A Comprehensive Review of Antiviral Therapy for Hepatitis C: The Long Journey from Interferon to Pan-Genotypic Direct-Acting Antivirals (DAAs)
Abstract
:1. Introduction
2. The Era of Alpha-Interferon Monotherapy
3. Mechanism of Action of Alpha-Interferon
4. Clinical Efficacy and Challenges
5. Understanding the Limitations
6. Pegylated Interferon Monotherapy
7. Mechanism and Pharmacokinetics of Pegylation
8. Challenges and Limitations of Peg-IFN Monotherapy
9. Clinical Implications of Peg-IFN Monotherapy
10. Combination Therapy with Pegylated Interferon and Ribavirin
11. Mechanism of Action of Ribavirin and Its Role in Improving SVR
12. SVR Rates Across Different HCV Genotypes
13. Adverse Effects of Ribavirin, Especially Hematological Toxicity
14. The Introduction of Direct-Acting Antivirals (DAAs): First Generation
15. Mechanism of Action: NS3/4A Protease Inhibition
16. Improvements in Sustained Virological Response (SVR) Rates
17. Challenges and Limitations: Resistance, Complex Dosing, and Drug–Drug Interactions
- Biological insights that led to development of DAAs
- Understanding the HCV Genome and Polyprotein Processing
- 2.
- Role of NS3/4A Protease in Viral Maturation.
- 3.
- RNA-Dependent RNA Polymerase as the Engine of Replication
- 4.
- Multifunctional Role of NS5A in Viral Replication and Assembly
- 5.
- Role of Host–Virus Interactions
- 6.
- Genotype-Specific Variations.
- 7.
- Viral Resistance Mechanisms.
- 8.
- Advances in Structural Biology and Drug Design
18. Efficacy and Improved Tolerability in IFN-Free Regimens
19. Impact on Treatment Adherence and Sustained Virological Response (SVR)
20. Efficacy, Tolerability, and Reduced Treatment Duration of Combination Therapies
21. Pan-Genotypic DAAs: The Latest Generation
22. High SVR Rates, Improved Tolerability, and Simplified Treatment Regimens
23. Current Recommendations and Future Perspectives
24. Remaining Challenges and Future Directions
- The production of generic drugs by encouraging early patent expiration or negotiating compulsory licenses to allow the production of low-cost generic versions.
- Centralized purchasing by governments or health organizations that can adopt large-scale supply models, negotiating directly with manufacturers to secure lower prices.
- Market competition to promote the entry of more manufacturers by offering tax incentives or reducing regulatory barriers, increasing competition and lowering prices.
- Public–private partnerships to collaborate with pharmaceutical companies to develop and produce drugs, ensuring affordable prices in exchange for research support.
- Public funding to invest in the research and development of treatments that are not subject to the profit-driven models of private companies.
- Price controls to set maximum price caps for essential medicines or impose regulations on pharmaceutical companies’ profit margins.
- Tax exemptions and incentives to reduce taxes or duties on raw materials and finished medicines to lower production and distribution costs.
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Hepatitis Report 2017; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Polaris Observatory HCV Collaborators. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: A modelling study. Lancet Gastroenterol. Hepatol. 2022, 7, 396–415. [Google Scholar] [CrossRef] [PubMed]
- Alter, M.J.; Margolis, H.S.; Krawczynski, K.; Judson, F.N.; Mares, A.; Alexander, W.; Hu, P.Y.; Miller, J.K.; Gerber, M.A.; Sampliner, R.E.; et al. The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team. N. Engl. J. Med. 1992, 327, 1899–1905. [Google Scholar] [CrossRef]
- Davis, G.L.; Alter, M.J.; El-Serag, H.; Poynard, T.; Jennings, L.W. Aging of hepatitis C virus (HCV)-infected persons in the United States: A multiple cohort model of HCV prevalence and disease progression. Gastroenterology 2010, 138, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Alter, M.J. Epidemiology of hepatitis C virus infection. World J. Gastroenterol. 2007, 13, 2436–2441. [Google Scholar] [CrossRef]
- Ioannou, G.N.; Feld, J.J. What Are the Benefits of a Sustained Virologic Response to Direct-Acting Antiviral Therapy for Hepatitis C Virus Infection? Gastroenterology 2019, 156, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Shiratori, Y.; Ito, Y.; Yokosuka, O.; Imazeki, F.; Nakata, R.; Tanaka, N.; Arakawa, Y.; Hashimoto, E.; Hirota, K.; Yoshida, H.; et al. Antiviral therapy for cirrhotic hepatitis C: Association with reduced hepatocellular carcinoma development and improved survival. Ann. Intern. Med. 2005, 142, 105–114. [Google Scholar] [CrossRef]
- Dore, G.J.; Feld, J.J. Hepatitis C virus therapeutic development: In pursuit of “perfectovir”. Clin. Infect. Dis. 2015, 60, 1829–1836. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, D.; Aronsohn, A.; Price, J.; Lo Re, V.; AASLD-IDSA HCV Guidance Panel. Hepatitis C Guidance 2023 Update: AASLD-IDSA Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection. Clin. Infect. Dis. 2023, 2023, ciad319. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- Hoofnagle, J.H.; Mullen, K.D.; Jones, D.B.; Rustgi, V.; Di Bisceglie, A.; Peters, M.; Waggoner, J.G.; Park, Y.; Jones, E.A. Treatment of chronic non-A, non-B hepatitis with recombinant human alpha interferon. A preliminary report. N. Engl. J. Med. 1986, 315, 1575–1578. [Google Scholar] [CrossRef]
- Samuel, C.E. Antiviral actions of interferons. Clin. Microbiol. Rev. 2001, 14, 778–809. [Google Scholar] [CrossRef] [PubMed]
- Di Bisceglie, A.M.; Martin, P.; Kassianides, C.; Lisker-Melman, M.; Murray, L.; Waggoner, J.; Goodman, Z.; Banks, S.M.; Hoofnagle, J.H. Recombinant interferon alfa therapy for chronic hepatitis C. A randomized, double-blind, placebo-controlled trial. N. Engl. J. Med. 1989, 321, 1506. [Google Scholar] [CrossRef]
