HIV–1 Dynamics: A Reappraisal of Host and Viral Factors, as well as Methodological Issues
Abstract
:1. Introduction
2. Host Genetics and Set-Point VL
2.1 Human Leukocyte Antigen (HLA) Class I and Class II Genes as Prominent Factors
Gene or gene clusterb | Allele or haplotypec | Ethnicityd | Impact on VL | Refs |
---|---|---|---|---|
Classical HLA class I genes: HLA-A, HLA-B, and HLA-C | A*32 | AA | Favorable | [35] |
A*36 | African | Unfavorable | [34, 35] | |
A*74 | AA, African | Favorable | [33,34,35,39] | |
B*13 | African | Favorable | [34] | |
B*14 | AA | Favorable | [35] | |
B*18 | African | Unfavorable | [33] | |
B*27 | Caucasian | Favorable | [32] | |
B*35 | Caucasian | Unfavorable | [32,35] | |
B*44 | African | Favorable | [36] | |
B*45 | AA, African | Unfavorable | [34,35] | |
B*53 | AA | Unfavorable | [35] | |
B*57 | AA, African, Caucasian | Favorable | [32,33,34,35,36,39,43] | |
B*58:01 | African | Favorable | [33,43] | |
B*58:02 | African | Unfavorable | [33,34] | |
B*81 | African | Favorable | [34] | |
C*08 | African | Favorable | [35] | |
C*18 | African | Favorable | [34,35] | |
A*30+C*03 | African | Favorable | [34] | |
C*04:01-B*81:01 | African | Favorable | [33] | |
C*12-B*39 | African | Favorable | [33,35] | |
Homozygosity | AA and African | Unfavorable | [33,35] | |
HLA-DRB1 | DRB1*01:02 | African | Unfavorable | [34] |
DRB1*13:03 | African | Favorable | [41] | |
Killer cell immunoglobulin-like receptor (KIR) genes | KIR3DS1 copy no. | Caucasian | Favorable if ≥1 copy | [44] |
KIR3DL1 copy no. | Caucasian | Favorable if ≥1 copy | [44] | |
CCR5 | Δ32 heterozygosity | Caucasian | Favorable | [45] |
CCR2-CCR5 | HHD/HHE | African | Unfavorable | [46] |
HHF*2 homozygosity | African | Favorable | [46] | |
CCL3 | rs5029410 allele C | African | Favorable | [47] |
DC-SIGNR (CD209L) | 7 or 9 repeats of a 69-bp coding sequence | Asian (Chinese) | Unfavorable | [48] |
Miscellaneous loci (sporadic SNPs) | rs2395029, allele C | Caucasian | Favorable | [45,49] |
rs9264942, allele G | Caucasian | Favorable | [45,49] |
2.2 Killer Cell Immunoglobulin-like Receptor (KIR) Genes
2.3 Chemokine Receptors and Ligand Genes
2.4 Other Miscellaneous Observations Based on Candidate Gene Approach
2.5 Results From Genome-wide Association Studies (GWAS)
3. Viral Genetics and HIV-1 Set-point VL
3.1 HIV-1 Genotype
Viral factor | Measurement | Impact on set-point VL | Refs |
---|---|---|---|
Heritability | Transmission source partner (TSP) VL | TSP VL correlates with set-point VL in linked recipients | [83] |
Genetic distance on phylogenetic tree | High heritability in set-point VL, from one infection to the next | [84] |
3.2 Interaction of Host and Viral Genetic Factors
4. Methodological Challenges
4.1 Variations in Calculation of Set-point VL
4.2 Early Chronic Phase Versus Chronic Phase
4.3 Changes in Set-point VL over Calendar Time
4.4 Other Potential Confounders
5. Conclusions
Conflict of Interest
Acknowledgements
References and Notes
- Gottlieb, G.S.; Heath, L.; Nickle, D.C.; Wong, K.G.; Leach, S.E.; Jacobs, B.; Gezahegne, S.; van 't Wout, A.B.; Jacobson, L.P.; Margolick, J.B.; et al. HIV-1 variation before seroconversion in men who have sex with men: analysis of acute/early HIV infection in the multicenter AIDS cohort study. J Infect Dis 2008, 197, 1011–1015. [Google Scholar] [CrossRef]
- Keele, B.F.; Giorgi, E.E.; Salazar-Gonzalez, J.F.; Decker, J.M.; Pham, K.T.; Salazar, M.G.; Sun, C.; Grayson, T.; Wang, S.; Li, H.; et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A 2008, 105, 7552–7557. [Google Scholar]
- Abrahams, M.R.; Anderson, J.A.; Giorgi, E.E.; Seoighe, C.; Mlisana, K.; Ping, L.H.; Athreya, G.S.; Treurnicht, F.K.; Keele, B.F.; Wood, N. Quantitating the multiplicity of infection with human immunodeficiency virus type 1 subtype C reveals a non-poisson distribution of transmitted variants. J Virol 2009, 83, 3556–3567. [Google Scholar]
- Haaland, R.E.; Hawkins, P.A.; Salazar-Gonzalez, J.; Johnson, A.; Tichacek, A.; Karita, E.; Manigart, O.; Mulenga, J.; Keele, B.F.; Shaw, G.M.; et al. Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1. PLoS Pathog 2009, 5, e1000274. [Google Scholar] [CrossRef]
- Kearney, M.; Maldarelli, F.; Shao, W.; Margolick, J.B.; Daar, E.S.; Mellors, J.W.; Rao, V.; Coffin, J.M.; Palmer, S. Human immunodeficiency virus type 1 population genetics and adaptation in newly infected individuals. J Virol 2009, 83, 2715–2727. [Google Scholar]
