | 670 (64%) | 611 (70%) | 275 (62.8%) | 576 (68.4%) | 655 (67.6%) | 305 (62.8%) |
CD3+/CD8+ T (cells/µL) | 136 (38.6%) | 176 (31.8%) | 322 (30.7%) | 210 (24%) | 130 (29.6%) | 221 (26.3%) | 274 (28.2%) | 147 (30%) |
CD19+ B (cells/µL) | 19 (5%) | 28 (5.1%) | 42 (3.7%) | 27 (3.4%) | 19 (4.2%) | 27 (3.3%) | 27 (2.7%) | 12 (2.4%) |
LGL/CD3-CD16+/CD56+ on NK (cells/µL) | 12 (3.2%) | 0 (0.9%) | 20 (1.7%) | 9 (1.19%) | 10 (2.2%) | 19 (2.3%) | 17 (1.7%) | 15 (3%) |
LGL/CD3+CD16+/CD56+ T | 23% | 8% | 5% | 8% | 6.7% | 6.8% | 9.3% | |
IgG (mg/dL) | 397 | 366 | 446 | 373 | 403 | 406 | 421 | 472 |
IgM (mg/dL) | 14.9 | 15.5 | 16.6 | 15.7 | 16 | 21.9 | 20.1 | 24.2 |
IgA (mg/dL) | 65.7 | 47 | 55 | 48.3 | 50 | 56.8 | 54 | 49.2 |
C3 (mg/dL) | 86.5 | 73.3 | 85.3 | 77 | 74 | 89.6 | 71.3 | 81.3 |
C4 (mg/dL) | 23.1 | 20.5 | 22.9 | 20.3 | 20 | 24.7 | 19.2 | 21.8 |
Rheumatoid factor | (-) | (-) | (-) | (-) | (-) | |||
Serum cryoglobulins | (-) | (-) | (-) | (-) | ||||
CSF leukocytes (cells/µL) | 0 | 5 | ||||||
CSF red blood cells (cells/µL) | 1330 | 202 | ||||||
CSF proteins (mg/dL) | 49 | 47 | ||||||
CSF glucose (mg/dL) | 59 | 55 | ||||||
ANAs | (-) | |||||||
Anti-DNA | (-) |
Date | 11 February 2022 | 16 February 2022 | 4 March 2022 | 1 April 2022 | 26 April 2022 | 6 June 2022 | 11 July 2022 | 24 August 2022 | 14 September 2022 | 18 October 2022 | 11 November 2022 | 2 December 2022 | 19 December 2022 | 27 December 2022 | 19 January 2023 | 9 February 2023 | 1 March 20223 | 22 March 2023 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nasopharyngeal SARS-CoV-2 | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (-) | (+) | (-) | (-) | (-) | (-) | |||
Whole blood SARS-CoV-2 | (+) | (+) | (-) | (-) | (+) | (-) | (-) | (-) | (-) | (-) | (-) | (+) | (-) | (-) | ||||
Stool SARS-CoV-2 | (+) | (-) | (-) | (-) | (+) | (-) | (-) | (-) | ||||||||||
Urine Sars-CoV-2 | (-) | (+) | (-) | (-) | (-) | (-) | (-) | (-) | ||||||||||
Cerebrospinal Sars-CoV-2 | Inhibited | (+) | (-) | |||||||||||||||
Gastric Biopsy Sars-CoV-2 | (+) | |||||||||||||||||
Appendix Sars-CoV-2 | (-) | |||||||||||||||||
Sars-CoV-2 IgG anti-S antibodies | 13973 UA/mL | 6516 UA/mL | 6368 UA/mL | 14219 UA/mL | 12599 UA/mL | 10661 UA/mL | 13270 UA/mL | 13159 UA/mL | 13907 UA/mL | |||||||||
Sotrovimab administration | (+) | |||||||||||||||||
Nirmatrelvir/ritonavir | (+) | |||||||||||||||||
mRNA Vaccine | (+) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejerina, F.; Peñas-Utrilla, D.; Herranz, M.; Catalán, P.; Marín, M.; Mesones, L.; García-Domínguez, J.M.; Merino, B.; Pérez, L.; Fanciulli, C.; et al. Chronic Systemic SARS-CoV-2 Infection Without Respiratory Involvement in an Immunocompromised Patient. Viruses 2025, 17, 147. https://doi.org/10.3390/v17020147
Tejerina F, Peñas-Utrilla D, Herranz M, Catalán P, Marín M, Mesones L, García-Domínguez JM, Merino B, Pérez L, Fanciulli C, et al. Chronic Systemic SARS-CoV-2 Infection Without Respiratory Involvement in an Immunocompromised Patient. Viruses. 2025; 17(2):147. https://doi.org/10.3390/v17020147
Chicago/Turabian StyleTejerina, Francisco, Daniel Peñas-Utrilla, Marta Herranz, Pilar Catalán, Mercedes Marín, Lara Mesones, José Manuel García-Domínguez, Beatriz Merino, Leire Pérez, Chiara Fanciulli, and et al. 2025. "Chronic Systemic SARS-CoV-2 Infection Without Respiratory Involvement in an Immunocompromised Patient" Viruses 17, no. 2: 147. https://doi.org/10.3390/v17020147
APA StyleTejerina, F., Peñas-Utrilla, D., Herranz, M., Catalán, P., Marín, M., Mesones, L., García-Domínguez, J. M., Merino, B., Pérez, L., Fanciulli, C., Muñoz, P., Rodríguez-Gonzalez, C., Diez, C., Aldámiz, T., Molero-Salinas, A., Pérez-Lago, L., & García de Viedma, D. (2025). Chronic Systemic SARS-CoV-2 Infection Without Respiratory Involvement in an Immunocompromised Patient. Viruses, 17(2), 147. https://doi.org/10.3390/v17020147