- Davis, G.L.; Balart, L.A.; Schiff, E.R.; Lindsay, K.; Bodenheimer, H.C.; Perrillo, R.P.; Carey, W.; Jacobson, I.M.; Payne, J.; Dienstag, J.L.; et al. Treatment of chronic hepatitis C with recombinant interferon alfa. A multicenter randomized, controlled trial. N. Engl. J. Med. 1989, 321, 1501–1506. [Google Scholar] [CrossRef]
- Davis, G.L. Recombinant alpha-interferon treatment of non-A, and non-B (type C) hepatitis: Review of studies and recommendations for treatment. J. Hepatol. 1990, 11 (Suppl. S1), S72–S77. [Google Scholar] [CrossRef]
- Dusheiko, G. Side effects of alpha interferon in chronic hepatitis C. Hepatology 1997, 26 (Suppl. S1), 112S–121S. [Google Scholar] [CrossRef]
- Pawlotsky, J.M.; Germanidis, G.; Neumann, A.U.; Pellerin, M.; Frainais, P.-O.; Dhumeaux, D. Interferon resistance of hepatitis C virus genotype 1b: Relationship to nonstructural 5A gene quasispecies mutations. J. Virol. 1998, 72, 2795–2805. [Google Scholar] [CrossRef]
- von Wagner, M.; Lee, J.H.; Rüster, B.; Kronenberger, B.; Sarrazin, C.; Roth, W.K.; Zeuzem, S. Dynamics of hepatitis C virus quasispecies turnover during interferon-alpha treatment. J. Viral Hepat. 2003, 10, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Paterson, M.; Laxton, C.; Goldin, R.D.; Ackrill, A.M.; Foster, G.R. Selection of HCV NS5Aquasispecies during IFN therapy in patients with chronic HCV. Dig. Dis. Sci. 2001, 46, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Zeuzem, S.; Heathcote, J.E.; Martin, N.; Nieforth, K.; Modi, M. Peginterferon alfa-2a (40 kDa) monotherapy: A novel agent for chronic hepatitis C therapy. Expert Opin. Investig. Drugs 2000, 10, 2201–2213. [Google Scholar]
- Zeuzem, S.; Welsch, C.; Herrmann, E. Pharmacokinetics of peginterferons. Semin. Liver Dis. 2003, 23 (Suppl. S1), 23–28. [Google Scholar] [CrossRef] [PubMed]
- Zaman, A.; Fennerty, M.B.; Keeffe, E.B. Systematic review: Peginterferon vs. standard interferon in the treatment of chronic hepatitis C. Aliment. Pharmacol. Ther. 2003, 18, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Pockros, P.J.; Carithers, R.; Desmond, P.; Dhumeaux, D.; Fried, M.W.; Marcellin, P.; Shiffman, M.L.; Minuk, G.; Reddy, K.R.; Reindollar, R.W.; et al. Efficacy and safety of two-dose regimens of peginterferon alpha-2a compared with interferon alpha-2a in chronic hepatitis C: A multicenter, randomized controlled trial. Am. J. Gastroenterol. 2004, 99, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Lurie, Y.; Rouzier-Panis, R.; Webster, G.J.; Dusheiko, G.M.; Laughlin, M.; Jackson, M.L.; Oren, R. Optimal dosing frequency of pegylated interferon alfa-2b monotherapy for chronic hepatitis C virus infection. Clin. Gastroenterol. Hepatol. 2005, 3, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Kamal, S.M. Improving outcome in patients with hepatitis C virus genotype 4. Am. J. Gastroenterol. 2007, 102, 2582–2588. [Google Scholar] [CrossRef] [PubMed]
- Kamal, S.M.; Kassim, S.K.; Ahmed, A.I.; Mahmoud, S.; A Bahnasy, K.; A Hafez, T.; Aziz, I.A.; Fathelbab, I.F.; Mansour, H.M. Host and viral determinants of the outcome of exposure to HCV infection genotype 4: A large longitudinal study. Am. J. Gastroenterol. 2014, 109, 199–211. [Google Scholar] [CrossRef]
- Yada, M.; Masumoto, A.; Yamashita, N.; Motomura, K.; Koyanagi, T.; Sakamoto, S. Immediate virological response predicts the success of short-term peg-interferon monotherapy for chronic hepatitis C. World J. Gastroenterol. 2010, 16, 1506–1511. [Google Scholar] [CrossRef]
- Kawaoka, T.; Hayes, C.N.; Ohishi, W.; Ochi, H.; Maekawa, T.; Abe, H.; Tsuge, M.; Mitsui, F.; Hiraga, N.; Imamura, M.; et al. Predictive value of the IL28B polymorphism on the effect of interferon therapy in chronic hepatitis C patients with genotypes 2a and 2b. J. Hepatol. 2011, 54, 408–414. [Google Scholar] [CrossRef]
- Ochi, H.; Maekawa, T.; Abe, H.; Hayashida, Y.; Nakano, R.; Imamura, M.; Hiraga, N.; Kawakami, Y.; Aimitsu, S.; Kao, J.-H.; et al. IL-28B predicts response to chronic hepatitis C therapy--fine-mapping and replication study in Asian populations. J. Gen. Virol. 2011, 92, 1071–1081. [Google Scholar] [CrossRef]
- McHutchison, J.G.; Fried, M.W. Current therapy for hepatitis C: Pegylated interferon and ribavirin. Clin. Liver Dis. 2003, 7, 149–161. [Google Scholar] [CrossRef]
- Te, H.S.; Randall, G.; Jensen, D.M. Mechanism of action of ribavirin in the treatment of chronic hepatitis C. Gastroenterol. Hepatol. 2007, 3, 218–225. [Google Scholar]
- Feld, J.J.; Hoofnagle, J.H. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 2005, 436, 967–972. [Google Scholar] [CrossRef] [PubMed]
- McHutchison, J.G.; Gordon, S.C.; Schiff, E.R.; Shiffman, M.L.; Lee, W.M.; Rustgi, V.K.; Goodman, Z.D.; Ling, M.-H.; Cort, S.; Albrecht, J.K. Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group. N. Engl. J. Med. 1998, 339, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Poynard, T.; Marcellin, P.; Lee, S.S.; Niederau, C.; Minuk, G.S.; Ideo, G.; Bain, V.; Heathcote, J.; Zeuzem, S.; Trepo, C.; et al. Randomised trial of interferon alpha2b plus ribavirin for 48 weeks or for 24 weeks versus interferon alpha2b plus placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. International Hepatitis Interventional Therapy Group (IHIT). Lancet 1998, 352, 1426–1432. [Google Scholar] [CrossRef]