- Walker, B.D.; Korber, B.T. Immune control of HIV: the obstacles of HLA and viral diversity. Nat Immunol 2001, 2, 473–475. [Google Scholar] [CrossRef]
- Korber, B.; Muldoon, M.; Theiler, J.; Gao, F.; Gupta, R.; Lapedes, A.; Hahn, B.H.; Wolinsky, S.; Bhattacharya, T. Timing the ancestor of the HIV-1 pandemic strains. Science 2000, 288, 1789–1796. [Google Scholar]
- Tebit, D.M.; Arts, E.J. Tracking a century of global expansion and evolution of HIV to drive understanding and to combat disease. Lancet Infect Dis 2011, 11, 45–56. [Google Scholar] [CrossRef]
- Boutwell, C.L.; Rolland, M.M.; Herbeck, J.T.; Mullins, J.I.; Allen, T.M. Viral evolution and escape during acute HIV-1 infection. J Infect Dis 2010, 202, S309–S314. [Google Scholar] [CrossRef]
- Mellors, J.W.; Rinaldo, C.R.J.; Gupta, P.; White, R.M.; Todd, J.A.; Kingsley, L.A. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996, 272, 1167–1170. [Google Scholar]
- Mellors, J.W.; Muñoz, A.; Giorgi, J.V.; Margolick, J.B.; Tassoni, C.J.; Gupta, P.; Kingsley, L.A.; Todd, J.A.; Saah, A.J.; Detels, R.; et al. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 1997, 126, 946–954. [Google Scholar]
- de Wolf, F.; Spijkerman, I.; Schellekens, P.T.; Langendam, M.; Kuiken, C.; Bakker, M.; Roos, M.; Coutinho, R.; Miedema, F.; Goudsmit, J. AIDS prognosis based on HIV-1 RNA, CD4+ T-cell count and function: markers with reciprocal predictive value over time after seroconversion. AIDS 1997, 11, 1799–1806. [Google Scholar] [CrossRef]
- Mann, D.L.; Garner, R.P.; Dayoff, D.E.; Cao, K.; Fernandez-Vina, M.A.; Davis, C.; Aronson, N.; Ruiz, N.; Birx, D.L.; Michael, N.L. Major histocompatibility complex genotype is associated with disease progression and virus load levels in a cohort of human immunodeficiency virus type 1-infected Caucasians and African Americans. J Infect Dis 1998, 178, 1799–1802. [Google Scholar] [CrossRef]
- Lyles, R.H.; Muñoz, A.; Yamashita, T.E.; Bazmi, H.; Detels, R.; Rinaldo, C.R.; Margolick, J.B.; Phair, J.P.; Mellors, J.W. Natural history of human immunodeficiency virus type 1 viremia after seroconversion and proximal to AIDS in a large cohort of homosexual men. Multicenter AIDS Cohort Study. J Infect Dis 2000, 181, 872–880. [Google Scholar] [CrossRef]
- Gottlieb, G.S.; Sow, P.S.; Hawes, S.E.; Ndoye, I.; Redman, M.; Coll-Seck, A.M.; Faye-Niang, M.A.; Diop, A.; Kuypers, J.M.; Critchlow, C.W.; et al. Equal plasma viral loads predict a similar rate of CD4+ T cell decline in human immunodeficiency virus (HIV) type 1- and HIV-2-infected individuals from Senegal, West Africa. J Infect Dis 2002, 185, 905–914. [Google Scholar] [CrossRef]
- Mellors, J.W.; Margolick, J.B.; Phair, J.P.; Rinaldo, C.R.; Detels, R.; Jacobson, L.P.; Muñoz, A. Prognostic value of HIV-1 RNA, CD4 cell count, and CD4 Cell count slope for progression to AIDS and death in untreated HIV-1 infection. JAMA 2007, 297, 2349–2350. [Google Scholar]
- Lavreys, L.; Baeten, J.M.; Chohan, V.; McClelland, R.S.; Hassan, W.M.; Richardson, B.A.; Mandaliya, K.; Ndinya-Achola, J.O.; Overbaugh, J. Higher set point plasma viral load and more-severe acute HIV type 1 (HIV-1) illness predict mortality among high-risk HIV-1-infected African women. Clin Infect Dis 2006, 42, 1333–1339. [Google Scholar] [CrossRef]
- Quinn, T.C.; Wawer, M.J.; Sewankambo, N.; Serwadda, D.; Li, C.; Wabwire-Mangen, F.; Meehan, M.O.; Lutalo, T.; Gray, R.H. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Eng J Med 2000, 342, 921–929. [Google Scholar] [CrossRef]
- Fideli, U.S.; Allen, S.A.; Musonda, R.; Trask, S.; Hahn, B.H.; Weiss, H.; Mulenga, J.; Kasolo, F.; Vermund, S.H.; Aldrovandi, G.M. Virologic and immunologic determinants of heterosexual transmission of human immunodeficiency virus type 1 in Africa. AIDS Res Hum Retroviruses 2001, 17, 901–910. [Google Scholar] [CrossRef]
- Daar, E.S.; Moudgil, T.; Meyer, R.D.; Ho, D.D. Transient high levels of viremia in patients with primary HIV-1 infection. N Engl J Med 1991, 324, 961–964. [Google Scholar] [CrossRef]
- Geskus, R.B.; Prins, M.; Hubert, J.B.; Miedema, F.; Berkhout, B.; Rouzioux, C.; Delfraissy, J.F.; Meyer, L. The HIV RNA setpoint theory revisited. Retrovirology 2007, 4, 65. [Google Scholar] [CrossRef]
- National Institute of Allergy and Infectious Diseases, What are HIV and AIDS? In HIV/AIDS; Bethesda: National Institues of Health, 2008.
