Bussuquara Virus: A Neglected Orthoflavivirus with Broad Distribution Across Central and South America and the Caribbean
Abstract
:1. Introduction
2. History, Classification, and Taxonomy
3. Genome and In Vitro Characterization
4. Ecology, Transmission Cycles and Epidemiology
Species | Common Name | Country | City | Publication Year | Method | Assay | Detection Target | No. Positive Samples | Ref. |
---|---|---|---|---|---|---|---|---|---|
Alouatta belzebul | Red-handed howler | Brazil | Belém | 1959 | Serology | HI, CF, NT | Virus | 1 | [1] |
Sigmodon spp. | Cotton rat | Panama | NR | NR | Serology | NR | Virus | NR | [5] |
Culex spp. | Mosquito | Colombia | San Vincente de Chicuri | 1961 | Serology | HI, CF, NT | Virus | 1 pool (95) | [35] |
Mus musculus | Swiss mice | Brazil | Belém | 1961–1967 | Serology | HI, CF, NT | Virus | 9 | [48,49] |
Culex (Melanoconium) spp. | Mosquito | Brazil | Belém | 1961–1967 | Serology | HI, CF, NT | Virus | 2 pools (51, NR) | [48,49] |
Proechimys spp. | Rodent | Brazil | Belém | 1961–1967 | Serology | HI, CF, NT | Virus | 15 | [48,49] |
Proechimys guyannensis oris | Guyenne spiny rat | Brazil | Belém | 1963–1967 | Serology | HI | Virus | 1 | [34,50,51] |
Proechimys guyannensis oris | Guyenne spiny rat | Brazil | Belém | 1963–1967 | Serology | HI | Antibody | 20 | [34,50,51] |
Nectomys spp. | Rodent | Brazil | Belém | 1967 | Serology | HI | Antibody | NR | [49] |
Oryzomys spp. | Rodent | Brazil | Belém | 1967 | Serology | HI | Antibody | NR | [49] |
Culex spp. | Mosquito | Brazil | Belém | 1967 | Serology | HI, CF, NT † | Virus | 6 | [49] |
Culex B1 * | Mosquito | Brazil | Belém | 1967 | Serology | HI, CF, NT † | Virus | 1 pool (NR) | [49] |
Culex B7 * | Mosquito | Brazil | Belém | 1967 | Serology | HI, CF, NT † | Virus | 1 pool (NR) | [49] |
Culex (Melanoconium) taeniorhyncus | Mosquito | Brazil | Belém | 1967 | Serology | HI, CF, NT † | Virus | 1 pool (NR) | [49] |
Mansonia tittilans | Mosquito | Brazil | Belém | 1967 | Serology | HI, CF, NT | Virus | 1 pool (NR) | [49] |
Mansonia venezuelensis | Mosquito | Brazil | Belém | 1967 | Serology | HI, CF, NT † | Virus | 1 pool (NR) | [49] |
--- | Bird | Brazil | Belém | 1963 | Serology | HI, NT † | Antibody | 1 | [49,56] |
Mus musculus | Swiss mice | Panama | Almirante | 1966 | Serology | HI, CF | Virus | 2 | [53] |
Trichoprosopon spp. | Mosquito | Panama | Almirante | 1966 | Serology | HI, CF | Virus | 1 pool (NR) | [53] |
Culex cyrbda | Mosquito | Panama | Almirante | 1966 | Serology | HI, CF | Virus | 1 pool (NR) | [53] |
Homo sapiens | Human | Panama | Arenosa | 1971 | Serology | HI, CF, NT | Virus | 1 | [5] |
Homo sapiens | Human | Panama | Arenosa | 1971 | Serology | HI, NT | Antibody | 116–176 | [5] |
Proechimys semispinosus | Tome’s spiny rat | Panama | Sasardi | 1974 | Serology | HI | Virus | 1 | [52] |
Choloepus hoffmanni | Hoffmann’s two-toed sloth | Panama | Maje | 1983 | Serology | PRNT † | Antibody | 6 | [36] |
Dasyprocta punctata | Central American agouti | Panama | Maje | 1983 | Serology | PRNT † | Antibody | 1 | [36] |
Homo sapiens | Human | Argentina | Formosa Province | 1998 | Serology | HI, PRNT | Antibody | 1–2 | [4] |
Gallus gallus | Chicken | Mexico | Chiapas Province | 2003 | Serology | PRNT † | Antibody | 4 | [67] |
Bos spp. | Cow | Mexico | Chiapas Province | 2003 | Serology | PRNT † | Antibody | 1 | [67] |
Bubalus bubalis | Water buffalo | Brazil | Pará State | 2014 | Serology | HI | Antibody | 2–4 | [71] |