- Lindsay, K.L.; Trepo, C.; Heintges, T.; Shiffman, M.L.; Gordon, S.C.; Hoefs, J.C.; Schiff, E.R.; Goodman, Z.D.; Laughlin, M.; Yao, R.; et al. A randomized double- blind trial comparing pegylated interferon alfa-2b to inter-feron alfa-2b as initial treatment for chronic hepatitis C. Hepatology 2001, 34, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Zeuzem, S.; Feinman, S.V.; Rasenack, J.; Heathcote, E.J.; Lai, M.-Y.; Gane, E.; O’Grady, J.; Reichen, J.; Diago, M.; Lin, A.; et al. Peginterferon alfa- 2a in patients with chronic hepatitis C. N. Engl. J. Med. 2000, 343, 1666–1672. [Google Scholar] [CrossRef]
- Heathcote, E.J.; Shiffman, M.L.; Cooksley, W.G.E.; Dusheiko, G.M.; Lee, S.S.; Balart, L.; Reindollar, R.; Reddy, R.K.; Wright, T.L.; Lin, A.; et al. Peginterferon alfa-2a in patients with chronic hepatitis C and cirrhosis. N. Engl. J. Med. 2000, 343, 1673–1680. [Google Scholar] [CrossRef]
- Manns, M.P.; McHutchison, J.G.; Gordon, S.C.; Rustgi, V.K.; Shiffman, M.; Reindollar, R.; Goodman, Z.D.; Koury, K.; Ling, M.-H.; Albrecht, J.K. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: A randomised trial. Lancet 2001, 358, 958–965. [Google Scholar] [CrossRef]
- Fried, M.W.; Shiffman, M.L.; Reddy, K.R.; Smith, C.; Marinos, G.; Gonçales, F.L.J.; Häussinger, D.; Diago, M.; Carosi, G.; Dhumeaux, D.; et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 2002, 347, 975–982. [Google Scholar] [CrossRef]
- Kamal, S.M.; El Kamary, S.S.; Shardell, M.D.; Hashem, M.; Ahmed, I.N.; Muhammadi, M.; Sayed, K.; Moustafa, A.; Hakem, S.A.; Ibrahiem, A.; et al. Pegylated interferon alpha-2b plus ribavirin in patients with genotype 4 chronic hepatitis C: The role of rapid and early virologic response. Hepatology 2007, 46, 1732–1740. [Google Scholar] [CrossRef]
- McHutchison, J.G.; Lawitz, E.J.; Shiffman, M.L.; Muir, A.J.; Galler, G.W.; McCone, J.; Nyberg, L.M.; Lee, W.M.; Ghalib, R.H.; Schiff, E.R.; et al. Peginterferon alfa-2b or alfa-2a with ribavirin for treatment of hepatitis C infection. N. Engl. J. Med. 2009, 361, 580–593. [Google Scholar] [CrossRef]
- Kowdley, K.V. Hematologic side effects of interferon and ribavirin therapy. J. Clin. Gastroenterol. 2005, 39 (Suppl. S1), S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Minami, T.; Kishikawa, T.; Sato, M.; Tateishi, R.; Yoshida, H.; Koike, K. Meta-analysis:mortality and serious adverse events of peginterferon plus ribavirin therapy for chronic hepatitis C. J. Gastroenterol. 2013, 48, 254–268. [Google Scholar] [CrossRef]
- Udina, M.; Castellví, P.; Moreno-España, J.; Navinés, R.; Valdés, M.; Forns, X.; Langohr, K.; Solà, R.; Vieta, E.; Martín-Santos, R. Interferon-induced depression in chronic hepatitis C: A systematic review and meta-analysis. J. Clin. Psychiatry 2012, 73, 1128–1138. [Google Scholar] [CrossRef]
- Lam, J.T.; Jacob, S. Boceprevir: A recently approved protease inhibitor for hepatitis C virus infection. Am. J. Health Syst. Pharm. 2012, 69, 2135–2139. [Google Scholar] [CrossRef] [PubMed]
- Muir, A.J. Telaprevir for the treatment of chronic hepatitis C infection. Expert Rev. Anti-Infect. Ther. 2011, 9, 1105–1114. [Google Scholar] [CrossRef]
- Klibanov, O.M.; Vickery, S.B.; Olin, J.L.; Smith, L.S.; Williams, S.H. Boceprevir: A novel NS3/4 protease inhibitor for the treatment of hepatitis C. Pharmacotherapy 2012, 32, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.S.; Nelson, M.; Naik, S.; Woten, J. Telaprevir: An NS3/4A protease inhibitor for the treatment of chronic hepatitis C. Ann. Pharmacother. 2011, 45, 639–648. [Google Scholar] [CrossRef]
- Jacobson, I.M.; Pawlotsky, J.M.; Afdhal, N.H.; Dusheiko, G.M.; Forns, X.; Jensen, D.M.; Poordad, F.; Schulz, J. A practical guide for the use of boceprevir telaprevir for the treatment of hepatitis C. J. Viral Hepat. 2012, 19 (Suppl. S2), 1–26. [Google Scholar] [CrossRef]
- McHutchison, J.G.; Everson, G.T.; Gordon, S.C.; Jacobson, I.M.; Sulkowski, M.; Kauffman, R.; McNair, L.; Alam, J.; Muir, A.J. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N. Engl. J. Med. 2009, 360, 1827–1838. [Google Scholar] [CrossRef] [PubMed]
- Hézode, C.; Forestier, N.; Dusheiko, G.; Ferenci, P.; Pol, S.; Goeser, T.; Bronowicki, J.-P.; Bourlière, M.; Gharakhanian, S.; Bengtsson, L.; et al. Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N. Engl. J. Med. 2009, 360, 1839–1850. [Google Scholar] [CrossRef]
- McHutchison, J.G.; Manns, M.P.; Muir, A.J.; Terrault, N.A.; Jacobson, I.M.; Afdhal, N.H.; Heathcote, E.J.; Zeuzem, S.; Reesink, H.W.; Garg, J.; et al. Telaprevir for previously treated chronic HCV infection. N. Engl. J. Med. 2010, 362, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, I.M.; McHutchison, J.G.; Dusheiko, G.; Di Bisceglie, A.M.; Reddy, K.R.; Bzowej, N.H.; Marcellin, P.; Muir, A.J.; Ferenci, P.; Flisiak, R.; et al. Telaprevir for previously untreated chronic hepatitis C virus infection. N. Engl. J. Med. 2011, 364, 2405–2416. [Google Scholar] [CrossRef] [PubMed]
- Zeuzem, S.; Andreone, P.; Pol, S.; Lawitz, E.; Diago, M.; Roberts, S.; Focaccia, R.; Younossi, Z.; Foster, G.R.; Horban, A.; et al. Telaprevir for retreatment of HCV infection. N. Engl. J. Med. 2011, 364, 2417–2428. [Google Scholar] [CrossRef]
- Kwo, P.Y.; Lawitz, E.J.; McCone, J.; Schiff, E.R.; Vierling, J.M.; Pound, D.; Davis, M.N.; Galati, J.S.; Gordon, S.C.; Ravendhran, N.; et al. Efficacy of boceprevir, an NS3 protease inhibitor, in combination with peginterferon alfa-2b and ribavirin in treatment-naive patients with genotype 1 hepatitis C infection (SPRINT-1): An open-label, randomised, multicentre phase 2 trial. Lancet 2010, 376, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Poordad, F.; McCone, J., Jr.; Bacon, B.R.; Bruno, S.; Manns, M.P.; Sulkowski, M.S.; Jacobson, I.M.; Reddy, K.R.; Goodman, Z.D.; Boparai, N.; et al. Boceprevir for untreated chronic HCV genotype 1 infection. N. Engl. J. Med. 2011, 364, 1195–1206. [Google Scholar] [CrossRef]
