Viral Suppression and HIV Drug Resistance Among Patients on Second-Line Antiretroviral Therapy in Selected Health Facility in Ethiopia
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. HIV-1 Sequencing
2.3. HIV-1 Drug Resistance Analysis
2.4. HIV-1 Subtype Determination
2.5. Data Quality Management
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
3.1. Demographic Characteristics of Study Participants
3.2. ART Regimen and Clinical Characteristics of Patients on Second-Line Therapy
3.3. HIV Drug Resistance Mutation Profile
3.4. Factors Associated with Virological Failure
3.5. HIV Drug Resistance Susceptibility Testing
3.6. Maximum-likelihood Phylogenetic Tree
4. Discussions
Limitation of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McMahon, R. UNAIDS Issues New Fast-Track Strategy to End AIDS by 2030; Elizabeth Glaser Pediatric AIDS Foundation: Washington, DC, USA, 2014. [Google Scholar]
- WHO. Policy Brief: Update of Recommendations on First- and Second-Line Antiretroviral Regimens. 2019. Available online: https://apps.who.int/iris/handle/10665/325892 (accessed on 20 September 2023).
- Gregson, J.; Tang, M.; Ndembi, N.; Hamers, R.L.; Rhee, S.-Y.; Marconi, V.C.; Diero, L.; Brooks, K.A.; Theys, K.; Rinke de Wit, T.; et al. Global epidemiology of drug resistance after failure of WHO recommended first-line regimens for adult HIV-1 infection: A multicentre retrospective cohort study. Lancet Infect. Dis. 2016, 16, 565–575. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on HIV Drug Resistance 2017–2021; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Bertagnolio, S.; Beanland, R.L.; Jordan, M.R.; Doherty, M.; Hirnschall, G. The World Health Organization’s response to emerging human immunodeficiency virus drug resistance and a call for global action. J. Infect. Dis. 2017, 216, S801–S804. [Google Scholar] [CrossRef] [PubMed]
- Bernabé, K.J.; Siedner, M.; Tsai, A.C.; Marconi, V.C.; Murphy, R.A. Detection of HIV Virologic Failure and Switch to Second-Line Therapy: A Systematic Review and Meta-analysis of Data from Sub-Saharan Africa. Open Forum Infect. Dis. 2022, 9, ofac121. [Google Scholar] [CrossRef] [PubMed]
- Federal Ministry of Health of Ethiopia. National Consolidated Guidelines for Comprehensive HIV Prevention, Care and Treatment; Fmoh: Addis Ababa, Ethiopia, 2018; pp. 1–238. [Google Scholar]
- Ethiopian Public Health Institute (EPHI). Ethiopia Population-based HIV Impact Assessment (EPHIA) 2017–2018. Final Report; EPHI: Addis Ababa, Ethiopia, 2020. [Google Scholar]
- Sawadogo, S.; Shiningavamwe, A.N.; Roscoe, C.; Baughman, A.L.; Negussie, T.; Mutandi, G.; Yang, C.; Hamunime, N.; Agolory, S. Human Immunodeficiency Virus-1 Drug Resistance Patterns Among Adult Patients Failing Second-Line Protease Inhibitor-Containing Regimens in Namibia, 2010–2015. Open Forum Infect. Dis. 2018, 5, ofy014. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Surveillance of HIV Drug Resistance in Populations Initiating Antiretroviral Therapy (Pre-Treatment HIV Drug Resistance): Concept Note; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- World Health Organization. WHO HIVResNet HIV Drug Resistance Laboratory Operational Framework; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Ávila-Ríos, S.; García-Morales, C.; Valenzuela-Lara, M.; Chaillon, A.; Tapia-Trejo, D.; Pérez-García, M.; López-Sánchez, D.M.; Maza-Sánchez, L.; Del Arenal-Sánchez, S.J.; Paz-Juárez, H.E.; et al. HIV-1 drug resistance before initiation or re-initiation of first-line ART in eight regions of Mexico: A sub-nationally representative survey. J. Antimicrob. Chemother. 2019, 74, 1044–1055. [Google Scholar] [CrossRef]
