New Bacteriophage Pseudomonas Phage Ka2 from a Tributary Stream of Lake Baikal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Bacteriophage Isolation, Propagation, and Purification
2.3. PFU Count and Assessment of Bacterial Susceptibility to Phage
2.4. Determination of Optimal Multiplicity of Infection (MOI) and One-Step Growth Assay
2.5. Impact of Serum on Bacterial Lysis
2.6. Determination of Minimum Inhibitory Concentration (MIC)
2.7. Biofilm Assays
2.8. Colony-Forming Unit Count
2.9. Transmission Electron Microscopy (TEM)
2.10. Scanning Electron Microscopy (SEM)
2.11. Confocal Laser Scanning Microscopy
2.12. Sequencing of Pseudomonas Phage Ka2 Genome and Bioinformatics
2.13. Statistics
3. Results
3.1. Specificity, Morphological Characteristics, and Lysis Kinetics of Ka2
3.2. General Genome and Proteome Characterization
3.3. Synergistic Effects of Ka2 with Antimicrobials
3.4. Antibiofilm Activity of Pseudomonas Phage Ka2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morrison, A.J.; Wenzel, R.P. Epidemiology of infections due to Pseudomonas aeruginosa. Clin. Infect. Dis. 1984, 6, S627–S642. [Google Scholar] [CrossRef]
- Cogen, A.L.; Nizet, V.; Gallo, R.L. Skin microbiota: A source of disease or defence? Br. J. Dermatol. 2008, 158, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Gellatly, S.L.; Hancock, R.E. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, J.M.C.; Cooper, T.; Yam, T.; Clarke, S.C. Pseudomonas aeruginosa outbreaks in the neonatal intensive care unit—A systematic review of risk factors and environmental sources. J. Med. Microbiol. 2012, 61 Pt 8, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Kerr, K.G.; Snelling, A.M. Pseudomonas aeruginosa: A formidable and ever-present adversary. J. Hosp. Infect. 2009, 73, 338–344. [Google Scholar] [CrossRef]
- Tuon, F.F.; Dantas, L.R.; Suss, P.H.; Ribeiro, V.S. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens 2022, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.J.; Kuzel, T.M.; Shafikhani, S.H. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023, 12, 199. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Soc. 2018, 32, 76–77. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Assefa, M.; Amare, A. Biofilm-Associated Multi-Drug Resistance in Hospital-Acquired Infections: A Review. Infect. Drug Resist. 2022, 15, 5061–5068. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Geesey, G.G.; Cheng, K.J. How bacteria stick. Sci. Am. 1978, 238, 86–95. [Google Scholar] [CrossRef]
- Bédard, E.; Prévost, M.; Déziel, E. Pseudomonas aeruginosa in premise plumbing of large buildings. Microbiologyopen 2016, 5, 937–956. [Google Scholar] [CrossRef] [PubMed]
- Abebe, G.M. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Int. J. Microbiol. 2020, 2020, 1705814. [Google Scholar] [CrossRef] [PubMed]
- Olivares, E.; Badel-Berchoux, S.; Provot, C.; Prévost, G.; Bernardi, T.; Jehl, F. Clinical Impact of Antibiotics for the Treatment of Pseudomonas aeruginosa Biofilm Infections. Front. Microbiol. 2020, 10, 2894. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Cheng, J.; Wang, J.; Li, P.; Lin, J. Treatment of Pseudomonas aeruginosa infectious biofilms: Challenges and strategies. Front. Microbiol. 2022, 13, 955286. [Google Scholar] [CrossRef]
- Fabijan, A.P.; Lin, R.C.Y.; Ho, J.; Maddocks, S.; Ben Zakour, N.L.; Iredell, J.R.; Team, W.B.T.; Khalid, A.; Venturini, C.; Chard, R.; et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 2020, 5, 652. [Google Scholar] [CrossRef]