Equus caballus | Horse | Brazil | Pantanal | 2014 | Serology | PRNT † | Antibody | 12 | [62] |
Alouatta caraya | Black howler | Brazil | Goiânia | 2015 | Serology | HI † | Antibody | 1 | [58] |
Cebus libidinosus | Black-striped capuchin | Brazil | Goiânia | 2015 | Serology | HI † | Antibody | 2 | [58] |
Alouatta caraya | Black howler | Argentina | Corrientes Province | 2017 | Serology | PRNT † | Antibody | 1–10 | [57] |
Columba livia | Rock dove | Brazil | Belém | 2017 | Serology | HI, NT † | Antibody | 5–6 | [63] |
Leontopithecus chrysomelas | Golden-headed lion tamarin | Brazil | Atlantic Forest, Bahia | 2018 | Serology | HI, NT | Antibody | 5 | [59] |
Bradypus torquatus | Maned sloth | Brazil | Atlantic Forest, Bahia | 2018 | Serology | HI, NT | Antibody | 1 | [59] |
Artibeus jamaicensis | Jamaican fruit bat | Grenada | St. David Parish | 2018 | Serology | PRNT † | Antibody | 1 | [68] |
Culex (Mel.) portesi | Mosquito | Brazil | Caxiuanã National Forest | 2019 | Sequencing | NA | Virus | 1 pool (NR) | [47] |
Alouatta caraya | Black howler | Brazil | Santo Antônio das Missões | 2019 | Serology | HI, NT † | Antibody | 3 | [65] |
Nasua nasua | South American coati | Brazil | Iguaçu National Park, Brazilian Atlantic Forest | 2023 | Serology | HI † | Antibody | 3 | [60] |
5. Clinical Presentation of Infection in Humans
6. Animal Models and Pathogenesis
7. Vector Competence
8. Diagnosis and Prevention
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gomes, G.; Causey, O.R. Bussuauara; a new arthropod-borne virus. Proc. Soc. Exp. Biol. Med. 1959, 101, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lorente, S.; Romero-López, C.; Berzal-Herranz, A. Information Encoded by the Flavivirus Genomes beyond the Nucleotide Sequence. Int. J. Mol. Sci. 2021, 22, 3738. [Google Scholar] [CrossRef] [PubMed]
- Karabatsos, N. International Catalogue of Arboviruses, Including Certain Other Viruses of Vertebrates: Bussuquara Virus; American Society of Tropical Medicine and Hygiene for the Subcommittee on Information Exchange of the American Committee on Arthropod-borne Viruses: San Antonio, TX, USA, 1985. [Google Scholar]
- Glowacki, G.; Spinsanti, L.; Basualdo, M.A.; Díaz, G.; Contigiani, M. Prevalence of Flavivirus antibodies in young voluntary recruits to military service in the province of Formosa, Argentina. Rev. Argent. Microbiol. 1998, 30, 170–175. [Google Scholar]
- Srihongse, S.; Johnson, C.M. The first isolation of Bussuquara virus from man. Trans. R. Soc. Trop. Med. Hyg. 1971, 65, 541–542. [Google Scholar] [CrossRef]
- Porterfield, J.S. The basis of arbovirus classification. Med. Biol. 1975, 53, 400–405. [Google Scholar]
- Musso, D.; Despres, P. Serological Diagnosis of Flavivirus-Associated Human Infections. Diagnostics 2020, 10, 302. [Google Scholar] [CrossRef] [PubMed]
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.O.; Godoy, D.T.; Fontana-Maurell, M.; Costa, E.M.; Andrade, E.F.; Rocha, D.R.; Ferreira, A.G.P.; Brindeiro, R.; Tanuri, A.; Alvarez, P. Analytical and clinical performance of molecular assay used by the Brazilian public laboratory network to detect and discriminate Zika, Dengue and Chikungunya viruses in blood. Braz. J. Infect. Dis. 2021, 25, 101542. [Google Scholar] [CrossRef] [PubMed]