- Woods, C.K.; Brumme, C.J.; Liu, T.F.; Chui, C.K.; Chu, A.L.; Wynhoven, B.; Hall, T.A.; Trevino, C.; Shafer, R.W.; Harrigan, P.R. Automating HIV drug resistance genotyping with RECall, a freely accessible sequence analysis tool. J. Clin. Microbiol. 2012, 50, 1936–1942. [Google Scholar] [CrossRef]
- Pineda-Peña, A.C.; Faria, N.R.; Imbrechts, S.; Libin, P.; Abecasis, A.B.; Deforche, K.; Gómez-López, A.; Camacho, R.J.; de Oliveira, T.; Vandamme, A.M. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: Performance evaluation of the new REGA version 3 and seven other tools. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2013, 19, 337–348. [Google Scholar] [CrossRef]
- Struck, D.; Lawyer, G.; Ternes, A.M.; Schmit, J.C.; Bercoff, D.P. COMET: Adaptive context-based modeling for ultrafast HIV-1 subtype identification. Nucleic Acids Res. 2014, 42, e144. [Google Scholar] [CrossRef]
- Arimide, D.A.; Esquivel-Gómez, L.R.; Kebede, Y.; Sasinovich, S.; Balcha, T.; Björkman, P.; Kühnert, D.; Medstrand, P. Molecular Epidemiology and Transmission Dynamics of the HIV-1 Epidemic in Ethiopia: Epidemic Decline Coincided with Behavioral Interventions Before ART Scale-Up. Front. Microbiol. 2022, 13, 821006. [Google Scholar] [CrossRef]
- Arimide, D.A.; Abebe, A.; Kebede, Y.; Adugna, F.; Tilahun, T.; Kassa, D.; Assefa, Y.; Balcha, T.T.; Björkman, P.; Medstrand, P. HIV-genetic diversity and drug resistance transmission clusters in Gondar, Northern Ethiopia, 2003–2013. PLoS ONE 2018, 13, e0205446. [Google Scholar] [CrossRef]
- Katoh, K.; Kuma, K.-I.; Miyata, T.; Toh, H. Improvement in the accuracy of multiple sequence alignment program MAFFT. Genome Inform. 2005, 16, 22–33. [Google Scholar] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series; Academia: Oxford, UK, 1999; pp. 95–98. [Google Scholar]
- Arimide, D.A.; Szojka, Z.I.; Zealiyas, K.; Gebreegziabxier, A.; Adugna, F.; Sasinovich, S.; Björkman, P.; Medstrand, P. Pre-Treatment Integrase Inhibitor Resistance and Natural Polymorphisms among HIV-1 Subtype C Infected Patients in Ethiopia. Viruses 2022, 14, 729. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Lethiec, F.; Duroux, P.; Gascuel, O. PHYML Online—A web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 2005, 33, W557–W559. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree 1.4. 3. 2016. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 16 March 2023).
- Hosseinipour, M.C.; Gupta, R.K.; Van Zyl, G.; Eron, J.J.; Nachega, J.B. Emergence of HIV drug resistance during first- and second-line antiretroviral therapy in resource-limited settings. J. Infect. Dis. 2013, 207 (Suppl. 2), S49–S56. [Google Scholar] [CrossRef]