- Aslam, S.; Courtwright, A.M.; Koval, C.; Lehman, S.M.; Morales, S.; Furr, C.L.; Rosas, F.; Brownstein, M.J.; Fackler, J.R.; Sisson, B.M.; et al. Early clinical experience of bacteriophage therapy in 3 lung transplant recipients. Am. J. Transplant 2019, 19, 2631–2639. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Pretorius, V.; Lehman, S.M.; Morales, S.; Schooley, R.T. Novel bacteriophage therapy for treatment of left ventricular assist device infection. J. Heart Lung Transplant. 2019, 38, 475–476. [Google Scholar] [CrossRef]
- Jones, J.D.; Trippett, C.; Suleman, M.; Clokie, M.R.J.; Clark, J.R. The Future of Clinical Phage Therapy in the United Kingdom. Viruses 2023, 15, 721. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, S.; Ruth, M.M.; Mientjes, M.; de Sévaux, R.G.L.; van Ingen, J. A Dutch Case Report of Successful Treatment of Chronic Relapsing Urinary Tract Infection with Bacteriophages in a Renal Transplant Patient. Antimicrob. Agents Chemother. 2019, 64, e01281-19. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Qi, Y.; Yu, H.; Sun, W.; Raza, S.H.A.; Alkhorayef, N.; Alkhalil, S.S.; Salama, E.E.A.; Zhang, L. Bacteriophage Therapy as an Application for Bacterial Infection in China. Antibiotics 2023, 12, 417. [Google Scholar] [CrossRef] [PubMed]
- Chegini, Z.; Khoshbayan, A.; Moghadam, M.T.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- McVay, C.S.; Velásquez, M.; Fralick, J.A. Phage Therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob. Agents Chemother. 2007, 51, 1934–1938. [Google Scholar] [CrossRef]
- Taylor, V.L.; Fitzpatrick, A.D.; Islam, Z.; Maxwell, K.L. The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence. Adv. Virus Res. 2019, 103, 1–31. [Google Scholar] [CrossRef]
- Wahl, A.; Battesti, A.; Ansaldi, M. Prophages in Salmonella enterica: A driving force in reshaping the genome and physiology of their bacterial host? Mol. Microbiol. 2018, 111, 303–316. [Google Scholar] [CrossRef]
- Wang, X.; Tang, J.; Dang, W.; Xie, Z.; Zhang, F.; Hao, X.; Sun, S.; Liu, X.; Luo, Y.; Li, M.; et al. Isolation and Characterization of Three Pseudomonas aeruginosa Viruses with Therapeutic Potential. Microbiol. Spectr. 2023, 11, e0463622. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.M.; Xu, W.M.; Zhang, L. Current Status of Phage Therapy against Infectious Diseases and Potential Application beyond Infectious Diseases. Int. J. Clin. Pract. 2022, 2022, 4913146. [Google Scholar] [CrossRef] [PubMed]
- Malki, K.; Kula, A.; Bruder, K.; Sible, E.; Hatzopoulos, T.; Steidel, S.; Watkins, S.C.; Putonti, C. Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla. Virol. J. 2015, 12, 164. [Google Scholar] [CrossRef]
- Neves, P.R.; Cerdeira, L.T.; Mitne-Neto, M.; Oliveira, T.G.M.; McCulloch, J.A.; Sampaio, J.L.M.; Mamizuka, E.M.; Levy, C.E.; Sato, M.I.Z.; Lincopan, N. Complete Genome Sequence of an F8-Like Lytic Myovirus (φSPM-1) That Infects Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Genome Announc. 2014, 2, e00061-14. [Google Scholar] [CrossRef] [PubMed]
- Pourcel, C.; Midoux, C.; Latino, L.; Petit, M.-A.; Vergnaud, G. Complete Genome Sequences of Pseudomonas aeruginosa Phages vB_PaeP_PcyII-10_P3P1 and vB_PaeM_PcyII-10_PII10A. Genome Announc. 2016, 4, e00916-16. [Google Scholar] [CrossRef] [PubMed]