- Pescarini, J.M.; Rodrigues, M.; Paixão, E.S.; Cardim, L.; Brito, C.A.A.; Costa, M.; Santos, A.C.; Smeeth, L.; Teixeira, M.D.G.; Souza, A.P.F.; et al. Dengue, Zika, and Chikungunya viral circulation and hospitalization rates in Brazil from 2014 to 2019: An ecological study. PLoS Negl. Trop. Dis. 2022, 16, e0010602. [Google Scholar] [CrossRef]
- Silva, M.M.O.; Tauro, L.B.; Kikuti, M.; Anjos, R.O.; Santos, V.C.; Gonçalves, T.S.F.; Paploski, I.A.D.; Moreira, P.S.S.; Nascimento, L.C.J.; Campos, G.S.; et al. Concomitant Transmission of Dengue, Chikungunya, and Zika Viruses in Brazil: Clinical and Epidemiological Findings From Surveillance for Acute Febrile Illness. Clin. Infect. Dis. 2019, 69, 1353–1359. [Google Scholar] [CrossRef]
- Azar, S.R.; Campos, R.K.; Bergren, N.A.; Camargos, V.N.; Rossi, S.L. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020, 8, 1167. [Google Scholar] [CrossRef]
- Milhim, B.; Estofolete, C.F.; Rocha, L.C.D.; Liso, E.; Brienze, V.M.S.; Vasilakis, N.; Terzian, A.C.B.; Nogueira, M.L. Fatal Outcome of Ilheus Virus in the Cerebrospinal Fluid of a Patient Diagnosed with Encephalitis. Viruses 2020, 12, 957. [Google Scholar] [CrossRef] [PubMed]
- Tilston-Lunel, N.L. Oropouche Virus: An Emerging Orthobunyavirus. J. Gen. Virol. 2024, 105, 002027. [Google Scholar] [CrossRef]
- Nelson, A.N.; Ploss, A. Emerging mosquito-borne flaviviruses. mBio 2024, 15, e0294624. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Gao, X.; Gould, E.A. Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control. Emerg. Microbes Infect. 2015, 4, e18. [Google Scholar] [CrossRef] [PubMed]
- Gould, E.; Pettersson, J.; Higgs, S.; Charrel, R.; de Lamballerie, X. Emerging arboviruses: Why today? One Health 2017, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Barrett, A.D. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat. Rev. Microbiol. 2004, 2, 789–801. [Google Scholar] [CrossRef]
- Pfeffer, M.; Dobler, G. Emergence of zoonotic arboviruses by animal trade and migration. Parasit. Vectors 2010, 3, 35. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 2002, 33, 330–342. [Google Scholar] [CrossRef]
- Pierson, T.C.; Diamond, M.S. The emergence of Zika virus and its new clinical syndromes. Nature 2018, 560, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Pignatti, M.G. Saúde e ambiente: As doenças emergentes no Brasil. Ambiente Soc. 2004, 7, 133–147. [Google Scholar] [CrossRef]
- Gupta, S.; Rouse, B.T.; Sarangi, P.P. Did Climate Change Influence the Emergence, Transmission, and Expression of the COVID-19 Pandemic? Front. Med. 2021, 8, 769208. [Google Scholar] [CrossRef] [PubMed]
- De Madrid, A.T.; Porterfield, J.S. The flaviviruses (group B arboviruses): A cross-neutralization study. J. Gen. Virol. 1974, 23, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, T.L.; Nassar, E.S.; Nagamori, A.H.; Ferreira, I.B.; Pereira, L.E.; Rocco, I.M.; Ueda-Ito, M.; Romano, N.S. Iguape: A newly recognized flavivirus from São Paulo State, Brazil. Intervirology 1993, 36, 144–152. [Google Scholar] [CrossRef]
- Saivish, M.V.; Nogueira, M.L.; Rossi, S.L.; Vasilakis, N. Exploring Iguape Virus-A Lesser-Known Orthoflavivirus. Viruses 2024, 16, 960. [Google Scholar] [CrossRef]
- Karabatsos, N. International Catalogue of Arboviruses, Including Certain Other Viruses of Vertebrates: Naranjal Virus; American Society of Tropical Medicine and Hygiene for the Subcommittee on Information Exchange of the American Committee on Arthropod-borne Viruses: San Antonio, TX, USA, 1985. [Google Scholar]