- Egger, M.; May, M.; Chêne, G.; Phillips, A.N.; Ledergerber, B.; Dabis, F.; Costagliola, D.; D'Arminio Monforte, A.; de Wolf, F.; Reiss, P.; et al. Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: a collaborative analysis of prospective studies. Lancet 2002, 360, 119–129. [Google Scholar]
- Langford, S.E.; Ananworanich, J.; Cooper, D.A. Predictors of disease progression in HIV infection: a review. AIDS Res Ther 2007, 4, 11. [Google Scholar] [CrossRef]
- Tang, J.; Kaslow, R.A. The impact of host genetics on HIV infection and disease progression in the era of highly active antiretroviral therapy. AIDS 2003, 17, S51–S60. [Google Scholar]
- Carrington, M.; O'Brien, S.J. The influence of HLA genotype on AIDS. Annu Rev Med 2003, 54, 535–551. [Google Scholar] [CrossRef]
- Streeck, H.; Jolin, J.S.; Qi, Y.; Yassine-Diab, B.; Johnson, R.C.; Kwon, D.S.; Addo, M.M.; Brumme, C.; Routy, J.P.; Little, S.; et al. Human immunodeficiency virus type 1-specific CD8+ T-cell responses during primary infection are major determinants of the viral set point and loss of CD4+ T cells. J Virol 2009, 83, 7641–7648. [Google Scholar]
- Horton, R.; Wilming, L.; Rand, V.; Lovering, R.C.; Bruford, E.A.; Khodiyar, V.K.; Lush, M.J.; Povey, S.; Talbot, C.C.J.; Wright, M.W.; et al. Gene map of the extended human MHC. Nat Rev Genet 2004, 5, 889–899. [Google Scholar] [CrossRef]
- Carrington, M.; Martin, M.P.; van Bergen, J. KIR-HLA intercourse in HIV disease. Trends Microbiol 2008, 16, 620–627. [Google Scholar] [CrossRef]
- O'Callaghan, C.A.; Bell, J.I. Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol Rev 1998, 163, 129–138. [Google Scholar] [CrossRef]
- Yunis, E.J.; Romero, V.; Diaz-Giffero, F.; Zuniga, J.; Koka, P. Natural killer cell receptor NKG2A/HLA-E interaction dependent differential thymopoiesis of hematopoietic progenitor cells influences the outcome of HIV infection. J Stem Cells 2007, 2, 237–248. [Google Scholar]
- Gao, X.; O'Brien, T.R.; Welzel, T.M.; Marti, D.; Qi, Y.; Goedert, J.J.; Phair, J.; Pfeiffer, R.; Carrington, M. HLA-B alleles associate consistently with HIV heterosexual transmission, viral load, and progression to AIDS, but not to susceptability to infectin. AIDS 2010, 24, 1835–1840. [Google Scholar] [CrossRef]
- Leslie, A.; Matthews, P.C.; Listgarten, J.; Carlson, J.M.; Kadie, C.; Ndung'u, T.; Brander, C.; Coovadia, H.; Walker, B.D.; Heckerman, D.; et al. Additive contribution of HLA class I alleles in the immune control of HIV-1 infection. J Virol 2010, 84, 9879–9888. [Google Scholar]
- Tang, J.; Malhotra, R.; Song, W.; Brill, I.; Hu, L.; Farmer, P.K.; Mulenga, J.; Allen, S.; Hunter, E.; Kaslow, R.A. Human leukocyte antigens and HIV type 1 viral load in early and chronic infections: predominance of evolving relationships. PLoS One 2010, 5, e9629. [Google Scholar]
- Lazaryan, A.; Song, W.; Lobashevsky, E.; Tang, J.; Shrestha, S.; Zhang, K.; McNicholl, J.M.; Gardner, L.I.; Wilson, C.M.; Klein, R.S.; et al. The influence of human leukocyte antigen class I alleles and their population frequencies on human immunodeficiency virus type 1 control among African Americans. Hum Immunol 2011, 72, 312–318. [Google Scholar]
- Tang, J.; Cormier, E.; Gilmour, J.; Price, M.A.; Prentice, H.A.; Song, W.; Kamali, A.; Karita, E.; Lakhi, S.; Sanders, E.J.; et al. Human leukocyte antigen variants B*44 and B*57 are consistently favorable during two distinct phases of primary HIV-1 infection in sub-Saharan Africans with several viral subtypes. J Virol 2011, 85, 8894–8902. [Google Scholar] [CrossRef]