- Kornienko, M.A.; Kuptsov, N.S.; Danilov, D.I.; Gorodnichev, R.; Malakhova, M.; Bespiatykh, D.; Veselovsky, V.; Shitikov, E.; Ilina, E. Isolation and characterization of Pseudomonas aeruginosa bacteriophages—Potential agents for phage therapy. Extrem. Med. 2021, 3, 15–21. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, P.; Lin, Z.; Wang, T. Characterization of two Pseudomonas aeruginosa viruses vB_PaeM_SCUT-S1 and vB_PaeM_SCUT-S2. Viruses 2019, 11, 318. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.; Silva, Y.J.; Cunha, A.; Gomes, N.C.; Ackermann, H.-W.; Almeida, A. Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: In vitro and ex vivo experiments. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Waters, E.M.; Neill, D.R.; Kaman, B.; Sahota, J.S.; Clokie, M.R.J.; Winstanley, C.; Kadioglu, A. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax 2017, 72, 666–667. [Google Scholar] [CrossRef] [PubMed]
- Szafrański, S.P.; Winkel, A.; Stiesch, M. The use of bacteriophages to biocontrol oral biofilms. J. Biotechnol. 2017, 250, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Fish, R.; Kutter, E.; Wheat, G.; Blasdel, B.; Kutateladze, M.; Kuhl, S. Bacteriophage treatment of intransigent diabetic toe ulcers: A case series. J. Wound Care 2016, 25 (Suppl. S7), S27–S33. [Google Scholar] [CrossRef]
- Markoishvili, K.; Tsitlanadze, G.; Katsarava, R.; Morris, J.G.; Sulakvelidze, A. A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int. J. Dermatol. 2002, 41, 453–458. [Google Scholar] [CrossRef]
- Iacumin, L.; Manzano, M.; Comi, G. Phage Inactivation of Listeria monocytogenes on San Daniele Dry-Cured Ham and Elimination of Biofilms from Equipment and Working Environments. Microorganisms 2016, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Segall, A.M.; Roach, D.R.; Strathdee, S.A. Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. Curr. Opin. Microbiol. 2019, 51, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Kayumov, A.R.; Khakimullina, E.N.; Sharafutdinov, I.S.; Trizna, E.Y.; Latypova, L.Z.; Lien, H.T.; Margulis, A.B.; I Bogachev, M.; Kurbangalieva, A.R. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones. J. Antibiot. 2014, 68, 297–301. [Google Scholar] [CrossRef]
- Mazzocco, A.; Waddell, T.E.; Lingohr, E.; Johnson, R.P. Enumeration of bacteriophages using the small drop plaque assay system. Methods Mol. Biol. 2009, 501, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Fong, P.C.; Boss, D.S.; Yap, T.A.; Tutt, A.; Wu, P.; Mergui-Roelvink, M.; Mortimer, P.; Swaisland, H.; Lau, A.; O’Connor, M.J.; et al. Inhibition of poly(ADP-Ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 2009, 361, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Fu, B.; Sheng, Q.; Luo, M.; Sun, L. Isolation and Characterization of a Lytic Bacteriophage RH-42-1 of Erwinia amylovora from Orchard Soil in China. Viruses 2024, 16, 509. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Hall, A.; Zahn, H.; Eisenberg, M.; Erickson, S. Bacteriophage-based detection of Staphylococcus aureus in human serum. Viruses 2022, 14, 1748. [Google Scholar] [CrossRef]
- Leclercq, R.; Cantón, R.; Brown, D.F.J.; Giske, C.G.; Heisig, P.; MacGowan, A.P.; Mouton, J.W.; Nordmann, P.; Rodloff, A.C.; Rossolini, G.M.; et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2013, 19, 141–160. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.A.; Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol. 1998, 28, 449–461. [Google Scholar] [CrossRef]
- Baidamshina, D.R.; Trizna, E.Y.; Holyavka, M.G.; Bogachev, M.I.; Artyukhov, V.G.; Akhatova, F.S.; Rozhina, E.V.; Fakhrullin, R.F.; Kayumov, A.R. Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci. Rep. 2017, 7, srep46068. [Google Scholar] [CrossRef] [PubMed]
- Herigstad, B.; Hamilton, M.; Heersink, J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods 2001, 44, 121–129. [Google Scholar] [CrossRef]
- FastQC: A Quality Control Tool for High Throughput Sequence Data. Version 0.11.5. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 20 September 2024).