- Warrilow, D.; Hall-Mendelin, S.; Hobson-Peters, J.; Prow, N.A.; Allcock, R.; Hall, R.A. Complete coding sequences of three members of the kokobera group of flaviviruses. Genome Announc. 2014, 2, 10–1128. [Google Scholar] [CrossRef]
- Blasi, A.; Lo Presti, A.; Cella, E.; Angeletti, S.; Ciccozzi, M. The phylogenetic and evolutionary history of Kokobera virus. Asian Pac. J. Trop. Med. 2016, 9, 968–972. [Google Scholar] [CrossRef]
- Gaunt, M.W.; Sall, A.A.; Lamballerie, X.; Falconar, A.K.I.; Dzhivanian, T.I.; Gould, E.A. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J. Gen. Virol. 2001, 82, 1867–1876. [Google Scholar] [CrossRef]
- Hanley, K.A.; Weaver, S.C. Arbovirus evolution. In Origin and Evolution of Viruses, 2nd ed.; Academic Press: Cambridge, MA, USA, 2008; pp. 351–391. [Google Scholar]
- Moureau, G.; Cook, S.; Lemey, P.; Nougairede, A.; Forrester, N.L.; Khasnatinov, M.; Charrel, R.N.; Firth, A.E.; Gould, E.A.; de Lamballerie, X. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS ONE 2015, 10, e0117849. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Aduri, R. The RNA Secondary Structure Analysis Reveals Potential for Emergence of Pathogenic Flaviviruses. Food Environ. Virol. 2022, 14, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Shope, R.E. The use of a micro hemagglutinationinhibition test to follow antibody response after arthropod-borne virus infection in a community of forest animals (Publicado originalmente em 1963). Memórias Inst. Evandro Chagas 2002, 7, 175–178. [Google Scholar]
- Groot, H.; Morales, A.; Vidales, H. Virus isolations from forest mosquitoes in San Vicente de Chucuri, Colombia. Am. J. Trop. Med. Hyg. 1961, 10, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.; Peralta, P.H.; Montgomery, G.G. Serologic evidence of natural togavirus infections in Panamanian sloths and other vertebrates. Am. J. Trop. Med. Hyg. 1983, 32, 854–861. [Google Scholar] [CrossRef]
- Kuno, G.; Chang, G.J.; Tsuchiya, K.R.; Karabatsos, N.; Cropp, C.B. Phylogeny of the genus Flavivirus. J. Virol. 1998, 72, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Baleotti, F.G.; Moreli, M.L.; Figueiredo, L.T. Brazilian Flavivirus phylogeny based on NS5. Mem. Inst. Oswaldo Cruz 2003, 98, 379–382. [Google Scholar] [CrossRef]
- Henderson, J.R.; Taylor, R.M. Propagation of certain arthropod-borne viruses in avian and primate cell cultures. J. Immunol. 1960, 84, 590–598. [Google Scholar] [CrossRef]
- Buckley, S.M. Applicability of the HeLa (Gey) Strain of Human Malignant Epithelial Cells to the Propagation of Arboviruses. Proc. Soc. Exp. Biol. Med. 1964, 116, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Bergold, G.H.; Mazzali, R. Plaque formation by arboviruses. J. Gen. Virol. 1968, 2, 273–284. [Google Scholar] [CrossRef]
- Stim, T.B. Arbovirus Plaquing in Two Simian Kidney Cell Lines. J. Gen. Virol. 1969, 5, 329–338. [Google Scholar] [CrossRef]
- Barros, V.E.; Thomazini, J.A.; Figueiredo, L.T. Cytopathological changes induced by selected Brazilian flaviviruses in mouse macrophages. J. Microsc. 2004, 216, 5–14. [Google Scholar] [CrossRef]
- Barros, V.E.; Ferreira, B.R.; Livonesi, M.; Figueiredo, L.T. Cytokine and nitric oxide production by mouse macrophages infected with Brazilian flaviviruses. Rev. Inst. Med. Trop. Sao Paulo 2009, 51, 141–147. [Google Scholar] [CrossRef]
- Mazeaud, C.; Freppel, W.; Chatel-Chaix, L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front. Genet. 2018, 9, 00595. [Google Scholar] [CrossRef]