- Tang, J.; Tang, S.; Lobashevsky, E.; Myracle, A.D.; Fideli, U.; Aldrovandi, G.; Allen, S.; Musonda, R.; Kaslow, R.A. Zambia-UAB HIV Research Project. Favorable and unfavorable HLA class I alleles and haplotypes in Zambians predominantly infected with clade C human immunodeficiency virus type 1. J Virol 2002, 76, 8276–8284. [Google Scholar] [CrossRef]
- Trachtenberg, E.; Korber, B.; Sollars, C.; Kepler, T.B.; Hraber, P.T.; Hayes, E.; Funkhouser, R.; Fugate, M.; Theiler, J.; Hsu, Y.S.; et al. Advantage of rare HLA supertype in HIV disease progression. Nat Med 2003, 9, 928–935. [Google Scholar] [CrossRef]
- Matthews, P.C.; Adland, E.; Listgarten, J.; Leslie, A.; Mkhwanazi, N.; Carlson, J.M.; Harndahl, M.; Stryhn, A.; Payne, R.P.; Ogwu, A.; et al. HLA-A*7401-mediated control of HIV viremia is independent of its linkage disequilibrium with HLA-B*5703. J Immunol 2011, 186, 5675–5686. [Google Scholar]
- Tang, J.; Shao, W.; Yoo, Y.J.; Brill, I.; Mulenga, J.; Allen, S.; Hunter, E.; Kaslow, R.A. Human leukocyte antigen class I genotypes in relation to heterosexual HIV type 1 transmission within discordant couples. J Immunol 2008, 181, 2626–2635. [Google Scholar]
- Julg, B.; Moodley, E.S.; Qi, Y.; Ramduth, D.; Reddy, S.; Mncube, Z.; Gao, X.; Goulder, P.J.; Detels, R.; Ndung'u, T.; et al. Possession of HLA class II DRB1*1303 associates with reduced viral loads in chronic HIV-1 clade C and B infection. J Infect Dis 2011, 203, 803–809. [Google Scholar] [CrossRef]
- Pereyra, F. International HIV Controllers Study. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 2010, 330, 1551–1557. [Google Scholar]
- Kloverpris, H.N.; Stryhn, A.; Harndahl, M.; van der Stok, M.; Payne, R.P.; Matthews, P.C.; Chen, F.; Riddell, L.; Walker, B.D.; Ndung'u, T.; et al. HLA-B*57 micropolymorphism shapes HLA allele-specific epitope immunogenicity, selection pressure, and HIV immune control. J Virol 2012, 86, 919–929. [Google Scholar]
- Pelak, K.; Need, A.C.; Fellay, J.; Shianna, K.V.; Feng, S.; Urban, T.J.; Ge, D.; De Luca, A.; Martinez-Picado, J.; Wolinsky, S.M.; et al. Copy number variation of KIR genes influences HIV-1 control. PLoS Biol 2011, 9, e1001208. [Google Scholar] [CrossRef] [Green Version]
- van Manen, D.; Gras, L.; Boeser-Nunnink, B.D.; van Sighem, A.I.; Mangas Ruiz, M.M.; Harskamp, A.M.; Steingrover, R.; Prins, J.M.; de Wolf, F.; van't Wout, A.B.; et al. Rising HIV-1 viral load set point at a population level coincides with a fading impact of host genetic factors on HIV-1 control. AIDS 2011, 25, 2217–2226. [Google Scholar] [CrossRef]
- Malhotra, R.; Hu, L.; Song, W.; Brill, I.; Mulenga, J.; Allen, S.; Hunter, E.; Shrestha, S.; Tang, J.; Kaslow, R.A. Association of chemokine receptor gene (CCR2-CCR5) haplotypes with acquisition and control of HIV-1 infection in Zambians. Retrovirology 2011, 8, 22. [Google Scholar] [CrossRef]
- Hu, L.; Song, W.; Brill, I.; Mulenga, J.; Allen, S.; Hunter, E.; Shrestha, S.; Tang, J.; Kaslow, R.A. Genetic variations and heterosexual HIV-1 infection: analysis of clustered genes encoding CC-motif chemokine ligands. Genes Immun 2012, 13, 202–205. [Google Scholar] [CrossRef]
- Xu, L.; Li, Q.; Ye, H.; Zhang, Q.; Chen, H.; Huang, F.; Chen, R.; Zhou, R.; Zhou, W.; Xia, P.; et al. The nine-repeat DC-SIGNR isoform is associated with increased HIV-RNA loads and HIV sexual transmission. J Clin Immunol 2010, 30, 402–407. [Google Scholar] [CrossRef]
- Evangelou, E.; Fellay, J.; Colombo, S.; Martinez-Picado, J.; Obel, N.; Goldstein, D.B.; Telenti, A.; Ioannidis, J.P. Impact of phenotype definition on genome-wide association signals: empirical evaluation in human immunodeficiency virus type 1 infection. Am J Epidemiol 2011, 173, 1336–1342. [Google Scholar] [CrossRef]