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Gabler, F.; Nam, S.; Till, S.; Mirdita, M.; Steinegger, M.; Söding, J.; Lupas, A.N.; Alva, V. Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinform. 2020, 72, e108. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Holm, L. Dali server: Structural unification of protein families. Nucleic Acids Res. 2022, 50, W210–W215. [Google Scholar] [CrossRef]
- Holm, L.; Kääriäinen, S.; Rosenström, P.; Schenkel, A. Searching protein structure databases with DaliLite v. Bioinformatics 2008, 24, 2780–2781. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Zafar, N.; Mazumder, R.; Seto, D. CoreGenes: A computational tool for identifying and cataloging “core” genes in a set of small genomes. BMC Bioinform. 2002, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, R.; Seto, D.; Mahadevan, P.; Ackermann, H.W.; Kropinski, A.M. Unifying classical and molecular taxonomic classification: Analysis of the Podoviridae using BLASTP-based tools. Res. Microbiol. 2008, 159, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Filée, J.; Bapteste, E.; Susko, E.; Krisch, H.M. A selective barrier to horizontal gene transfer in the T4-type bacteriophages that has preserved a core genome with the viral replication and structural genes. Mol. Biol. Evol. 2006, 23, 1688–1696. [Google Scholar] [CrossRef]
- Filée, J.; Tétart, F.; Suttle, C.A.; Krisch, H.M. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc. Natl. Acad. Sci. USA 2005, 102, 12471–12476. [Google Scholar] [CrossRef]
- Bogachev, M.I.; Volkov, V.Y.; Markelov, O.A.; Trizna, E.Y.; Baydamshina, D.R.; Melnikov, V.; Murtazina, R.R.; Zelenikhin, P.V.; Sharafutdinov, I.S.; Kayumov, A.R. Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. PLoS ONE 2018, 13, e0193267. [Google Scholar] [CrossRef]
- Gouveia, A.; Pinto, D.; Veiga, H.; Antunes, W.; Pinho, M.G.; São-José, C. Synthetic antimicrobial peptides as enhancers of the bacteriolytic action of staphylococcal phage endolysins. Sci. Rep. 2022, 12, 1245. [Google Scholar] [CrossRef] [PubMed]
- Fauquet, C.M.; Fargette, D. International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol. J. 2005, 2, 64. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Ishihara, R.; Nakajima, Y.; Asakawa, S.; Kimura, M. Molecular characterization of T4-type bacteriophages in a rice field. Environ. Microbiol. 2007, 9, 1091–1096. [Google Scholar] [CrossRef]
- Bartual, S.G.; Otero, J.M.; Garcia-Doval, C.; Llamas-Saiz, A.L.; Kahn, R.; Fox, G.C.; van Raaij, M.J. Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc. Natl. Acad. Sci. USA 2010, 107, 20287–20292. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Wang, J. Structural mechanism of bacteriophage lambda tail’s interaction with the bacterial receptor. Nat. Commun. 2024, 15, 4185. [Google Scholar] [CrossRef] [PubMed]