- Ajose, O.; Mookerjee, S.; Mills, E.J.; Boulle, A.; Ford, N. Treatment outcomes of patients on second-line antiretroviral therapy in resource-limited settings: A systematic review and meta-analysis. Aids 2012, 26, 929–938. [Google Scholar] [CrossRef]
- Murphy, R.A.; Sunpath, H.; Castilla, C.; Ebrahim, S.; Court, R.; Nguyen, H.; Kuritzkes, D.; Marconi, V.C.; Nachega, J.B. Second-line antiretroviral therapy: Long-term outcomes in South Africa. J. Acquir Immune Defic. Syndr. 2012, 61, 158–163. [Google Scholar] [CrossRef]
- Mwavika, E.T.; Kunambi, P.P.; Masasi, S.J.; Lema, N.; Kamori, D.; Matee, M. Prevalence, rate, and predictors of virologic failure among adult HIV-Infected clients on second-line antiretroviral therapy (ART) in Tanzania (2018–2020): A retrospective cohort study. Bull. Natl. Res. Cent. 2024, 48, 96. [Google Scholar] [CrossRef]
- Gunda, D.W.; Kilonzo, S.B.; Mtaki, T.; Bernard, D.M.; Kalluvya, S.E.; Shao, E.R. Magnitude and correlates of virological failure among adult HIV patients receiving PI based second line ART regimens in north western Tanzania; A case control study. BMC Infect. Dis. 2019, 19, 235. [Google Scholar] [CrossRef]
- Ndahimana, J.d.A.; Riedel, D.J.; Muhayimpundu, R.; Nsanzimana, S.; Niyibizi, G.; Mutaganzwa, E.; Mulindabigwi, A.; Baribwira, C.; Kiromera, A.; Jagodzinski, L.L.; et al. HIV drug Resistance Mutations among Patients Failing Second-Line Antiretroviral Therapy in Rwanda. Antivir. Ther. 2016, 21, 253–259. [Google Scholar] [CrossRef]
- Zakaria, H.F.; Raru, T.B.; Hassen, F.A.; Ayana, G.M.; Merga, B.T.; Debele, G.R.; Kiflemariam, G.; Kebede, S.A.; Ayele, T.A. Incidence and Predictors of Virological Failure Among Adult HIV/AIDS Patients on Second-Line Anti-Retroviral Therapy, in Selected Public Hospital of Addis Ababa, Ethiopia: Retrospective Follow-Up Study. HIV AIDS (Auckl.) 2022, 14, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Levison, J.H.; Orrell, C.; Losina, E.; Lu, Z.; Freedberg, K.A.; Wood, R. Early Outcomes and the Virological Effect of Delayed Treatment Switching to Second-Line Therapy in An Antiretroviral Roll-Out Programme in South Africa. Antivir. Ther. 2011, 16, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Levison, J.H.; Orrell, C.; Gallien, S.; Kuritzkes, D.R.; Fu, N.; Losina, E.; Freedberg, K.A.; Wood, R. Virologic Failure of Protease Inhibitor-Based Second-Line Antiretroviral Therapy without Resistance in a Large HIV Treatment Program in South Africa. PLoS ONE 2012, 7, e32144. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.M.; Nanfuka, M.; Zhang, W.; Okoboi, S.; Kaleebu, P.; Kapaata, A.; Zhu, J.; Tibengana, B.; Birungi, J. Limited Impact of First-Line Drug Resistance Mutations on Virologic Response Among Patients Receiving Second-Line Antiretroviral Therapy in Rural Uganda. JAIDS J. Acquir. Immune Defic. Syndr. 2023, 92, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Boender, T.S.; Hamers, R.L.; Ondoa, P.; Wellington, M.; Chimbetete, C.; Siwale, M.; Labib Maksimos, E.E.F.; Balinda, S.N.; Kityo, C.M.; Adeyemo, T.A.; et al. Protease Inhibitor Resistance in the First 3 Years of Second-Line Antiretroviral Therapy for HIV-1 in Sub-Saharan Africa. J. Infect. Dis. 2016, 214, 873–883. [Google Scholar] [CrossRef]