- Pelak, K.; Goldstein, D.B.; Walley, N.M.; Fellay, J.; Ge, D.; Shianna, K.V.; Gumbs, C.; Gao, X.; Maia, J.M.; Cronin, K.D.; et al. Host determinants of HIV-1 control in African Americans. J Infect Dis 2010, 201, 1141–1149. [Google Scholar]
- Lingappa, J.R.; Petrovski, S.; Kahle, E.; Fellay, J.; Shianna, K.; McElrath, M.J.; Thomas, K.K.; Baeten, J.M.; Celum, C.; Wald, A.; et al. Genomewide association study for determinants of HIV-1 acquisition and viral set point in HIV-1 serodiscordant couples with quantified virus exposure. PLoS One 2011, 6, e28632. [Google Scholar]
- Silva, E.M.; Acosta, A.X.; Santos, E.J.; Netto, E.M.; Lemaire, D.C.; Oliveira, A.S.; Barbosa, C.M.; Bendicho, M.T.; Galvão-Castro, B.; Brites, C. HLA-Bw4-B*57 and Cw*18 alleles are associated with plasma viral load modulation in HIV-1 infected individuals in Salvador, Brazil. Braz J Infect Dis 2010, 14, 468–475. [Google Scholar] [CrossRef]
- Merino, A.; Malhotra, R.; Morton, M.; Mulenga, J.; Allen, S.; Hunter, E.; Tang, J.; Kaslow, R.A. Impact of a functional KIR2DS4 allele on heterosexual HIV-1 transmission among discordant Zambian couples. J Infect Dis 2011, 203, 487–495. [Google Scholar] [CrossRef]
- McLaren, P.J.; Ripke, S.; Pelak, K.; Weintrob, A.C.; Patsopoulos, N.A.; Jia, X.; Erlich, R.L.; Lennon, N.J.; Kadie, C.M.; Heckerman, D.; et al. Fine-mapping classical HLA variation associated with durable host control of HIV-1 infection in African Americans. Hum Mol Genet 2012, in press. [Google Scholar]
- Koup, R.A.; Graham, B.S.; Douek, D.C. The quest for a T cell-based immune correlate of protection against HIV: a story of trials and errors. Nat Rev Immunol 2011, 11, 65–70. [Google Scholar]
- Rousseau, C.M.; Daniels, M.G.; Carlson, J.M.; Kadie, C.; Crawford, H.; Prendergast, A.; Matthews, P.; Payne, R.; Rolland, M.; Raugi, D.N.; et al. HLA class I-driven evolution of human immunodeficiency virus type 1 subtype c proteome: immune escape and viral load. J Virol 2008, 82, 6434–6446. [Google Scholar]
- Qi, Y.; Martin, M.P.; Gao, X.; Jacobson, L.; Goedert, J.J.; Buchbinder, S.; Kirk, G.D.; O'Brien, S.J.; Trowsdale, J.; Carrington, M. KIR/HLA pleiotropism: protection against both HIV and opportunistic infections. PLoS Pathog 2006, 2, e79. [Google Scholar] [CrossRef]
- Vilches, C.; Parham, P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 2002, 20, 217–251. [Google Scholar] [CrossRef]
- Martin, M.P.; Qi, Y.; Gao, X.; Yamada, E.; Martin, J.N.; Pereyra, F.; Colombo, S.; Brown, E.E.; Shupert, W.L.; Phair, J.; et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet 2007, 39, 733–740. [Google Scholar]
- Gaudieri, S.; DeSantis, D.; McKinnon, E.; Moore, C.; Nolan, D.; Witt, C.S.; Mallal, S.A.; Christiansen, F.T. Killer immunoglobulin-like receptors and HLA act both independently and synergistically to modify HIV disease progression. Genes Immun 2005, 6, 683–690. [Google Scholar]
- Kaslow, R.A.; Dorak, T.; Tang, J.J. Influence of Host Genetic Variation on Susceptibility to HIV Type 1 Infection. J Infect Dis 2005, 191, S68–77. [Google Scholar] [CrossRef]
- Tang, J.; Shelton, B.; Makhatadze, N.J.; Zhang, Y.; Schaen, M.; Louie, L.G.; Goedert, J.J.; Seaberg, E.C.; Margolick, J.B.; Mellors, J.; et al. Distribution of chemokine receptor CCR2 and CCR5 genotypes and their relative contribution to human immunodeficiency virus type 1 (HIV-1) seroconversion, early HIV-1 RNA concentration in plasma, and later disease progression. J Virol 2002, 76, 662–672. [Google Scholar]