- Granell, M.; Namura, M.; Alvira, S.; Kanamaru, S.; Van Raaij, M.J. Crystal structure of the carboxy-terminal region of the bacteriophage T4 proximal long tail fiber protein Gp34. Viruses 2017, 9, 168. [Google Scholar] [CrossRef] [PubMed]
- Buth, S.A.; Shneider, M.M.; Scholl, D.; Leiman, P.G. Structure and analysis of R1 and R2 pyocin receptor-binding fibers. Viruses 2018, 10, 427. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Lim, J.; Kong, M.; Ryu, S.; Rhee, S. Structure of bacteriophage SPN1S endolysin reveals an unusual two-module fold for the peptidoglycan lytic and binding activity. Mol. Microbiol. 2014, 92, 316–325. [Google Scholar] [CrossRef]
- Santos, S.B.; Oliveira, A.; Melo, L.D.R.; Azeredo, J. Identification of the first endolysin Cell Binding Domain (CBD) targeting Paenibacillus larvae. Sci. Rep. 2019, 9, 2568. [Google Scholar] [CrossRef]
- Sanz-Gaitero, M.; De Maesschalck, V.; Patel, A.; Longin, H.; Van Noort, V.; Rodriguez-Rubio, L.; van Ryne, M.; Danis-Wlodarczyk, K.; Drulis-Kawa, Z.; Mesnage, S.; et al. Structural and Biochemical Characterization of a New Phage-Encoded Muramidase, KTN6 Gp46. PHAGE 2024, 5, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Ceyssens, P.; Miroshnikov, K.; Mattheus, W.; Krylov, V.; Robben, J.; Noben, J.; Vanderschraeghe, S.; Sykilinda, N.; Kropinski, A.M.; Volckaert, G.; et al. Comparative analysis of the widespread and conserved PB1-like viruses infecting Pseudomonas aeruginosa. Environ. Microbiol. 2009, 11, 2874–2883. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.R.; van den Berg, D.F.; Esser, J.Q.; Muralidharan, A.; Bossche, H.v.D.; Bonilla, B.E.; van der Steen, B.A.; Haagsma, A.C.; Fluit, A.C.; Nobrega, F.L.; et al. Accumulation of defense systems in phage-resistant strains of Pseudomonas aeruginosa. Sci. Adv. 2024, 10, eadj0341. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.P.; Oliveira, H.; Melo, L.D.; Sillankorva, S.; Azeredo, J. Bacteriophage-encoded depolymerases: Their diversity and biotechnological applications. Appl. Microbiol. Biotechnol. 2016, 100, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- Schmelcher, M.; Donovan, D.M.; Loessner, M.J. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012, 7, 1147–1171. [Google Scholar] [CrossRef]
- Wang, S.; Niu, Y.; Zhang, H.; Li, P.; Zhang, N.; Cheng, J.; Li, J. An engineered bacterium for the targeted delivery of proteins to destroy Pseudomonas aeruginosa biofilms. Acta Microbiol. Sin. 2021, 61, 2726–2748. [Google Scholar]
- Liu, C.G.; Green, S.I.; Min, L.; Clark, J.R.; Salazar, K.C.; Terwilliger, A.L.; Kaplan, H.B.; Trautner, B.W.; Ramig, R.F.; Maresso, A.W. Phage-Antibiotic Synergy Is Driven by a Unique Combination of Antibacterial Mechanism of Action and Stoichiometry. mBio 2020, 11, e01462-20. [Google Scholar] [CrossRef]
- Mironova, A.V.; Karimova, A.V.; Bogachev, M.I.; Kayumov, A.R.; Trizna, E.Y. Alterations in Antibiotic Susceptibility of Staphylococcus aureus and Klebsiella pneumoniae in Dual Species Biofilms. Int. J. Mol. Sci. 2023, 24, 8475. [Google Scholar] [CrossRef]