- Bacon, B.R.; Gordon, S.C.; Lawitz, E.; Marcellin, P.; Vierling, J.M.; Zeuzem, S.; Poordad, F.; Goodman, Z.D.; Sings, H.L.; Boparai, N.; et al. Boceprevir for previously treated chronic HCV genotype 1 infection. N. Engl. J. Med. 2011, 364, 1207–1217. [Google Scholar] [CrossRef]
- Sarrazin, C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J. Hepatol. 2016, 64, 486–504. [Google Scholar] [CrossRef]
- Hézode, C. Boceprevir and telaprevir for the treatment of chronic hepatitis C: Safety management in clinical practice. Liver Int. 2012, 32 (Suppl. S1), 32–38. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Malik, K.; Krishnamurthy, K. Cutaneous Adverse Events in Chronic Hepatitis C Patients Treated with New Direct-Acting Antivirals: A Systematic Review and Meta-Analysis. J. Cutan. Med. Surg. 2016, 20, 58–66. [Google Scholar] [CrossRef]
- Mauss, S.; Hueppe, D.; Alshuth, U. Renal impairment is frequent in chronic hepatitis C patients under triple therapy with telaprevir or boceprevir. Hepatology 2014, 59, 46–48. [Google Scholar] [CrossRef]
- Back, D.; Else, L. The importance of drug-drug interactions in the DAA era. Dig. Liver Dis. 2013, 45 (Suppl. S5), S343–S348. [Google Scholar] [CrossRef]
- Talavera Pons, S.; Lamblin, G.; Boyer, A.; Sautou, V.; Abergel, A. Drug interactions and protease inhibitors used in the treatment of hepatitis C: How to manage? Eur. J. Clin. Pharmacol. 2014, 70, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Burger, D.; Back, D.; Buggisch, P.; Buti, M.; Craxí, A.; Foster, G.; Klinker, H.; Larrey, D.; Nikitin, I.; Pol, S.; et al. Clinical management of drug-drug interactions in HCV therapy: Challenges and solutions. J. Hepatol. 2013, 58, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Kiser, J.J.; Burton, J.R., Jr.; Everson, G.T. Drug-drug interactions during antiviral therapy for chronic hepatitis C. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Pawlotsky, J.M. New hepatitis C therapies: The toolbox, strategies, and challenges. Gastroenterology 2014, 146, 1176–1192. [Google Scholar] [CrossRef]
- Feeney, E.R.; Chung, R.T. Antiviral treatment of hepatitis C. BMJ 2014, 348, g3308. [Google Scholar] [CrossRef]
- Abraham, G.M.; Spooner, L.M. Sofosbuvir in the treatment of chronic hepatitis C: New dog, new tricks. Clin. Infect. Dis. 2014, 59, 411–415. [Google Scholar] [CrossRef]
- Feld, J.J. Interferon-free strategies with a nucleoside/nucleotide analogue. Semin. Liver Dis. 2014, 34, 37–46. [Google Scholar] [CrossRef]
- Noell, B.C.; Besur, S.V.; deLemos, A.S. Changing the face of hepatitis C management—The design and development of sofosbuvir. Drug Des. Dev. Ther. 2015, 9, 2367–2374. [Google Scholar]
- Gutierrez, J.A.; Lawitz, E.J.; Poordad, F. Interferon-free, direct-acting antiviral therapy for chronic hepatitis C. J. Viral Hepat. 2015, 22, 861–870. [Google Scholar] [CrossRef]
- Keating, G.M. Ledipasvir/Sofosbuvir: A review of its use in chronic hepatitis C. Drugs 2015, 75, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Fourati, S.; Guedj, J.; Chevaliez, S.; Nguyen, T.H.T.; Roudot-Thoraval, F.; Ruiz, I.; Soulier, A.; Scoazec, G.; Varaut, A.; Poiteau, L.; et al. Viral kinetics analysis and virological characterization of treatment failures in patients with chronic hepatitis C treated with sofosbuvir and an NS5A inhibitor. Aliment. Pharmacol. Ther. 2018, 47, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Buti, M.; Riveiro-Barciela, M.; Esteban, R. Management of direct-acting antiviral agent failures. J. Hepatol. 2015, 63, 1511–1522. [Google Scholar] [CrossRef]
- Cuenca-Lopez, F.; Rivero, A.; Rivero-Juárez, A. Pharmacokinetics and pharmacodynamics of sofosbuvir and ledipasvir for the treatment of hepatitis C. Expert Opin. Drug Metab. Toxicol. 2017, 13, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Kouyama, J.I.; Naiki, K.; Sugawara, K.; Inao, M.; Imai, Y.; Nakayama, N.; Mochida, S. Development of rare resistance-associated variants that are extremely tolerant against NS5A inhibitors during daclatasvir/asunaprevir therapy by a two-hit mechanism. Hepatol. Res. 2016, 46, 1234–1246. [Google Scholar] [CrossRef]
- Pearlman, B.L.; Hinds, A.E. Review article: Novel antivirals for hepatitis C-sofosbuvir/velpatasvir/voxilaprevir, glecaprevir/pibrentasvir. Aliment. Pharmacol. Ther. 2018, 48, 914–923. [Google Scholar] [CrossRef] [PubMed]
- Lawitz, E.; Mangia, A.; Wyles, D.; Rodriguez-Torres, M.; Hassanein, T.; Gordon, S.C.; Schultz, M.; Davis, M.N.; Kayali, Z.; Reddy, K.R.; et al. Sofosbuvir for previously untreated chronic hepatitis C infection. N. Engl. J. Med. 2013, 368, 1878–1887. [Google Scholar] [CrossRef]
- Jacobson, I.M.; Gordon, S.C.; Kowdley, K.V.; Yoshida, E.M.; Rodriguez-Torres, M.; Sulkowski, M.S.; Shiffman, M.L.; Lawitz, E.; Everson, G.; Bennett, M.; et al. Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. N. Engl. J. Med. 2013, 368, 1867–1877. [Google Scholar] [CrossRef] [PubMed]
- Lawitz, E.; Jacobson, I.M.; Nelson, D.R.; Zeuzem, S.; Sulkowski, M.S.; Esteban, R.; Brainard, D.; McNally, J.; Symonds, W.T.; McHutchison, J.G.; et al. Development of sofosbuvir for the treatment of hepatitis C virus infection. Ann. N. Y. Acad. Sci. 2015, 1358, 56–67. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Stepanova, M.; Nader, F.; Jacobson, I.M.; Gane, E.; Nelson, D.; Lawitz, E.; Hunt, S.L. Patient-reported outcomes in chronic hepatitis C patients with cirrhosis treated with sofosbuvir-containing regimens. Hepatology 2014, 59, 2161–2169. [Google Scholar] [CrossRef]