- van Leur, S.W.; Heunis, T.; Munnur, D.; Sanyal, S. Pathogenesis and virulence of flavivirus infections. Virulence 2021, 12, 2814–2838. [Google Scholar] [CrossRef] [PubMed]
- Araújo, P.A.; Freitas, M.O.; Chiang, J.O.; Silva, F.A.; Chagas, L.L.; Casseb, S.M.; Silva, S.P.; Nunes-Neto, J.P.; Rosa-Júnior, J.W.; Nascimento, B.S.; et al. Investigation about the Occurrence of Transmission Cycles of Arbovirus in the Tropical Forest, Amazon Region. Viruses 2019, 11, 774. [Google Scholar] [CrossRef]
- Causey, O.R.; Causey, C.E.; Maroja, O.M.; Macedo, D.G. The isolation of arthropod-borne viruses, including members of two hitherto undescribed serological groups, in the Amazon region of Brazil. Am. J. Trop. Med. Hyg. 1961, 10, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Woodall, J.P. Atas do Simpósio Sobre a Biota Amazônica Belém, Pará, Brasil; Lent, H., Ed.; Rio de Janeiro Conselho Nacional de Pesquisas (CNPQ): Rio de Janeiro, Brazil, 1967. [Google Scholar]
- Shope, R.E.; Andrade, A.H.P.d.; Bensabath, G. The serological response of animals to virus infection in Utinga forest, Belém, Brazil. Simpósio Sôbre Biota Amaz. 1967, 6, 225–230. [Google Scholar]
- Causey, C.E. The role of small mammals in maintenance of arborviruses in the Brazilian Amazon forests. Memórias Inst. Evandro Chagas 1963, 7, 119–121. [Google Scholar]
- Srihonges, S.; Galindo, P.; Eldridge, B.F.; Young, D.G.; Gerhardt, R.R. A survey to assess potential human disease hazards along proposed sea level canal routes in Panamá and Colombia. V. Arbovirus infection in non-human vertebrates. Mil. Med. 1974, 141, 449–453. [Google Scholar] [CrossRef]
- Galindo, P.; Srihongse, S.; De Rodaniche, E.; Grayson, M.A. An ecological survey for arboviruses in Almirante, Panama, 1959–1962. Am. J. Trop. Med. Hyg. 1966, 15, 385–400. [Google Scholar] [CrossRef]
- Wanzeller, A.L.M.; da Silva, F.S.; Hernández, L.H.A.; Barros, L.J.L.; Freitas, M.N.O.; Santos, M.M.; Gonçalves, E.J.; Pantoja, J.A.S.; Lima, C.S.; Lima, M.F.; et al. Isolation of Flaviviruses and Alphaviruses with Encephalitogenic Potential Diagnosed by Evandro Chagas Institute (Pará, Brazil) in the Period of 1954–2022: Six Decades of Discoveries. Viruses 2023, 15, 935. [Google Scholar] [CrossRef]
- Stein, B.R. Morphology and Allometry in Several Genera of Semiaquatic Rodents (Ondatra, nectomys, and Oryzomys). J. Mammal. 1988, 69, 500–511. [Google Scholar] [CrossRef]
- Shope, R.E.; de Andrade, A.H.; Bensabath, G.; Causey, O.R.; Humphrey, P.S. The epidemiology of EEE WEE, SLE and Turlock viruses, with special reference to birds, in a tropical rain forest near Belem, Brazil. Am. J. Epidemiol. 1966, 84, 467–477. [Google Scholar] [CrossRef]
- Morales, M.A.; Fabbri, C.M.; Zunino, G.E.; Kowalewski, M.M.; Luppo, V.C.; Enría, D.A.; Levis, S.C.; Calderón, G.E. Detection of the mosquito-borne flaviviruses, West Nile, Dengue, Saint Louis Encephalitis, Ilheus, Bussuquara, and Yellow Fever in free-ranging black howlers (Alouatta caraya) of Northeastern Argentina. PLoS Negl. Trop. Dis. 2017, 11, e0005351. [Google Scholar] [CrossRef] [PubMed]
- Gibrail, M.M. Detecção de Anticorpos Para Arbovirus em Primatas Não Humanos no Município de Goiânia, Goiás; Universidade Federal de Goiás: Goiânia, Brazil, 2015. [Google Scholar]