- Fedorova, M.; Mironova, A.; Kayumov, A.; Trizna, E. Cell-Free Supernatant of Staphylococcus aureus Culture Increases Antimicrobials Susceptibility of Pseudomonas aeruginosa. Opera Med. Physiol. 2022, 9, 113–120. [Google Scholar]
- Lavigne, R.; Darius, P.; Summer, E.J.; Seto, D.; Mahadevan, P.; Nilsson, A.S.; Ackermann, H.W.; Kropinski, A.M. Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol. 2009, 9, 224. [Google Scholar] [CrossRef]
- Watkins, S.C.; Sible, E.; Putonti, C. PB1-Like Phages: Whole Genomes from Metagenomes Offer Insight into an Abundant Group of Bacteriophages. Viruses 2018, 10, 331. [Google Scholar] [CrossRef] [PubMed]
- Danis-Wlodarczyk, K.; Olszak, T.; Arabski, M.; Wasik, S.; Majkowska-Skrobek, G.; Augustyniak, D.; Gula, G.; Briers, Y.; Bin Jang, H.; Vandenheuvel, D.; et al. Correction: Characterization of the Newly Isolated Lytic Bacteriophages KTN6 and KT28 and Their Efficacy against Pseudomonas aeruginosa Biofilm. PLoS ONE 2015, 10, e0137015. [Google Scholar] [CrossRef] [PubMed]
- Krylov, V.; Shaburova, O.; Pleteneva, E.; Krylov, S.; Kaplan, A.; Burkaltseva, M.; Polygach, O.; Chesnokova, E. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections. Virol. Sin. 2015, 30, 33–44. [Google Scholar] [CrossRef]
P. aeruginosa Strain and Clinical Isolate | Source, Date of Isolation | Antimicrobial Resistance, Where «R»—Resistance and «I»—Susceptible at Increased Exposure | Sensitivity to Bacteriophage (++++ Pronounced Lysis, +++ Excellent Lysis, ++ Good Lysis, + Weak Lysis, and − No Lysis Observed) |
---|---|---|---|
PAO1 | The typical strain | - | ++++ |
383 (MDR) | Pharynx, 1.11.2023 | Azl-«R», Az-«R», G-«R», L-«R», P-«R», Caz-«R» | ++++ |
13 (MDR) | Pharynx, 20.10.2023 | Azl-«R», Az-«R», G-«R», L-«R», P-«R», Caz-«R» | ++++ |
88 (MDR) | Pharynx, 14.09.2023 | Azl-«R», Az-«R», G-«R», L-«R», P-«R», Caz-«R» | ++++ |
465 (MDR) | Nasal cavity, 1.11.2023 | Azl-«R», Az-«R», L-«R», P-«R», T-«R», Caz-«R» | ++++ |
115 (MDR) | Pharynx, 1.11.2023 | Azl-«R», Az-«R», G-«R», L-«R», P-«R», Caz-«R» | ++++ |
468 (MDR) | Pharynx, 14.09.2023 | Azl-«R», Az-«R», G-«R», L-«R», P-«R», T-«R», Caz-«R» | ++++ |
400 (MDR) | Pharynx, 27.09.2023 | Azl-«R», G-«R», L-«R», P-«R», T-«R», Caz-«R» | − |
99 (MDR) | Pharynx, 20.10.2023 | Azl-«R», G-«R», L-«R», P-«R», T-«R», Caz-«R» | − |
176 (MDR) | Human feces with dysbacteriosis, 27.09.2023 | Azl-«R», L-«R», P-«R», T-«R», Caz-«R» | − |
1475 | Ear canal, 7.04.2022 | Az-«I», G-«I», L-«I» | ++++ |
293 | Pharynx, 7.04.2022 | Azl-«R», Az-«R», G-«R», P-«R», Caz-«R» | ++++ |
288 | Ear canal, 7.04.2022 | Azl-«R», Az-«I», G-«R», P-«R», Caz-«R» | ++++ |
410 | Pharynx, 7.04.2022 | Az-«R», G-«R», P-«R», Caz-«R» | ++++ |
206 | Pharynx, 27.09.2023 | Azl -«R», Az-«R», G-«R», P-«R», T-«R», Caz-«R» | ++++ |
305 | Pharynx, 7.04.2022 | A-«I», Az-«R», G-«I», P-«R», T-«I», Caz-«R» | ++++ |