- Curry, M.P.; Forns, X.; Chung, R.T.; Terrault, N.A.; Brown, R., Jr.; Fenkel, J.M.; Gordon, F.; O’Leary, J.; Kuo, A.; Schiano, T.; et al. Sofosbuvir and ribavirin prevent recurrence of HCV infection after liver transplantation: An open-label study. Gastroenterology 2015, 148, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Gane, E.J.; Agarwal, K. Directly acting antivirals (DAAs) for the treatment of chronic hepatitis C virus infection in liver transplant patients: “A flood of opportunity”. Am. J. Transplant. 2014, 14, 994–1002. [Google Scholar] [CrossRef]
- Charlton, M.; Gane, E.; Manns, M.P.; Brown, R.S.; Curry, M.P.; Kwo, P.Y.; Fontana, R.J.; Gilroy, R.; Teperman, L.; Muir, A.J.; et al. Sofosbuvir and ribavirin for treatment of compensated recurrent hepatitis C virus infection after liver transplantation. Gastroenterology 2015, 148, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Afdhal, N.; Zeuzem, S.; Kwo, P.; Chojkier, M.; Gitlin, N.; Puoti, M.; Romero-Gomez, M.; Zarski, J.-P.; Agarwal, K.; Buggisch, P.; et al. Ledipasvir and sofosbuvir for untreated HCV genotype 1 infection. N. Engl. J. Med. 2014, 370, 1889–1898. [Google Scholar] [CrossRef]
- Afdhal, N.; Reddy, K.R.; Nelson, D.R.; Lawitz, E.; Gordon, S.C.; Schiff, E.; Nahass, R.; Ghalib, R.; Gitlin, N.; Herring, R.; et al. Ledipasvir and sofosbuvir for previously treated HCV genotype 1 infection. N. Engl. J. Med. 2014, 370, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Lawitz, E.; Poordad, F.F.; Pang, P.S.; Hyland, R.H.; Ding, X.; Mo, H.; Symonds, W.T.; McHutchison, J.G.; Membreno, F.E. Sofosbuvir and ledipasvir fixed-dose combination with and without ribavirin in treatment-naive and previously treated patients with genotype 1 hepatitis C virus infection (LONESTAR): An open-label, randomised, phase 2 trial. Lancet 2014, 383, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Kowdley, K.V.; Gordon, S.C.; Reddy, K.R.; Rossaro, L.; Bernstein, D.E.; Lawitz, E.; Shiffman, M.L.; Schiff, E.; Ghalib, R.; Ryan, M.; et al. Ledipasvir and sofosbuvir for 8 or 12 weeks for chronic HCV without cirrhosis. N. Engl. J. Med. 2014, 370, 1879–1888. [Google Scholar] [CrossRef]
- Poordad, F.; Sievert, W.; Mollison, L.; Bennett, M.; Tse, E.; Bräu, N.; Levin, J.; Sepe, T.; Lee, S.S.; Angus, P.; et al. Fixed-dose combination therapy with daclatasvir, asunaprevir, and beclabuvir for noncirrhotic patientswith HCV genotype 1 infection. JAMA 2015, 313, 1728–1735. [Google Scholar] [CrossRef]
- Muir, A.J.; Poordad, F.; Lalezari, J.; Everson, G.; Dore, G.J.; Herring, R.; Sheikh, A.; Kwo, P.; Hézode, C.; Pockros, P.J.; et al. Daclatasvir in combination with asunaprevir and beclabuvirfor hepatitis C virus genotype 1 infection with compensated cirrhosis. JAMA 2015, 313, 1736–1744. [Google Scholar] [CrossRef]
- Naggie, S.; Cooper, C.; Saag, M.; Workowski, K.; Ruane, P.; Towner, W.J.; Marks, K.; Luetkemeyer, A.; Baden, R.P.; Sax, P.E.; et al. Ledipasvir and Sofosbuvir for HCV in Patients Coinfected with HIV-1. N. Engl. J. Med. 2015, 373, 705–713. [Google Scholar] [CrossRef]
- Liao, H.T.; Tan, P.; Huang, J.W.; Yuan, K.F. Ledipasvir + Sofosbuvir for Liver Transplant Recipients with Recurrent Hepatitis C: A Systematic Review and Meta-Analysis. Transplant. Proc. 2017, 49, 1855–1863. [Google Scholar] [CrossRef]
- Cotter, T.G.; Jensen, D.M. Glecaprevir/pibrentasvir for the treatment of chronic hepatitis C: Design, development, and place in therapy. Drug Des. Dev. Ther. 2019, 13, 2565–2577. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, H.; Lawitz, E. Glecaprevir + pibrentasvir (ABT493 + ABT-530) for the treatment of Hepatitis C. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.E.; Everson, G.T. Sofosbuvir and velpatasvir for the treatment of hepatitis C. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 501–505. [Google Scholar] [CrossRef]
- Chahine, E.B.; Sucher, A.J.; Hemstreet, B.A. Sofosbuvir/Velpatasvir: The First Pangenotypic Direct-Acting Antiviral Combination for Hepatitis C. Ann. Pharmacother. 2017, 51, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Kottilil, S.; Wilson, E. Sofosbuvir/velpatasvir: A pangenotypic drug to simplify HCV therapy. Hepatol. Int. 2017, 11, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H. Sofosbuvir/velpatasvir and glecaprevir/pibrentasvir: How should we choose among these two latest and probably the last regimens? Hepatol. Res. 2022, 52, 815–816. [Google Scholar] [CrossRef]
- Feld, J.J.; Jacobson, I.M.; Hézode, C.; Asselah, T.; Ruane, P.J.; Gruener, N.; Abergel, A.; Mangia, A.; Lai, C.-L.; Chan, H.L.Y.; et al. Sofosbuvir and Velpatasvir for HCV Genotype 1, 2, 4, 5, and 6 Infection. N. Engl. J. Med. 2015, 373, 2599–2607. [Google Scholar] [CrossRef]
- Foster, G.R.; Afdhal, N.; Roberts, S.K.; Bräu, N.; Gane, E.J.; Pianko, S.; Lawitz, E.; Thompson, A.; Shiffman, M.L.; Cooper, C.; et al. Sofosbuvir and Velpatasvir for HCV Genotype 2 and 3 Infection. N. Engl. J. Med. 2015, 373, 2608–2617. [Google Scholar] [CrossRef]
- Curry, M.P.; O’Leary, J.G.; Bzowej, N.; Muir, A.J.; Korenblat, K.M.; Fenkel, J.M.; Reddy, K.R.; Lawitz, E.; Flamm, S.L.; Schiano, T.; et al. Sofosbuvir and Velpatasvir for HCV in Patients with Decompensated Cirrhosis. N. Engl. J. Med. 2015, 373, 2618–2628. [Google Scholar] [CrossRef]
- Forns, X.; Lee, S.S.; Valdes, J.; Lens, S.; Ghalib, R.; Aguilar, H.; Felizarta, F.; Hassanein, T.; Hinrichsen, H.; Rincon, D.; et al. Glecaprevir plus pibrentasvir for chronic hepatitis C virus genotype 1, 2, 4, 5, or 6 infection in adults with compensated cirrhosis (EXPEDITION-1): A single-arm, open-label, multicentre phase 3 trial. Lancet Infect. Dis. 2017, 17, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Zeuzem, S.; Foster, G.R.; Wang, S.; Asatryan, A.; Gane, E.; Feld, J.J.; Asselah, T.; Bourlière, M.; Ruane, P.J.; Wedemeyer, H.; et al. Glecaprevir-Pibrentasvir for 8 or 12 Weeks in HCV Genotype 1 or 3 Infection. N. Engl. J. Med. 2018, 378, 354–369. [Google Scholar] [CrossRef]