- Catenacci, L.S.; Ferreira, M.; Martins, L.C.; De Vleeschouwer, K.M.; Cassano, C.R.; Oliveira, L.C.; Canale, G.; Deem, S.L.; Tello, J.S.; Parker, P.; et al. Surveillance of Arboviruses in Primates and Sloths in the Atlantic Forest, Bahia, Brazil. Ecohealth 2018, 15, 777–791. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.R.; Santos, R. Infectious diseases of neotropical primates. Braz. J. Vet. Pathol. 2023, 16, 1–34. [Google Scholar] [CrossRef]
- Casseb, A.R.; Cruz, A.V.; Jesus, I.S.; Chiang, J.O.; Martins, L.C.; Silva, S.P.; Henriques, D.F.; Casseb, L.M.; Vasconcelos, P.F. Seroprevalence of flaviviruses antibodies in water buffaloes (Bubalus bubalis) in Brazilian Amazon. J. Venom. Anim. Toxins Incl. Trop. Dis. 2014, 20, 9. [Google Scholar] [CrossRef]
- Pauvolid-Corrêa, A.; Campos, Z.; Juliano, R.; Velez, J.; Nogueira, R.M.; Komar, N. Serological evidence of widespread circulation of West Nile virus and other flaviviruses in equines of the Pantanal, Brazil. PLoS Negl. Trop. Dis. 2014, 8, e2706. [Google Scholar] [CrossRef]
- Ramos, B.A.; Chiang, J.O.; Martins, L.C.; Chagas, L.L.D.; Silva, F.A.E.; Ferreira, M.S.; Freitas, M.N.O.; Alcantara, B.N.; Silva, S.P.D.; Miranda, S.A.; et al. Clinical and serological tests for arboviruses in free-living domestic pigeons (Columba livia). Mem. Inst. Oswaldo Cruz 2017, 112, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.; Parry, I.; Lopes, T.; Santos, É.; Martins, L.; Fonseca, A.; Magalhães-Matos, P. Seroprevalence of arboviruses in Nasua nasua (Mammalia, Carnivora, Procyonidae) of synanthropic habitats in the Iguaçu National Park, Brazilian Atlantic Forest. Ciência Rural 2023, 53, e20210713. [Google Scholar] [CrossRef]
- Almeida, M.A.B.; Santos, E.D.; Cardoso, J.D.C.; Noll, C.A.; Lima, M.M.; Silva, F.A.E.; Ferreira, M.S.; Martins, L.C.; Vasconcelos, P.; Bicca-Marques, J.C. Detection of antibodies against Icoaraci, Ilhéus, and Saint Louis Encephalitis arboviruses during yellow fever monitoring surveillance in non-human primates (Alouatta caraya) in southern Brazil. J. Med. Primatol. 2019, 48, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, B.F.; Fairchild, G.B. A Survey to Assess Potential Human Disease Hazards Along Proposed Sea Level Canal Routes in Panamá and Colombia. II. Geography of Proposed Routes. Mil. Med. 1973, 138, 271–275. [Google Scholar] [CrossRef]
- Ulloa, A.; Langevin, S.A.; Mendez-Sanchez, J.D.; Arredondo-Jimenez, J.I.; Raetz, J.L.; Powers, A.M.; Villarreal-Treviño, C.; Gubler, D.J.; Komar, N. Serologic survey of domestic animals for zoonotic arbovirus infections in the Lacandón Forest region of Chiapas, Mexico. Vector Borne Zoonotic Dis. 2003, 3, 3–9. [Google Scholar] [CrossRef]
- Stone, D.; Lyons, A.C.; Huang, Y.S.; Vanlandingham, D.L.; Higgs, S.; Blitvich, B.J.; Adesiyun, A.A.; Santana, S.E.; Leiser-Miller, L.; Cheetham, S. Serological evidence of widespread exposure of Grenada fruit bats to chikungunya virus. Zoonoses Public Health 2018, 65, 505–511. [Google Scholar] [CrossRef]
- Hayes, E.B.; Komar, N.; Nasci, R.S.; Montgomery, S.P.; O’Leary, D.R.; Campbell, G.L. Epidemiology and transmission dynamics of West Nile virus disease. Emerg. Infect. Dis. 2005, 11, 1167–1173. [Google Scholar] [CrossRef]
- Swetnam, D.M.; Stuart, J.B.; Young, K.; Maharaj, P.D.; Fang, Y.; Garcia, S.; Barker, C.M.; Smith, K.; Godsey, M.S.; Savage, H.M.; et al. Movement of St. Louis encephalitis virus in the Western United States, 2014–2018. PLoS Negl. Trop. Dis. 2020, 14, e0008343. [Google Scholar] [CrossRef] [PubMed]