4086 | Ear canal, 5.09.2022 | Azl-«R», Az-«R», G-«I», L-«I», P-«R», Caz-«R» | ++++ |
286 | Pharynx, 1.11.2023 | Azl-«R», Az-«R», P-«R», Caz-«R» | ++++ |
398 | Pharynx, 7.04.2022 | Azl-«R», Az-«R» | ++++ |
4241 | Nail plates of brushes, 5.09.2022 | Azl-«R», Az-«R», G-«R», L-«I», P-«R», Caz-«R» | +++ |
449 | Pharynx, 7.04.2022 | Azl-«R», Az-«R», Caz-«R», C-«I» | +++ |
3101 | Eye conjunctiva, 5.09.2022 | Azl-«R», Az-«R», L-«I», P-«R», Caz-«R» | ++ |
347 | Pharynx, 1.11.2023 | Azl-«R», Az-«R», G-«R», P-«R», Caz-«R» | + |
2806 | Nail plates of brushes, 5.09.2022 | Azl-«R», Az-«R», G-«R», L-«I», P-«R», T-«I», Caz-«R» | + |
639 | Nasal cavity, 14.09.2023 | Azl-«R», Az-«R», L-«R», P-«R», Caz-«R» | + |
278 | Pharynx, 7.04.2022 | Az-«R», G-«R», P-«R», Caz-«R» | − |
443 | Pharynx, 7.04.2022 | A-«I», Azl-«R», Az-«R», M-«R», P-«R», C-«R» | − |
185 | Pharynx, 20.10.2023 | Azl-«R», L-«R», P-«R», Caz-«R» | − |
250 | Pharynx, 7.04.2022 | Azl-«R», Az-«R», L-«I», P-«R», Caz-«R» | − |
369 | Pharynx, 27.09.2023 | Azl-«R», G-«R», P-«R», Caz-«R» | − |
458 | Pharynx, 7.04.2022 | A-«I», G-«I» | − |
Phage | Genome Size, bp | Coverage | Identity | Accession Number GenBank |
---|---|---|---|---|
Pseudomonas phage vB_PaeM_FBPa50 | 66,569 | 98% | 98% | ON375838.1 |
Pseudomonas phage S50 DNA | 64,018 | 99% | 97% | LC472884.1 |
Pseudomonas phage LMA2 | 64,015 | 98% | 98% | FM201282.1 |
Pseudomonas phage Kara-mokiny kep-wari Wadjak 9 | 63,994 | 98% | 98% | OP310975.1 |
Pseudomonas phage vB_PaeM_CEB_DP1 | 63,926 | 98% | 98% | NC_041870.1 |
Pseudomonas phage vB_PaeM_PAO1_Ab27 | 63,719 | 99% | 97% | LN610579.1 |
Pseudomonas phage Epa21 | 63,426 | 98% | 97% | MT118298.1 |
Pseudomonas phage shane | 63,376 | 98% | 98% | MT119368.1 |
Pseudomonas phage willy | 62,711 | 98% | 98% | MT133562.1 |
Pseudomonas phage PaGU11 DNA | 62,669 | 97% | 98% | NC_050145.1 |
Pseudomonas phage chunk | 62,657 | 98% | 97% | MT119376.1 |
Pseudomonas phage debbie | 62,155 | 98% | 97% | MT119363.1 |
Pseudomonas phage vB_PaeM_V524 | 62,094 | 97% | 98% | MW595221.1 |
Pseudomonas phage S12-3 DNA | 61,906 | 98% | 98% | LC472883.1 |
Pseudomonas phage S12-1 DNA | 61,906 | 98% | 98% | LC102730.1 |
Pseudomonas phage PA_LZ01 | 60,672 | 97% | 97% | OM953790.1 |
Pseudomonas phage Epa20 | 60,152 | 99% | 97% | MT118297.1 |
Pseudomonas phage phiKTN6 | 58,523 | 97% | 98% | NC_041865.1 |
Pseudomonas phage vB_PaeM_E217 | 58,519 | 97% | 98% | NC_042079.1 |
Pseudomonas phage vB_PaeM_FBPa12 | 57,790 | 98% | 98% | ON857930.1 |
Antimicrobials | MIC, µg/mL | MIC Reduction, -Fold | |
---|---|---|---|
Control | +Ka2 | ||
Amikacin | 1 | 0.25 | 4 |
Gentamicin | 0.015 | 0.0039 | 4 |
Colistin | 0.25 | 0.008 | 32 |
Ciprofloxacin | 0.002 | 0.004 | 0.5 |
Cefepime | 8 | 1 | 8 |
Antimicrobials | P. aeruginosa Clinical Isolates | ||||||
---|---|---|---|---|---|---|---|
13 | 383 | 468 | 305 | 449 | 4241 | ||
Amikacin | Control, MIC, µg/mL | ND | ND | ND | 64 | ND | ND |