- Bourlière, M.; Gordon, S.C.; Flamm, S.L.; Cooper, C.L.; Ramji, A.; Tong, M.; Ravendhran, N.; Vierling, J.M.; Tran, T.T.; Pianko, S.; et al. Sofosbuvir, Velpatasvir, and Voxilaprevir for Previously Treated HCV Infection. N. Engl. J. Med. 2017, 37, 2134–2146. [Google Scholar] [CrossRef] [PubMed]
- Feld, J.J.; Forns, X.; Dylla, D.E.; Kumada, H.; de Ledinghen, V.; Wei, L.; Brown, R.S.; Flisiak, R.; Lampertico, P.; Thabut, D.; et al. Safety analysis of glecaprevir/pibrentasvir in patients with markers of advanced liver disease in clinical and real-world cohorts. J. Viral Hepat. 2022, 29, 1050–1061. [Google Scholar] [CrossRef]
- Forns, X.; Feld, J.J.; Dylla, D.E.; Pol, S.; Chayama, K.; Hou, J.; Heo, J.; Lampertico, P.; Brown, A.; Bondin, M.; et al. Safety of Patients with Hepatitis C Virus Treated with Glecaprevir/Pibrentasvir from Clinical Trials and Real-World Cohorts. Adv. Ther. 2021, 38, 3409–3426. [Google Scholar] [CrossRef] [PubMed]
- Takehara, T.; Izumi, N.; Mochida, S.; Genda, T.; Fujiyama, S.; Notsumata, K.; Tamori, A.; Suzuki, F.; Suri, V.; Mercier, R.; et al. Sofosbuvir-velpatasvir in adults with hepatitis C virus infection and compensated cirrhosis in Japan. Hepatol. Res. 2022, 52, 833–840. [Google Scholar] [CrossRef]
- Flamm, S.; Lawitz, E.; Borg, B.; Charlton, M.; Landis, C.; Reddy, K.R.; Shiffman, M.; Alsina, A.; Chang, C.; Ravendhran, N.; et al. Efficacy and Safety of Sofosbuvir/Velpatasvir Plus Ribavirin in Patients with Hepatitis C Virus-Related Decompensated Cirrhosis. Viruses 2023, 15, 2026. [Google Scholar] [CrossRef]
- Llaneras, J.; Riveiro-Barciela, M.; Lens, S.; Diago, M.; Cachero, A.; García-Samaniego, J.; Conde, I.; Arencibia, A.; Arenas, J.; Gea, F.; et al. Effectiveness and safety of sofosbuvir/velpatasvir/voxilaprevir in patients with chronic hepatitis C previously treated with DAAs. J. Hepatol. 2019, 71, 666–672. [Google Scholar] [CrossRef]
- Ruiz-Cobo, J.C.; Llaneras, J.; Forns, X.; Moya, A.G.; Amiel, I.C.; Arencibia, A.; Diago, M.; García-Samaniego, J.; Castellote, J.; Llerena, S.; et al. Real-life effectiveness of sofosbuvir/velpatasvir/voxilaprevir in hepatitis C patients previously treated with sofosbuvir/velpatasvir or glecaprevir/pibrentasvir. Aliment. Pharmacol. Ther. 2024, 60, 201–211. [Google Scholar] [CrossRef]
- Reiberger, T.; Lens, S.; Cabibbo, G.; Nahon, P.; Zignego, A.L.; Deterding, K.; Elsharkawy, A.M.; Forns, X. EASL position paper on clinical follow-up after HCV cure. J. Hepatol. 2024, 81, 326–344. [Google Scholar] [CrossRef]
- Harney, B.L.; Sacks-Davis, R.; van Santen, D.K.; Traeger, M.W.; Wilkinson, A.L.; Asselin, J.; Fairley, C.K.; Roth, N.; Bloch, M.; Matthews, G.V.; et al. Hepatitis C virus reinfection incidence among gay and bisexual men with HIV in Australia from 2016 to 2020. Liver Int. 2024, 44, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Young, J.; Wang, S.; Lanièce Delaunay, C.; Cooper, C.L.; Cox, J.; Gill, M.J.; Hull, M.; Walmsley, S.; Wong, A.; Klein, M.B. The rate of hepatitis C reinfection in Canadians coinfected with HIV and its implications for national elimination. Int. J. Drug Policy 2023, 114, 103981. [Google Scholar] [CrossRef] [PubMed]
- Karasz, A.; Merchant, K.; Singh, R.; Thomas, A.; Borsuk, C.; McKee, D.; Duryea, P.; Kim, A.Y.; Mehta, S.; Norton, B.L.; et al. The experience of re-infection among people who inject drugs successfully treated for hepatitis C. J. Subst. Use Addict. Treat. 2023, 146, 208937. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Blach, S.; Manzengo Mingiedi, C.; Gonzalez, M.A.; Alaama, A.S.; Mozalevskis, A.; Séguy, N.; Rewari, B.B.; Chan, P.-L.; Le, L.-V.; et al. Global reporting of progress towards elimination of hepatitis B and hepatitis C. Lancet Gastroenterol. Hepatol. 2023, 8, 332–342. [Google Scholar] [CrossRef]
- Razavi, H. Polaris Observatory-supporting informed decision-making at the national, regional, and global levels to eliminate viral hepatitis. Antivir. Ther. 2022, 27, 13596535221083179. [Google Scholar] [CrossRef]
- Tu, S.S.; Kottilil, S.; Mattingly, T.J. Leveraging Old Hepatitis C Therapies. N. Engl. J. Med. 2025, 392, 2–4. [Google Scholar] [CrossRef]
Authors | Ref | Year | Genotypes | Treatment Regimens | Weeks of Therapy | Number of Patients | SVR (%) |
---|---|---|---|---|---|---|---|
McHutchison et al. | [33] | 1998 | 1,2,3 | IFN α-2b 3 MU tiw | 24 | 231 | 6 |
IFN α-2b 3 MU tiw | 48 | 225 | 13 | ||||
IFN α-2b 3 MU tiw plus RBV 1000–1200 mg/day | 24 | 228 | 31 | ||||
IFN α-2b 3 MU tiw plus RBV 1000–1200 mg/day | 48 | 228 | 38 | ||||
Poynard | [34] | 1998 | 1,2,3,4 | IFN α-2b 3 MU tiw plus RBV 1000–1200 mg/day | 48 | 277 | 43 |
IFN α-2b 3 MU tiw plus RBV 1000–1200 mg/day | 24 | 277 | 35 | ||||
IFN α-2b 3 MU tiw plus Placebo | 48 | 278 | 19 | ||||
Lindsay et al. | [35] | 2001 | 1,2,3,4 | PEG-IFN α-2b 0.5 μg/kg | 48 | 315 | 18 |
PEG-IFN α-2b 1.0 μg/kg | 48 | 297 | 25 | ||||
PEG-IFN α-2b 1.5 μg/kg | 48 | 304 | 23 | ||||
IFN α-2b 3 MU tiw | 48 | 303 | 12 | ||||
Zeuzem et al. | [36] | 2000 | 1,2,3,4 | PEG-IFN α-2a 180 μg | 48 | 267 | 39 |
IFN α-2a 6 and then 3 MU tiw | 48 | 264 | 19 | ||||
Heathcote et al. All patients stage 3/4 | [37] | 2000 | 1,2,3,4 | PEG-IFN α-2a 90 μg | 48 | 96 | 15 |
PEG-IFN α-2a 180 μg | 48 | 87 | 30 | ||||
IFN α-2a 3 MU tiw | 48 | 88 | 12 | ||||
Manns et al. | [38] | 2001 | 1,2,3,4 | PEG-IFN α-2b 1.5 μg/kg plus RBV 800 mg/day | 48 | 511 | 54 |
PEG-IFN α-2b 1.5 μg/kg for 4 weeks then 0.5 μg/kg for 44 weeks plus RBV 1000–1200 mg/day | 48 | 514 | 47 | ||||