- Casseb Ado, R.; Nunes, M.R.; Rodrigues, S.G.; Travassos da Rosa, E.S.; Casseb, L.M.; Casseb, S.M.; da Silva, S.P.; Rodrigues, E.D.; Vasconcelos, P.F. Diagnosis of arboviruses using indirect sandwich IgG ELISA in horses from the Brazilian Amazon. J. Venom. Anim. Toxins Incl. Trop. Dis. 2014, 20, 29. [Google Scholar] [CrossRef] [PubMed]
- de Paola, D.; Bruno-Lobo, G.G.; Bruno-Lobo, M. Immunofluorescence in pathogenesis of group A, B, and C arbovirus in the hamster. An. Microbiol. 1968, 15, 35–51. [Google Scholar]
- Srihongse, S.; Johnson, K.M. Hemagglutinin Production and Infectivity Patterns in Adult Hamsters Inoculated with Group C and Other new World Arboviruses. Am. J. Trop. Med. Hyg. 1969, 18, 273–279. [Google Scholar] [CrossRef]
- Scherer, W.F.; Madalengoitia, J.; Flores, W.; Acosta, M. The first isolations of eastern encephalitis, group C, and Guama group arboviruses from the Peruvian Amazon region of western South America. Bull. Pan Am. Health Organ. 1975, 9, 19–26. [Google Scholar] [PubMed]
- Amarilla, A.A.; Fumagalli, M.J.; Figueiredo, M.L.; Lima-Junior, D.S.; Santos-Junior, N.N.; Alfonso, H.L.; Lippi, V.; Trabuco, A.C.; Lauretti, F.; Muller, V.D.; et al. Ilheus and Saint Louis encephalitis viruses elicit cross-protection against a lethal Rocio virus challenge in mice. PLoS ONE 2018, 13, e0199071. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, E.S.; Hart, C.E.; Hermance, M.E.; Brining, D.L.; Thangamani, S. An Overview of Animal Models for Arthropod-Borne Viruses. Comp. Med. 2017, 67, 232–241. [Google Scholar] [PubMed]
- Tesh, R.B. Experimental studies on the transovarial transmission of Kunjin and San Angelo viruses in mosquitoes. Am. J. Trop. Med. Hyg. 1980, 29, 657–666. [Google Scholar] [CrossRef]
- Renard, A.; Pérez Lombardini, F.; Pacheco Zapata, M.; Porphyre, T.; Bento, A.; Suzán, G.; Roiz, D.; Roche, B.; Arnal, A. Interaction of Human Behavioral Factors Shapes the Transmission of Arboviruses by Aedes and Culex Mosquitoes. Pathogens 2023, 12, 1421. [Google Scholar] [CrossRef] [PubMed]
- Loroño-Pino, M.A.; Blitvich, B.J.; Farfán-Ale, J.A.; Puerto, F.I.; Blanco, J.M.; Marlenee, N.L.; Rosado-Paredes, E.P.; García-Rejón, J.E.; Gubler, D.J.; Calisher, C.H.; et al. Serologic evidence of West Nile virus infection in horses, Yucatan State, Mexico. Emerg. Infect. Dis. 2003, 9, 857–859. [Google Scholar] [CrossRef]
- Mattar, S.; Edwards, E.; Laguado, J.; González, M.; Alvarez, J.; Komar, N. West Nile virus antibodies in Colombian horses. Emerg. Infect. Dis. 2005, 11, 1497–1498. [Google Scholar] [CrossRef]
- de Oliveira-Filho, E.F.; Fischer, C.; Berneck, B.S.; Carneiro, I.O.; Kühne, A.; de Almeida Campos, A.C.; Ribas, J.R.L.; Netto, E.M.; Franke, C.R.; Ulbert, S.; et al. Ecologic Determinants of West Nile Virus Seroprevalence among Equids, Brazil. Emerg. Infect. Dis. 2021, 27, 2466–2470. [Google Scholar] [CrossRef]
- Oliveira-Filho, E.F.; Carneiro, I.O.; Fischer, C.; Kühne, A.; Postigo-Hidalgo, I.; Ribas, J.R.L.; Schumann, P.; Nowak, K.; Gogarten, J.F.; de Lamballerie, X.; et al. Evidence against Zika virus infection of pets and peri-domestic animals in Latin America and Africa. J. Gen. Virol. 2022, 103, 001709. [Google Scholar] [CrossRef]
- Blitvich, B.J.; Bowen, R.A.; Marlenee, N.L.; Hall, R.A.; Bunning, M.L.; Beaty, B.J. Epitope-blocking enzyme-linked immunosorbent assays for detection of west nile virus antibodies in domestic mammals. J. Clin. Microbiol. 2003, 41, 2676–2679. [Google Scholar] [CrossRef] [PubMed]