- Musana, H.; Ssensamba, J.T.; Nakafeero, M.; Mugerwa, H.; Kiweewa, F.M.; Serwadda, D.; Ssali, F. Predictors of failure on second-line antiretroviral therapy with protease inhibitor mutations in Uganda. AIDS Res. Ther. 2021, 18, 17. [Google Scholar] [CrossRef]
- Saravanan, S.; Vidya, M.; Balakrishnan, P.; Kantor, R.; Solomon, S.S.; Katzenstein, D.; Kumarasamy, N.; Yeptomi, T.; Sivamalar, S.; Rifkin, S.; et al. Viremia and HIV-1 Drug Resistance Mutations Among Patients Receiving Second-Line Highly Active Antiretroviral Therapy in Chennai, Southern India. Clin. Infect. Dis. 2012, 54, 995–1000. [Google Scholar] [CrossRef]
- Van Zyl, G.U.; Liu, T.F.; Claassen, M.; Engelbrecht, S.; de Oliveira, T.; Preiser, W.; Wood, N.T.; Travers, S.; Shafer, R.W. Trends in Genotypic HIV-1 Antiretroviral Resistance between 2006 and 2012 in South African Patients Receiving First- and Second-Line Antiretroviral Treatment Regimens. PLoS ONE 2013, 8, e67188. [Google Scholar] [CrossRef]
- Wallis, C.L.; Mellors, J.W.; Venter, W.D.; Sanne, I.; Stevens, W. Protease Inhibitor Resistance Is Uncommon in HIV-1 Subtype C Infected Patients on Failing Second-Line Lopinavir/r-Containing Antiretroviral Therapy in South Africa. AIDS Res. Treat 2011, 2011, 769627. [Google Scholar] [CrossRef]
- Sivamalar, S.; Dinesha, T.R.; Gomathi, S.; Pradeep, A.; Boobalan, J.; Solomon, S.S.; Poongulali, S.; Solomon, S.; Balakrishnan, P.; Saravanan, S. Accumulation of HIV-1 Drug Resistance Mutations After First-Line Immunological Failure to Evaluate the Options of Recycling NRTI Drugs in Second-Line Treatment: A Study from South India. AIDS Res. Hum. Retroviruses 2016, 33, 271–274. [Google Scholar] [CrossRef]
- Arimide, D.A.; Amogne, M.D.; Kebede, Y.; Balcha, T.T.; Adugna, F.; Ramos, A.; DeVos, J.; Zeh, C.; Agardh, A.; Chih-Wei Chang, J.; et al. High level of HIV drug resistance and virological non-suppression among female sex workers in Ethiopia: A nation-wide cross-sectional study. J. Acquir. Immune Defic. Syndr. 2021, 89, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Namakoola, I.; Kasamba, I.; Mayanja, B.N.; Kazooba, P.; Lutaakome, J.; Lyagoba, F.; Kapaata, A.A.; Kaleebu, P.; Munderi, P.; On behalf of the Co, L.s.t. From antiretroviral therapy access to provision of third line regimens: Evidence of HIV Drug resistance mutations to first and second line regimens among Ugandan adults. BMC Res. Notes 2016, 9, 515. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.R.; Hamunime, N.; Bikinesi, L.; Sawadogo, S.; Agolory, S.; Shiningavamwe, A.N.; Negussie, T.; Fisher-Walker, C.L.; Raizes, E.G.; Mutenda, N.; et al. High levels of HIV drug resistance among adults failing second-line antiretroviral therapy in Namibia. Medicine 2020, 99, e21661. [Google Scholar] [CrossRef] [PubMed]
- Nzengui-Nzengui, G.F.; Mourembou, G.; M’boyis-Kamdem, H.; Kombila-Koumavor, A.C.; Ndjoyi-Mbiguino, A. HIV protease resistance mutations in patients receiving second-line antiretroviral therapy in Libreville, Gabon. BMC Infect. Dis. 2024, 24, 316. [Google Scholar] [CrossRef]
- Obasa, A.E.; Mikasi, S.G.; Brado, D.; Cloete, R.; Singh, K.; Neogi, U.; Jacobs, G.B. Drug Resistance Mutations Against Protease, Reverse Transcriptase and Integrase Inhibitors in People Living With HIV-1 Receiving Boosted Protease Inhibitors in South Africa. Front. Microbiol. 2020, 11, 438. [Google Scholar] [CrossRef]