IFN α-2b 3 MU tiw plus RBV 1000–1200 mg/day | 48 | 505 | 47 | ||||
Fried et al. | [39] | 2002 | 1,2,3,4 | PEG-IFN α-2a 180 μg plus RBV 1000–1200 mg/day | 48 | 453 | 56 |
PEG-IFN α-2a 180 μg | 48 | 224 | 29 | ||||
IFN α-2b 3 MU tiw plus RBV 1000–1200 mg/day | 48 | 444 | 44 | ||||
Kamal et al. | [40] | 2007 | 4 | PEG-IFN α-2b 1.5 μg/kg plus RBV (10.6 mg/kg/day) | 48 | 50 | 56 |
PEG-IFN α-2b 1.5 μg/kg plus RBV (10.6 mg/kg/day) | 24 | 69 | 86 | ||||
PEG-IFN α-2b 1.5 μg/kg plus RBV (10.6 mg/kg/day) | 36 | 79 | 76 | ||||
PEG-IFN α-2b 1.5 μg/kg plus RBV (10.6 mg/kg/day) | 48 | 160 | 58 | ||||
McHutchison et al. | [41] | 2009 | 1 | PEG-IFN α-2b 1.5 μg/kg plus RBV 800–1400 mg/day | 48 | 1019 | 40 |
PEG-IFN α-2b 1.0 μg/kg plus RBV 800–1400 mg/day | 48 | 1015 | 38 | ||||
PEG-IFN α-2a 180 μg plus RBV 800–1400 mg/day | 48 | 1035 | 41 |
Authors | Ref | Year | Genotypes | Virological Status | Treatment Regimens | Weeks of Therapy | Number of Patients | SVR (%) |
---|---|---|---|---|---|---|---|---|
McHutchison GJ et al. | [50] | 2009 | 1 | untreated | Placebo for 12 weeks plus peginterferon alfa-2a and ribavirin for 48 weeks | 48 | 75 | 41 |
telaprevir, peginterferon alfa-2a and ribavirin for 12 weeks | 12 | 17 | 35 | |||||
telaprevir for 12 weeks plus peginterferon alfa-2a and ribavirin for 24 weeks | 24 | 79 | 61 | |||||
telaprevir for 12 weeks plus peginterferon alfa-2a and ribavirin for 48 weeks. | 48 | 79 | 67 | |||||
Hézode C et al. | [51] | 1 | untreated | telaprevir, peginterferon alfa-2a and ribavirin for 12 weeks, followed by peginterferon alfa-2a and ribavirin for 12 more weeks. | 24 | 81 | 69 | |
telaprevir, peginterferon alfa-2a and ribavirin for 12 weeks, | 12 | 82 | 48 | |||||
telaprevir and peginterferon alfa-2a for 12 weeks, | 12 | 78 | 36 | |||||
peginterferon alfa-2a and ribavirin for 48 weeks. | 48 | 81 | 46 | |||||
McHutchison JG et al. | [52] | 1 | previously treated | telaprevir for 12 weeks plus peginterferon alfa-2a and ribavirin for 24 weeks; | 24 | 115 | 51 | |
telaprevir for 24 weeks plus peginterferon alfa-2a and ribavirin for 48 weeks | 48 | 113 | 53 | |||||
telaprevir for 24 weeks plus peginterferon alfa-2a and ribavirin for 24 weeks | 24 | 111 | 24 | |||||
peginterferon alfa-2a and ribavirin for 48 weeks | 48 | 114 | 14 | |||||
Jacobson IM et al. | [53] | 1 | untreated | telaprevir combined with peginterferon alfa-2a and ribavirin for 12 weeks (T12PR group), followed by peginterferon-ribavirin alone for 12 weeks if HCV RNA was undetectable at weeks 4 and 12 or for 36 weeks if HCV RNA was detectable at either time point; | 24–36 | 363 | 75 | |
telaprevir with peginterferon-ribavirin for 8 weeks and placebo with peginterferon-ribavirin for 4 weeks (T8PR group), followed by 12 or 36 weeks of peginterferon-ribavirin on the basis of the same HCV RNA criteria; | 36–48 | 364 | 69 | |||||
placebo with peginterferon-ribavirin for 12 weeks, followed by 36 weeks of peginterferon-ribavirin | 48 | 361 | 44 | |||||
Zeuzem S et al. | [54] | 1 | previously treated | the T12PR48 group, received telaprevir for 12 weeks and peginterferon plus ribavirin for a total of 48 weeks; | 48 | 266 | 83 | |
T12PR48 group, received 4 weeks of peginterferon plus ribavirin followed by 12 weeks of telaprevir and peginterferon plus ribavirin for a total of 48 weeks; | 48 | 264 | 88 | |||||
peginterferon plus ribavirin for 48 weeks. | 48 | 132 | 24 | |||||
Kwo PY et al. | [55] | 1 | untreated | peginterferon alfa-2b plus ribavirin for 48 weeks | 48 | 104 | 38 | |
peginterferon alfa-2b plus ribavirin for 4 weeks, followed by peginterferon alfa-2b, ribavirin, and boceprevir for 24 weeks | 28 | 103 | 54 | |||||
peginterferon alfa-2b plus ribavirin for 4 weeks followed by peginterferon alfa-2b, ribavirin, and boceprevir for 44 weeks | 48 | 103 | 56 | |||||
peginterferon alfa-2b plus ribavirin and boceprevir for 28 weeks | 28 | 107 | 67 | |||||
peginterferon alfa-2b plus ribavirin and boceprevir for 48 weeks. | 48 | 103 | 75 | |||||
Poordad F et al. | [56] | 1 | untreated | peginterferon alfa-2b and ribavirin were administered for 4 weeks (the lead-in period) and subsequently, placebo plus peginterferon-ribavirin for 44 weeks; | 48 | 363 | 38 | |
peginterferon alfa-2b and ribavirin were administered for 4 weeks (the lead-in period) and subsequently boceprevir plus peginterferon-ribavirin for 24 weeks, and those with a detectable HCV RNA level between weeks 8 and 24 received placebo plus peginterferon-ribavirin for an additional 20 weeks | 48 | 368 | 63 | |||||
peginterferon alfa-2b and ribavirin for 4 weeks (the lead-in period) and subsequently boceprevir plus peginterferon-ribavirin for 44 weeks. | 48 | 366 | 66 | |||||
Bacon BR et al. | [57] | 1 | previously treated | peginterferon alfa-2b and ribavirin for 4 weeks (the lead-in period) and subsequently placebo plus peginterferon-ribavirin for 44 weeks; | 48 | 80 | 21 | |
peginterferon alfa-2b and ribavirin for 4 weeks (the lead-in period) and subsequently boceprevir plus peginterferon-ribavirin for 32 weeks, and patients with a detectable HCV RNA level at week 8 received placebo plus peginterferon-ribavirin for an additional 12 weeks; | 48 | 162 | 59 | |||||
peginterferon alfa-2b and ribavirin were administered for 4 weeks (the lead-in period) and subsequently received boceprevir plus peginterferon-ribavirin for 44 weeks. | 48 | 161 | 66 |
DAA | Protein Inhibited | Typical Combination | Year of Approval |
---|---|---|---|
Sofosbuvir | NS5B (polymerase) | Sofosbuvir + Ledipasvir | 2013 |
Ledipasvir | NS5A | Sofosbuvir + Ledipasvir | 2014 |
Ombitasvir | NS5A | Ombitasvir + Paritaprevir + Dasabuvir | 2014 |