- Buckley, A.; Gould, E.A. Detection of virus-specific antigen in the nuclei or nucleoli of cells infected with Zika or Langat virus. J. Gen. Virol. 1988, 69 Pt 8, 1913–1920. [Google Scholar] [CrossRef]
- Ré, V.; Spinsanti, L.; Farías, A.; Díaz, A.; Vázquez, A.; Aguilar, J.; Tenorio, A.; Contigiani, M. Reliable detection of St. Louis encephalitis virus by RT-nested PCR. Enferm. Infecc. Microbiol. Clin. 2008, 26, 10–15. [Google Scholar] [CrossRef]
- Chotiwan, N.; Brewster, C.D.; Magalhaes, T.; Weger-Lucarelli, J.; Duggal, N.K.; Rückert, C.; Nguyen, C.; Garcia Luna, S.M.; Fauver, J.R.; Andre, B.; et al. Rapid and specific detection of Asian- and African-lineage Zika viruses. Sci. Transl. Med. 2017, 9, eaag0538. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, L.T.; Batista, W.C.; Kashima, S.; Nassar, E.S. Identification of Brazilian flaviviruses by a simplified reverse transcription-polymerase chain reaction method using Flavivirus universal primers. Am. J. Trop. Med. Hyg. 1998, 59, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Maher-Sturgess, S.L.; Forrester, N.L.; Wayper, P.J.; Gould, E.A.; Hall, R.A.; Barnard, R.T.; Gibbs, M.J. Universal primers that amplify RNA from all three flavivirus subgroups. Virol. J. 2008, 5, 16. [Google Scholar] [CrossRef]
- Serra, O.P.; Cardoso, B.F.; Ribeiro, A.L.; Santos, F.A.; Slhessarenko, R.D. Mayaro virus and dengue virus 1 and 4 natural infection in culicids from Cuiabá, state of Mato Grosso, Brazil. Mem. Inst. Oswaldo Cruz 2016, 111, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.S.; Luchs, A.; Dos Santos, F.C.P.; Caleiro, G.S.; Nogueira, M.L.; Maiorka, P.C. Applying a pan-flavivirus RT-qPCR assay in Brazilian public health surveillance. Arch. Virol. 2020, 165, 1863–1868. [Google Scholar] [CrossRef]
- Khan, M.J.; Trabuco, A.C.; Alfonso, H.L.; Figueiredo, M.L.; Batista, W.C.; Badra, S.J.; Figueiredo, L.T.; Lavrador, M.A.; Aquino, V.H. DNA Microarray Platform for Detection and Surveillance of Viruses Transmitted by Small Mammals and Arthropods. PLoS Negl. Trop. Dis. 2016, 10, e0005017. [Google Scholar] [CrossRef]
- de Morais Bronzoni, R.V.; Baleotti, F.G.; Ribeiro Nogueira, R.M.; Nunes, M.; Moraes Figueiredo, L.T. Duplex reverse transcription-PCR followed by nested PCR assays for detection and identification of Brazilian alphaviruses and flaviviruses. J. Clin. Microbiol. 2005, 43, 696–702. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steck, M.R.; Buenemann, M.; Vasilakis, N. Bussuquara Virus: A Neglected Orthoflavivirus with Broad Distribution Across Central and South America and the Caribbean. Viruses 2025, 17, 183. https://doi.org/10.3390/v17020183
Steck MR, Buenemann M, Vasilakis N. Bussuquara Virus: A Neglected Orthoflavivirus with Broad Distribution Across Central and South America and the Caribbean. Viruses. 2025; 17(2):183. https://doi.org/10.3390/v17020183
Chicago/Turabian StyleSteck, Madeline R., Michaela Buenemann, and Nikos Vasilakis. 2025. "Bussuquara Virus: A Neglected Orthoflavivirus with Broad Distribution Across Central and South America and the Caribbean" Viruses 17, no. 2: 183. https://doi.org/10.3390/v17020183
APA StyleSteck, M. R., Buenemann, M., & Vasilakis, N. (2025). Bussuquara Virus: A Neglected Orthoflavivirus with Broad Distribution Across Central and South America and the Caribbean. Viruses, 17(2), 183. https://doi.org/10.3390/v17020183