- Katzenstein, T.L.; Eugen-Olsen, J.; Hofmann, B.; Benfield, T.; Pedersen, C.; Iversen, A.K.; Sørensen, A.M.; Garred, P.; Koppelhus, U.; Svejgaard, A.; et al. HIV-infected individuals with the CCR delta32/CCR5 genotype have lower HIV RNA levels and higher CD4 cell counts in the early years of the infection than do patients with the wild type. Copenhagen AIDS Cohort Study Group. J Acquir Immune Defic Syndr Hum Retrovirol 1997, 16, 10–14. [Google Scholar] [CrossRef]
- Meyer, L.; Magierowska, M.; Hubert, J.B.; Rouzioux, C.; Deveau, C.; Sanson, F.; Debre, P.; Delfraissy, J.F.; Theodorou, I. Early protective effect of CCR-5 delta 32 heterozygosity on HIV-1 disease progression: relationship with viral load. The SEROCO Study Group. AIDS 1997, 11, F73–78. [Google Scholar]
- Ioannidis, J.P.; Rosenberg, P.S.; Goedert, J.J.; Ashton, L.J.; Benfield, T.L.; Buchbinder, S.P.; Coutinho, R.A.; Eugen-Olsen, J.; Gallart, T.; Katzenstein, T.L.; et al. Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3'A alleles on HIV-1 disease progression: An international meta-analysis of individual-patient data. Ann Intern Med 2001, 135, 782–795. [Google Scholar]
- Shrestha, S.; Tang, J.; Kaslow, R.A. Gene copy number: learning to count past two. Nat Med 2009, 15, 1127–1129. [Google Scholar] [CrossRef]
- Liu, H.; Carrington, M.; Wang, C.; Holte, S.; Lee, J.; Greene, B.; Hladik, F.; Koelle, D.M.; Wald, A.; Kurosawa, K.; et al. Repeat-region polymorphisms in the gene for the dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-related molecule: effects on HIV-1 susceptibility. J Infect Dis 2006, 193, 698–702. [Google Scholar] [CrossRef]
- Geijtenbeek, T.B.; van Duijnhoven, G.C.; van Vliet, S.J.; Krieger, E.; Vriend, G.; Figdor, C.G.; van Kooyk, Y. Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1. J Biol Chem 2002, 277, 11314–11320. [Google Scholar]
- Fellay, J.; Shianna, K.V.; Ge, D.; Colombo, S.; Ledergerber, B.; Weale, M.; Zhang, K.; Gumbs, C.; Castagna, A.; Cossarizza, A.; et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007, 317, 944–947. [Google Scholar]
- Dalmasso, C.; Carpentier, W.; Meyer, L.; Rouzioux, C.; Goujard, C.; Chaix, M.L.; Lambotte, O.; Avettand-Fenoel, V.; Le Clerc, S.; de Senneville, L.D.; et al. Distinct genetic loci control plasma HIV-RNA and cellular HIV-DNA levels in HIV-1 infection: the ANRS genome wide association 01 study. PLoS One 2008, 3, e3907. [Google Scholar]
- Catano, G.; Kulkarni, H.; He, W.; Marconi, V.C.; Agan, B.K.; Landrum, M.; Anderson, S.; Delmar, J.; Telles, V.; Song, L.; et al. HIV-1 disease-influencing effects associated with ZNRD1, HCP5 and HLA-C alleles are attributable mainly to either HLA-A10 or HLA-B*57 alleles. PLoS One 2008, 3, e3636. [Google Scholar]
- Fellay, J.; Ge, D.; Shianna, K.V.; Colombo, S.; Ledergerber, B.; Cirulli, E.T.; Urban, T.J.; Zhang, K.; Gumbs, C.; Smith, J.P.; et al. Common genetic variation and the control of HIV-1 in humans. PLoS Genet 2009, 5, e1000791. [Google Scholar]
- Thomas, R.; Apps, R.; Qi, Y.; Gao, X.; Male, V.; O'hUiqin, C.; O'Conner, G.; Ge, D.; Fellay, J.; Martin, J.N.; et al. HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nat Genet 2009, 41, 1290–1294. [Google Scholar]
- van Manen, D.; Kootstra, N.A.; Boeser-Nunnink, B.; Handulle, M.A.M.; van't Wout, A.B.; Schuitemaker, H. Association of HLA-C and HCP5 gene regions with the clinical course of HIV-1 infection. AIDS 2009, 23, 19–28. [Google Scholar] [CrossRef]
- Guergnon, J.; Theodorou, I. What did we learn on host's genetics by studying large cohorts of HIV-1-infected patients in the genome-wide association era? Current Opinion in HIV and AIDS 2011, 6, 290–296. [Google Scholar] [CrossRef]
- Aouizerat, B.E.; Pearce, C.L.; Miaskowski, C. The search for host genetic factors of HIV/AIDS pathogenesis in the post-genome era: progress to date and new avenues for discovery. Curr HIV/AIDS Rep 2011, 8, 38–44. [Google Scholar] [CrossRef]