- Makwaga, O.; Adhiambo, M.; Mulama, D.H.; Muoma, J.; Adungo, F.; Wanjiku, H.; Ongaya, A.; Maitha, G.M.; Mwau, M. Prevalence of human immunodeficiency virus-1 drug-resistant mutations among adults on first- and second-line antiretroviral therapy in a resource-limited health facility in Busia County, Kenya. Pan Afr. Med. J. 2020, 37, 311. [Google Scholar] [CrossRef]
- Hamers, R.L.; Sigaloff, K.C.E.; Wensing, A.M.; Wallis, C.L.; Kityo, C.; Siwale, M.; Mandaliya, K.; Ive, P.; Botes, M.E.; Wellington, M.; et al. Patterns of HIV-1 Drug Resistance After First-Line Antiretroviral Therapy (ART) Failure in 6 Sub-Saharan African Countries: Implications for Second-Line ART Strategies. Clin. Infect. Dis. 2012, 54, 1660–1669. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Liu, J.; Yue, Y.; Yang, S.; Huang, H.; He, C.; Liao, L.; Xing, H.; Ruan, Y.; et al. Efficacy and HIV drug resistance profile of second-line ART among patients having received long-term first-line regimens in rural China. Sci. Rep. 2015, 5, 14823. [Google Scholar] [CrossRef]
- Melikian, G.L.; Rhee, S.-Y.; Varghese, V.; Porter, D.P.; White, K.L.; Taylor, J.; Towner, W.J.; Troia, P.D.; Burack, J.H.; Dejesus, E.; et al. Non-nucleoside reverse transcriptase inhibitor (NNRTI) cross-resistance: Implications for preclinical evaluation of novel NNRTIs and clinical genotypic resistance testing. J. Antimicrob. Chemother. 2014, 69, 12–20. [Google Scholar] [CrossRef]
- Ismael, N.; Gemusse, H.; Mahumane, I.; Laurindo, O.; Magul, C.; Baxter, C.; Wilkinson, E.; Hofstra, L.M.; Wagar, N.; Bila, D.; et al. HIV-1 pretreatment and acquired antiretroviral drug resistance before tenofovir/ lamivudine /dolutegravir (TLD) roll-out in Mozambique. BMC Infect. Dis. 2024, 24, 748. [Google Scholar] [CrossRef]
- Derache, A.; Wallis, C.L.; Vardhanabhuti, S.; Bartlett, J.; Kumarasamy, N.; Katzenstein, D. Phenotype, Genotype, and Drug Resistance in Subtype C HIV-1 Infection. J. Infect. Dis. 2015, 213, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Chimukangara, B.; Lessells, R.J.; Sartorius, B.; Gounder, L.; Manyana, S.; Pillay, M.; Singh, L.; Giandhari, J.; Govender, K.; Samuel, R.; et al. HIV-1 drug resistance in adults and adolescents on protease inhibitor-based antiretroviral therapy in KwaZulu-Natal Province, South Africa. J. Glob. Antimicrob. Resist. 2022, 29, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Obasa, A.E.; Ambikan, A.T.; Gupta, S.; Neogi, U.; Jacobs, G.B. Increased acquired protease inhibitor drug resistance mutations in minor HIV-1 quasispecies from infected patients suspected of failing on national second-line therapy in South Africa. BMC Infect. Dis. 2021, 21, 214. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.P.; Berhanu, R.; Steegen, K.; Firnhaber, C.; Ive, P.; Spencer, D.; Mashamaite, S.; Sheik, S.; Jonker, I.; Howell, P.; et al. Intensive adherence counselling for HIV-infected individuals failing second-line antiretroviral therapy in Johannesburg, South Africa. Trop. Med. Int. Health 2016, 21, 1131–1137. [Google Scholar] [CrossRef]