+Ka2, MIC, µg/mL | ND | ND | ND | 16 | ND | ND | |
MIC reduction, -fold | ND | ND | ND | 4 | ND | ND | |
Gentamicin | Control, MIC, µg/mL | 2 | 2 | 4 | 16 | ND | 16 |
+Ka2, MIC, µg/mL | 4 | 2 | 8 | 2 | ND | 4 | |
MIC reduction, -fold | 0.5 | 1 | 0.5 | 8 | ND | 4 | |
Cefepime | Control, MIC, µg/mL | 1 | 4 | 4 | 4 | 2 | 8 |
+Ka2, MIC, µg/mL | 0.12 | 1 | 0.5 | 2 | 1 | 2 | |
MIC reduction, -fold | 8 | 4 | 8 | 2 | 2 | 4 | |
Ciprofloxacin | Control, MIC, µg/mL | ND | ND | ND | ND | 1 | ND |
+Ka2, MIC, µg/mL | ND | ND | ND | ND | 0.06 | ND | |
MIC reduction, -fold | ND | ND | ND | ND | 16 | ND | |
Colistin | Control, MIC, µg/mL | 0.5 | 1 | 0.5 | 0.5 | 0.5 | 0.5 |
+Ka2, MIC, µg/mL | 0.25 | 0.06 | 0.06 | 0.25 | 0.5 | 0.12 | |
MIC reduction, -fold | 2 | 16 | 8 | 2 | 1 | 4 |
Antimicrobials | P. aeruginosa Clinical Isolates | |||||||
---|---|---|---|---|---|---|---|---|
PAO1 | 13 | 383 | 468 | 305 | 449 | 4241 | ||
Amikacin | Control, MIC, µg/mL | 8 | 64 | 64 | 16 | 32 | 16 | 8 |
+Ka2, MIC, µg/mL | 4 | 16 | 8 | 4 | 2 | 16 | 8 | |
BEC reduction, -fold | 2 | 4 | 8 | 4 | 16 | 1 | 1 | |
Cefepime | Control, MIC, µg/mL | 64 | 8 | 8 | 4 | 4 | 256 | 8 |
+Ka2, MIC, µg/mL | 2 | 8 | 2 | 2 | 2 | 64 | 2 | |
BEC reduction, -fold | 32 | 1 | 4 | 2 | 2 | 4 | 4 | |
Ciprofloxacin | Control, MIC, µg/mL | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
+Ka2, MIC, µg/mL | 0.5 | 1 | 1 | 1 | 0.5 | 0.5 | 0.5 | |
BEC reduction, -fold | 4 | 1 | 1 | 1 | 2 | 2 | 2 | |
Colistin | Control, MIC, µg/mL | 64 | 16 | 64 | 64 | 32 | 64 | 32 |
+Ka2, MIC, µg/mL | 8 | 16 | 8 | 16 | 2 | 32 | 16 | |
BEC reduction, -fold | 8 | 1 | 8 | 4 | 16 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilyina, V.; Gatina, A.; Trizna, E.; Siniagina, M.; Yadykova, L.; Ivannikova, A.; Ozhegov, G.; Zhuravleva, D.; Fedorova, M.; Gorshkova, A.; et al. New Bacteriophage Pseudomonas Phage Ka2 from a Tributary Stream of Lake Baikal. Viruses 2025, 17, 189. https://doi.org/10.3390/v17020189
Ilyina V, Gatina A, Trizna E, Siniagina M, Yadykova L, Ivannikova A, Ozhegov G, Zhuravleva D, Fedorova M, Gorshkova A, et al. New Bacteriophage Pseudomonas Phage Ka2 from a Tributary Stream of Lake Baikal. Viruses. 2025; 17(2):189. https://doi.org/10.3390/v17020189
Chicago/Turabian StyleIlyina, Valeriya, Alina Gatina, Elena Trizna, Maria Siniagina, Liudmila Yadykova, Anastasiya Ivannikova, Georgiy Ozhegov, Daria Zhuravleva, Marina Fedorova, Anna Gorshkova, and et al. 2025. "New Bacteriophage Pseudomonas Phage Ka2 from a Tributary Stream of Lake Baikal" Viruses 17, no. 2: 189. https://doi.org/10.3390/v17020189
APA StyleIlyina, V., Gatina, A., Trizna, E., Siniagina, M., Yadykova, L., Ivannikova, A., Ozhegov, G., Zhuravleva, D., Fedorova, M., Gorshkova, A., Evseev, P., Drucker, V., Bogachev, M., Validov, S., Kharitonova, M., & Kayumov, A. (2025). New Bacteriophage Pseudomonas Phage Ka2 from a Tributary Stream of Lake Baikal. Viruses, 17(2), 189. https://doi.org/10.3390/v17020189