- Kulkarni, S.; Savan, R.; Qi, Y.; Gao, X.; Yuki, Y.; Bass, S.E.; Martin, M.P.; Hunt, P.; Deeks, S.G.; Telenti, A.; et al. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 2011, 472, 495–498. [Google Scholar] [CrossRef]
- Shrestha, S.; Aissani, B.; Song, W.; Wilson, C.M.; Kaslow, R.A.; Tang, J. Host genetics and HIV-1 viral load set-point in African Americans. AIDS 2009, 23, 673–677. [Google Scholar] [CrossRef]
- Trachtenberg, E.; Bhattacharya, T.; Ladner, M.; Phair, J.; Erlich, H.; Wolinsky, S. The HLA-B/C haplotype block contains major determinants for host control of HIV. Genes Immun 2009, 10, 673–677. [Google Scholar] [CrossRef]
- Learmont, J.C.; Geczy, A.F.; Mills, J.; Ashton, L.J.; Raynes-Greenow, C.H.; Garsia, R.J.; Dyer, W.B.; McIntyre, L.; Oelrichs, R.B.; Rhodes, D.I.; et al. Immunologic and virologic status after 14 to 18 years of infection with an attenuated strain of HIV-1. A report from the Sydney Blood Bank Cohort. N Engl J Med 1999, 340, 1715–1722. [Google Scholar]
- Zaunders, J.; Dyer, W.B.; Churchill, M. The Sydney Blood Bank Cohort: implications for viral fitness as a cause of elite control. Curr Opin HIV AIDS 2011, 6, 151–156. [Google Scholar] [CrossRef]
- Bailey, J.R.; O'Connell, K.; Yang, H.C.; Han, Y.; Xu, J.; Jilek, B.; Williams, T.M.; Ray, S.C.; Siliciano, R.F.; Blankson, J.N. Transmission of human immunodeficiency virus type 1 from a patient who developed AIDS to an elite suppressor. J Virol 2008, 82, 7395–7410. [Google Scholar] [CrossRef]
- Hollingsworth, T.D.; Laeyendecker, O.; Shirreff, G.; Donnelly, C.A.; Serwadda, D.; Wawer, M.J.; Kiwanuka, N.; Nalugoda, F.; Collinson-Streng, A.; Ssempijja, V.; et al. HIV-1 transmitting couples have similar viral load set-points in Rakai, Uganda. PLoS Pathog 2010, 6, e1000876. [Google Scholar]
- Alizon, S.; von Wyl, V.; Stadler, T.; Kouyos, R.D.; Yerly, S.; Hirschel, B.; Boni, J.; Shah, C.; Klimkait, T.; Furrer, H.; et al. Phylogenetic approach reveals that virus genotype largely determines HIV set-point viral load. PLoS Pathog 2010, 6, e1001123. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Tang, S.; Lobashevsky, E.; Zulu, I.; Aldrovandi, G.; Allen, S.; Kaslow, R.A. Zambia-UAB HIV Research Project. HLA allele sharing and HIV type 1 viremia in seroconverting Zambians with known transmitting partners. AIDS Res Hum Retroviruses 2004, 20, 19–25. [Google Scholar] [CrossRef]
- Novitsky, V.; Gilbert, P.; Peter, T.; McLane, M.F.; Gaolekwe, S.; Rybak, N.; Thior, I.; Ndung'u, T.; Marlink, R.; Lee, T.H.; et al. Association between virus-specific T-cell responses and plasma viral load in human immunodeficiency virus type 1 subtype C infection. J Virol 2003, 77, 882–890. [Google Scholar]
- Mei, Y.; Wang, L.; Holte, S.E. A comparison of methods for determining HIV viral set point. Stat Med 2008, 27, 121–139. [Google Scholar] [CrossRef]
- Mellors, J.W.; Kingsley, L.A.; Rinaldo, C.R.J.; Todd, J.A.; Hoo, B.S.; Kokka, R.P.; Gupta, P. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med 1995, 122, 573–579. [Google Scholar]
- Hubert, J.B.; Burgard, M.; Dussaix, E.; Tamalet, C.; Deveau, C.; Le Chenadec, J.; Chaix, M.L.; Marchadier, E.; Vildé, J.L.; Delfraissy, J.F.; et al. Natural history of serum HIV-1 RNA levels in 330 patients with a known date of infection. The SEROCO Study Group. AIDS 2000, 14, 123–131. [Google Scholar]
- Dorrucci, M.; Rezza, G.; Porter, K.; Phillips, A. Concerted Action on Seroconversion to AIDS and Death in Europe Collaboration. Temporal trends in postseroconversion CD4 cell count and HIV load: the Concerted Action on Seroconversion to AIDS and Death in Europe Collaboration, 1985-2002. J Infect Dis 2007, 195, 525–534. [Google Scholar] [CrossRef]