- Ross, J.; Jiamsakul, A.; Kumarasamy, N.; Azwa, I.; Merati, T.P.; Do, C.D.; Lee, M.P.; Ly, P.S.; Yunihastuti, E.; Nguyen, K.V.; et al. Virological failure and HIV drug resistance among adults living with HIV on second-line antiretroviral therapy in the Asia-Pacific. HIV Med. 2021, 22, 201–211. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.; Shang, M.; Yang, W.; Wang, Z.; Shang, H. Research on the treatment effects and drug resistances of long-term second-line antiretroviral therapy among HIV-infected patients from Henan Province in China. BMC Infect. Dis. 2018, 18, 571. [Google Scholar] [CrossRef]
- Audi, C.; Jahanpour, O.; Antelman, G.; Guay, L.; Rutaihwa, M.; van de Ven, R.; Woelk, G.; Baird, S.J. Facilitators and barriers to antiretroviral therapy adherence among HIV-positive adolescents living in Tanzania. BMC Public Health 2021, 21, 2274. [Google Scholar] [CrossRef]
- Zurbachew, Y.; Hiko, D.; Bacha, G.; Merga, H. Adolescent’s and youth’s adherence to antiretroviral therapy for better treatment outcome and its determinants: Multi-center study in public health facilities. AIDS Res. Ther. 2023, 20, 91. [Google Scholar] [CrossRef]
- Moosa, A.; Gengiah, T.N.; Lewis, L.; Naidoo, K. Long-term adherence to antiretroviral therapy in a South African adult patient cohort: A retrospective study. BMC Infect. Dis. 2019, 19, 775. [Google Scholar] [CrossRef]
- Gumede, S.B.; Venter, F.; de Wit, J.; Wensing, A.; Lalla-Edward, S.T. Antiretroviral therapy uptake and predictors of virological failure in patients with HIV receiving first-line and second-line regimens in Johannesburg, South Africa: A retrospective cohort data analysis. BMJ Open 2022, 12, e054019. [Google Scholar] [CrossRef]
- Gidey, K.; Mache, A.; Hailu, B.Y.; Asgedom, S.W.; Tassew, S.G.; Nirayo, Y.L. Second-Line Antiretroviral Treatment Outcomes and Predictors in Tigray Region, Ethiopia. Infect. Drug Resist 2023, 16, 4903–4912. [Google Scholar] [CrossRef]
- Amogne, W.; Bontell, I.; Grossmann, S.; Aderaye, G.; Lindquist, L.; Sönnerborg, A.; Neogi, U. Phylogenetic analysis of Ethiopian HIV-1 subtype C near full-length genomes reveals high intrasubtype diversity and a strong geographical cluster. AIDS Res. Hum. Retroviruses 2016, 32, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Abebe, A.; Pollakis, G.; Fontanet, A.L.; Fisseha, B.; Tegbaru, B.; Kliphuis, A.; Tesfaye, G.; Negassa, H.; Cornelissen, M.; Goudsmit, J. Identification of a genetic subcluster of HIV type 1 subtype C (C′) widespread in Ethiopia. AIDS Res. Hum. Retroviruses 2000, 16, 1909–1914. [Google Scholar] [CrossRef] [PubMed]
- Pollakis, G.; Abebe, A.; Kliphuis, A.; De Wit, T.F.R.; Fisseha, B.; Tegbaru, B.; Tesfaye, G.; Negassa, H.; Mengistu, Y.; Fontanet, A.L. Recombination of HIV type 1C (C′/C″) in Ethiopia: Possible link of EthHIV-1C′ to subtype C sequences from the high-prevalence epidemics in India and Southern Africa. AIDS Res. Hum. Retroviruses 2003, 19, 999–1008. [Google Scholar] [CrossRef] [PubMed]
Characteristics | N (n = ) | Percent (%) |
---|---|---|
Age (Year) | ||
18–24 | 35 | 5.97 |
25–34 | 160 | 27.30 |
35–44 | 245 | 41.81 |
≥45 | 146 | 24.91 |
Sex | ||
Male | 267 | 45.56 |
Female | 319 | 54.44 |