Paritaprevir | NS3/4A (protease) | Ombitasvir + Paritaprevir + Dasabuvir | 2014 |
Dasabuvir | NS5B (non-nucleoside) | Ombitasvir + Paritaprevir + Dasabuvir | 2014 |
Asunaprevir | NS3/4A (protease) | Beclabuvir + Daclatasvir + Asunaprevir | 2014 |
Daclatasvir | NS5A | Sofosbuvir + Daclatasvir | 2015 |
Beclabuvir | NS5B (non-nucleoside) | Beclabuvir + Daclatasvir + Asunaprevir | 2015 |
Velpatasvir | NS5A | Sofosbuvir + Velpatasvir | 2016 |
Elbasvir | NS5A | Grazoprevir + Elbasvir | 2016 |
Grazoprevir | NS3/4A (protease) | Grazoprevir + Elbasvir | 2016 |
Glecaprevir | NS3/4A (protease) | Glecaprevir + Pibrentasvir | 2017 |
Pibrentasvir | NS5A | Glecaprevir + Pibrentasvir | 2017 |
Voxilaprevir | NS3/4A (protease) | Sofosbuvir + Velpatasvir + Voxilaprevir | 2017 |
Authors | Ref | Year | Genotypes | Virological Status | Treatment Regimens | Weeks of Therapy | Number of Patients | SVR (%) |
---|---|---|---|---|---|---|---|---|
Afdhal N et al. | [84] | 2014 | 1 | untreated | sofosbuvir-ledipasvir | 12 | 214 | 99 |
sofosbuvir-ledipasvir plus ribavirin | 12 | 217 | 97 | |||||
sofosbuvir-ledipasvir | 24 | 217 | 98 | |||||
sofosbuvir-ledipasvir plus ribavirin | 24 | 217 | 99 | |||||
Afdhal N et al. | [85] | 2014 | 1 | previously treated | sofosbuvir-ledipasvir | 12 | 109 | 94 |
sofosbuvir-ledipasvir plus ribavirin | 12 | 111 | 96 | |||||
sofosbuvir-ledipasvir | 24 | 109 | 99 | |||||
sofosbuvir-ledipasvir plus ribavirin | 24 | 111 | 99 | |||||
Lawitz E et al. | [86] | 2014 | 1 | untreated (Cohort A) | sofosbuvir-ledipasvir | 8 | 20 | 95 |
sofosbuvir-ledipasvir plus ribavirin | 8 | 21 | 100 | |||||
sofosbuvir-ledipasvir | 12 | 19 | 95 | |||||
1 | previously treated with a protease-inhibitor regimen (Cohort B) | sofosbuvir-ledipasvir | 12 | 19 | 95 | |||
sofosbuvir-ledipasvir plus ribavirin | 12 | 20 | 100 | |||||
Kowdley KV et al. | [87] | 2014 | 1 | untreated | sofosbuvir-ledipasvir | 8 | 215 | 94 |
sofosbuvir-ledipasvir plus ribavirin | 8 | 216 | 93 | |||||
sofosbuvir-ledipasvir | 12 | 215 | 95 | |||||
Poordard F et al. | [88] | 2015 | 1 | untreated | daclatasvir—asunaprevir beclabuvir | 12 | 312 | 92 |
previously treated | daclatasvir—asunaprevir-beclabuvir | 12 | 103 | 89 | ||||
Muir AJ et al. | [89] | 2015 | 1 | untreated cirrhosis | daclatasvir—asunaprevir-beclabuvir | 12 | 57 | 93 |
daclatasvir—asunaprevir-beclabuvir plus ribavirin | 12 | 55 | 98 | |||||
previously treated cirrhosis | daclatasvir—asunaprevir-beclabuvir | 12 | 45 | 86 | ||||
daclatasvir—asunaprevir-beclabuvir plus ribavirin | 12 | 45 | 93 |
Authors | Ref | Year | Genotypes | Virological Status | Treatment Regimens | Weeks of Therapy | Number of Patients | SVR (%) |
---|---|---|---|---|---|---|---|---|
Feld JJ et al. | [99] | 2015 | 1,2,4,5,6 | untreated (68%) previously treated (32%) | Sofosbuvir–Velpatasvir | 12 | 624 | 99 |
Placebo | 12 | 116 | 0 | |||||
Foster GR et al. | [100] | 2015 | 2 | untreated previously treated | Sofosbuvir–Velpatasvir | 12 | 134 | 99 |
Sofosbuvir–Ribavirin | 12 | 132 | 94 | |||||
3 | untreated previously treated | Sofosbuvir–Velpatasvir | 12 | 277 | 95 | |||
Sofosbuvir–Ribavirin | 24 | 275 | 80 | |||||
Curry MP et al. | [101] | 2015 | 1,2,3,4,5,6 | untreated and previously treated decompensated cirrhosis | Sofosbuvir–Velpatasvir | 12 | 90 | 83 |
Sofosbuvir–Velpatasvir plus Ribavirin | 12 | 98 | 94 | |||||
Sofosbuvir–Velpatasvir | 24 | 92 | 86 | |||||
Forns X et al. | [102] | 2017 | 1,2,4,5,6 | untreated and previously treated compensated cirrhosis | Glecaprevir-Pibrentasvir | 12 | 146 | 99 |
Zeuzem S et al. | [103] | 1 | untreated previously treated | Glecaprevir-Pibrentasvir | 8 | 351 | 99 | |
Glecaprevir-Pibrentasvir | 12 | 352 | 99 | |||||
3 | untreated | Glecaprevir-Pibrentasvir | 12 | 233 | 95 | |||
Sofosbuvir-Daclatasvir | 12 | 115 | 97 | |||||
Glecaprevir-Pibrentasvir | 8 | 157 | 95 | |||||
Bourlière M et al. | [104] | 1 (Polaris-1) | previously treated with a regimen containing an NS5A inhibitor | Sofosbuvir–Velpatasvir–Voxilaprevir | 12 | 263 | 96 | |
Placebo | 12 | 152 | 0 | |||||
1,2,3 (Polaris-4) | previously treated without a regimen containing an NS5A inhibitor | Sofosbuvir–Velpatasvir–Voxilaprevir | 12 | 182 | 98 | |||
Sofosbuvir–Velpatasvir | 12 | 151 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Marco, L.; Cannova, S.; Ferrigno, E.; Landro, G.; Nonni, R.; Mantia, C.L.; Cartabellotta, F.; Calvaruso, V.; Di Marco, V. A Comprehensive Review of Antiviral Therapy for Hepatitis C: The Long Journey from Interferon to Pan-Genotypic Direct-Acting Antivirals (DAAs). Viruses 2025, 17, 163. https://doi.org/10.3390/v17020163
Di Marco L, Cannova S, Ferrigno E, Landro G, Nonni R, Mantia CL, Cartabellotta F, Calvaruso V, Di Marco V. A Comprehensive Review of Antiviral Therapy for Hepatitis C: The Long Journey from Interferon to Pan-Genotypic Direct-Acting Antivirals (DAAs). Viruses. 2025; 17(2):163. https://doi.org/10.3390/v17020163
Chicago/Turabian StyleDi Marco, Lorenza, Simona Cannova, Emanuele Ferrigno, Giuseppe Landro, Rosario Nonni, Claudia La Mantia, Fabio Cartabellotta, Vincenza Calvaruso, and Vito Di Marco. 2025. "A Comprehensive Review of Antiviral Therapy for Hepatitis C: The Long Journey from Interferon to Pan-Genotypic Direct-Acting Antivirals (DAAs)" Viruses 17, no. 2: 163. https://doi.org/10.3390/v17020163
APA StyleDi Marco, L., Cannova, S., Ferrigno, E., Landro, G., Nonni, R., Mantia, C. L., Cartabellotta, F., Calvaruso, V., & Di Marco, V. (2025). A Comprehensive Review of Antiviral Therapy for Hepatitis C: The Long Journey from Interferon to Pan-Genotypic Direct-Acting Antivirals (DAAs). Viruses, 17(2), 163. https://doi.org/10.3390/v17020163