Residence | ||
Urban | 495 | 84.47 |
Rural | 91 | 15.53 |
Marital status | ||
Unmarried | 128 | 21.84 |
Married, monogamous | 234 | 39.93 |
Married, polygamous | 53 | 9.04 |
Divorced | 116 | 19.80 |
Widowed | 55 | 9.39 |
Educational level | ||
No formal education | 117 | 19.97 |
Primary education | 259 | 44.20 |
Secondary education | 136 | 23.21 |
College or university | 74 | 12.63 |
Occupational status | ||
Government employee | 100 | 17.06 |
Merchant | 96 | 16.38 |
Driver | 24 | 4.10 |
Housewife | 106 | 18.09 |
Student | 25 | 4.27 |
Unemployed | 90 | 15.36 |
Other | 145 | 24.74 |
Characteristics | N (n = ) | Percent (%) |
---|---|---|
Second-line ARV regimens | n = 586 | |
ABC + 3TC + ATV/r | 114 | 19.45 |
ABC + 3TC + LPV/r | 20 | 3.41 |
AZT + 3TC + ATV/r | 103 | 17.58 |
AZT + 3TC + LPV/r | 33 | 5.63 |
TDF + 3TC + ATV/r | 259 | 44.20 |
TDF + 3TC + LPV/r | 57 | 9.73 |
Duration on second-line regimen (months) | n = 586 | |
6–15 | 174 | 29.69 |
16–48 | 327 | 55.80 |
≥49 | 85 | 14.51 |
First-line ARV regimens | n = 586 | |
ABC + 3TC + EFV | 11 | 1.88 |
ABC + 3TC + NVP | 36 | 6.14 |
AZT + 3TC + EFV | 73 | 12.46 |
AZT + 3TC + NVP | 157 | 26.79 |
D4T + 3TC + EFV | 30 | 5.12 |
D4T + 3TC + NVP | 89 | 15.19 |
TDF + 3TC + EFV | 106 | 18.09 |
TDF + 3TC + NVP | 84 | 14.33 |
Duration on first-line regimens (months) | n = 586 | |
0–30 | 10 | 1.71 |
31–60 | 42 | 7.17 |
61–90 | 124 | 21.16 |
≥91 | 410 | 69.97 |
Baseline CD4 at ART initiation (cell/mm3) | n = 548 | |
<200 | 0 | 0 |
≥200 | 548 | 100 |
CD4 at second-line initiation (cell/mm3) | n = 541 | |
<200 | 541 | 100 |
≥200 | 0 | 0 |
Current CD4 (during study (cell/mm3) | n = 555 | |
<200 | 161 | 29.00 |
≥200 | 394 | 71.0 |
Viral load (RNA copies/mL) | n = 586 | |
<1000 | 505 | 86.18 |
≥1000 | 81 | 13.82 |
Mutation Type | N (n = ) | Percent (%) |
---|---|---|
NRTIs | ||
A62V | 2 | 2.86 |
D67N/G | 6 | 8.57 |
E44ED | 4 | 5.71 |
K65R | 5 | 7.14 |
K70E/G/R/T | 6 | 8.57 |
L210W | 3 | 4.29 |
L74I | 1 | 1.43 |
M184V | 16 | 22.86 |
K219E | 5 | 7.14 |
M41L | 2 | 2.86 |
T215Y/V | 7 | 10.00 |
T69SADN | 2 | 2.86 |
Y115F | 6 | 8.57 |
S68G | 5 | 7.14 |
NNRTIs | ||
A98G | 4 | 7.55 |
E138A | 2 | 3.77 |
G190A/E | 7 | 13.21 |
H221Y | 5 | 9.43 |
K101E/A | 4 | 7.55 |
K103N | 10 | 18.87 |
K238T | 1 | 1.89 |
L100I | 3 | 5.66 |
P225H | 1 | 1.89 |
V106I/M | 3 | 5.66 |
V108I | 3 | 5.66 |
V179T/D | 2 | 3.77 |
Y181C | 7 | 13.21 |
Y188L | 1 | 1.89 |
PIs | ||
I50L | 2 | 11.76 |
I54V | 4 | 23.53 |
L90M | 1 | 5.88 |
M46I | 4 | 23.53 |
N88S | 1 | 5.88 |
V82A | 5 | 29.41 |
Variables | COR (95% CI) | p-Value | AOR (95% CI) | p-Value |
---|---|---|---|---|
Sex | ||||
Male | Ref. | 0.07 | ||
Female | 0.53 (0.33–0.85) | 0.008 | 0.58 (0.32–1.05) | |
Occupation | ||||
Government employee | Ref. | |||
Merchant | 0.95 (0.40–2.30) | 0.906 | 1.15 (0.44–3.06) | 0.772 |
Driver | 1.93 (0.61–6.13) | 0.265 | 2.10 (0.61–7.20) | 0.243 |
Housewife | 0.60 (0.23–1.53) | 0.285 | 1.02 (0.33–3.19) | 0.973 |
Student | 4.13 (1.50–11.40) | 0.006 | 6.14 (1.93–19.48) | 0.002 * |
Unemployed | 1.35 (0.59–3.10) | 0.478 | 1.67 (0.65–4.31) | 0.29 |
Other | 1.31 (0.62–2.80) | 0.481 | 1.57 (0.67–3.68) | 0.298 |
Duration on ART at second-line (months) | ||||
<12 | Ref. | |||
>12 | 0.53 (0.30–0.93) | 0.028 | 0.52 (0.28–0.97) | 0.039 * |
Current CD4 (cell/mm3) | ||||
<200 | 2.55 (1.54–4.21) | <0.001 | 2.55 (1.52–4.28) | <0.001 * |
≥200 | Ref. |
Resistance Level (n (%)) | ||||
---|---|---|---|---|
Antiretroviral Drug | Susceptible | Low Level of Resistance | Intermediate Level of Resistance | High Level of Resistance |
NRTIs | ||||
Abacavir (ABC) | 21 (56.78%) | 2 (5.41%) | 2 (5.41%) | 12 (32.43%) |
Zidovudine (AZT) | 29 (78.38%) | 1 (2.70%) | 0 | 7 (18.92%) |
Stavudine (D4T) | 22 (59.46%) | 3 (8.11%) | 3 (8.11%) | 9 (24.32%) |
Didanosine (DDI) | 22 (59.46%) | 2 (5.41%) | 3 (8.11%) | 10 (27.03%) |
Emtricitabine (FTC) | 21 (56.76%) | 0 | 0 | 16 (43.24%) |
Lamivudine (3TC) | 21 (56.76%) | 0 | 0 | 16 (43.24%) |
Tenofovir (TDF) | 23 (62.16%) | 2 (5.41%) | 6 (16.22%) | 6 (16.22%) |
NNRTIs | ||||
Doravirine (DOR) | 20 (54.05%) | 6 (16.12%) | 8 (21.62%) | 3 (8.11%) |
Efavirenz (EFV) | 13 (35.14%) | 2 (5.41%) | 4 (10.81%) | 18 (48.65%) |
Etravirine (ETR) | 20 (54.05%) | 6 (16.21%) | 8 (21.62%) | 3 (8.11%) |
Nevirapine (NVP) | 13 (35.14%) | 0 | 2 (5.41%) | 22 (59.46%) |
Rilpivirine (RPV) | 19 (51.35%) | 2 (5.41%) | 2 (5.41%) | 14 (37.84%) |
PIs | ||||
Atazanavir (ATV) | 30 (81.08%) | 1 (2.70%) | 0 | 6 (16.22%) |
Darunavir (DRV) | 37 (100%) | 0 | 0 | 0 |
Fosamprenavir (FPV) | 32 (86.49%) | 1 (2.70%) | 2 (5.41%) | 2 (5.41%) |
Indinavir (IDV) | 31 (83.78%) | 1 | 1 (2.70%) | 4 (10.81%) |
Lopinavir (LPV) | 31 (83.78%) | 1 (2.70%) | 0 | 5 (13.51%) |
Nelfinavir (NFV) | 31 (83.78%) | 0 | 1 (2.70%) | 5 (13.51%) |
Saquinavir (SQV) | 31 (83.78%) | 1 (2.70%) | 1 (2.70%) | 4 (10.81%) |
Tipranavir (TPV) | 32 (86.49%) | 3 (8.11%) | 2 (5.41%) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zealiyas, K.; Gebreegziabxier, A.; Getaneh, Y.; Kidane, E.; Woldesemayat, B.; Yizengaw, A.; Gutema, G.; Adane, S.; Yimer, M.; Yilma, A.; et al. Viral Suppression and HIV Drug Resistance Among Patients on Second-Line Antiretroviral Therapy in Selected Health Facility in Ethiopia. Viruses 2025, 17, 206. https://doi.org/10.3390/v17020206
Zealiyas K, Gebreegziabxier A, Getaneh Y, Kidane E, Woldesemayat B, Yizengaw A, Gutema G, Adane S, Yimer M, Yilma A, et al. Viral Suppression and HIV Drug Resistance Among Patients on Second-Line Antiretroviral Therapy in Selected Health Facility in Ethiopia. Viruses. 2025; 17(2):206. https://doi.org/10.3390/v17020206
Chicago/Turabian StyleZealiyas, Kidist, Atsbeha Gebreegziabxier, Yimam Getaneh, Eleni Kidane, Belete Woldesemayat, Ajanaw Yizengaw, Gadisa Gutema, Sisay Adane, Mengistu Yimer, Amelework Yilma, and et al. 2025. "Viral Suppression and HIV Drug Resistance Among Patients on Second-Line Antiretroviral Therapy in Selected Health Facility in Ethiopia" Viruses 17, no. 2: 206. https://doi.org/10.3390/v17020206
APA StyleZealiyas, K., Gebreegziabxier, A., Getaneh, Y., Kidane, E., Woldesemayat, B., Yizengaw, A., Gutema, G., Adane, S., Yimer, M., Yilma, A., Tadele, S., Sasinovich, S., Medstrand, P., & Arimide, D. A. (2025). Viral Suppression and HIV Drug Resistance Among Patients on Second-Line Antiretroviral Therapy in Selected Health Facility in Ethiopia. Viruses, 17(2), 206. https://doi.org/10.3390/v17020206