- Gras, L.; Jurriaans, S.; Bakker, M.; van Sighem, A.; Bezemer, D.; Fraser, C.; Lange, J.; Prins, J.M.; Berkhout, B.; de Wolf, F. Viral load levels measured at set-point have risen over the last decade of the HIV epidemic in the Netherlands. PLoS One 2009, 4, e7365. [Google Scholar]
- Müller, V.; Maggiolo, F.; Suter, F.; Ladisa, N.; De Luca, A.; Antinori, A.; Sighinolfi, L.; Quiros-Roldan, E.; Carosi, G.; Torti, C. Increasing clinical virulence in two decades of the Italian HIV epidemic. PLoS One 2009, 5, e1000454. [Google Scholar]
- Müller, V.; Ledergerber, B.; Perrin, L.; Klimkait, T.; Furrer, H.; Telenti, A.; Bernasconi, E.; Vernazza, P.; Günthard, H.F.; Bonhoeffer, S.; et al. Stable virulence levels in the HIV epidemic of Switzerland over two decades. AIDS 2006, 20, 889–894. [Google Scholar] [CrossRef]
- Potard, V.; Weiss, L.; Lamontagne, F.; Rouveix, E.; Beck-Wirth, G.; Drogoul-Vey, M.P.; Souala, M.F.; Costagliola, D. French Hospital Database on HIV ANRS CO4. Trends in post-infection CD4 cell counts and plasma HIV-1 RNA levels in HIV-1-infected patients in France between 1997 and 2005. J Acquir Immune Defic Syndr 2009, 52, 422–426. [Google Scholar] [CrossRef]
- Troude, P.; Chaix, M.L.; Tran, L.; Deveau, C.; Seng, R.; Delfraissy, J.F.; Rouzioux, C.; Goujard, C.; Meyer, L. ANRS Primo Cohort. No evidence of a change in HIV-1 virulence since 1996 in France. AIDS 2009, 23, 1261–1267. [Google Scholar] [CrossRef]
- Herbeck, J.T.; Muller, V.; Maust, B.S.; Ledergerber, B.; Torti, C.; Di Giambenedetto, S.; Gras, L.; Gunthard, H.F.; Jacobson, L.P.; Mullins, J.I.; et al. Is the virulence of HIV changing? A meta-analysis of trends in prognostic markers of HIV disease progression and transmission. AIDS 2012, 26, 193–205. [Google Scholar]
- Moore, C.B.; John, M.; James, I.R.; Christiansen, F.T.; Witt, C.S.; Mallal, S. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 2002, 296, 1439–1443. [Google Scholar]
- Koga, M.; Kawana-Tachikawa, A.; Heckerman, D.; Odawara, T.; Nakamura, H.; Koibuchi, T.; Fujii, T.; Miura, T.; Iwamoto, A. Changes in impact of HLA class I allele expression on HIV-1 plasma virus loads at a population level over time. Microbiol Immunol 2010, 54, 196–205. [Google Scholar]
- Kawashima, Y.; Pfafferott, K.; Frater, J.; Matthews, P.; Payne, R.; Addo, M.; Gatanaga, H.; Fujiwara, M.; Hachiya, A.; Koizumi, H.; et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature 2009, 458, 641–645. [Google Scholar]
- Peeters, M. The genetic variability of HIV-1 and its implications. Transfus Clin Biol 2001, 8, 222–225. [Google Scholar] [CrossRef]
- Eberle, J.; Gurtler, L. HIV types, groups, subtypes and recombinant forms: errors in replication, selection pressure and quasispecies. Intervirology 2012, 55, 79–83. [Google Scholar] [CrossRef]
- Saah, A.J.; Hoover, D.R.; Weng, S.; Carrington, M.; Mellors, J.; Rinaldo, C.R.J.; Mann, D.; Apple, R.; Phair, J.P.; Detels, R.; et al. Association of HLA profiles with early plasma viral load, CD4+ cell count and rate of progression to AIDS following acute HIV-1 infection. Multicenter AIDS Cohort Study. AIDS 1998, 12, 2107–2113. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Prentice, H.A.; Tang, J. HIV–1 Dynamics: A Reappraisal of Host and Viral Factors, as well as Methodological Issues. Viruses 2012, 4, 2080-2096. https://doi.org/10.3390/v4102080
Prentice HA, Tang J. HIV–1 Dynamics: A Reappraisal of Host and Viral Factors, as well as Methodological Issues. Viruses. 2012; 4(10):2080-2096. https://doi.org/10.3390/v4102080
Chicago/Turabian StylePrentice, Heather A., and Jianming Tang. 2012. "HIV–1 Dynamics: A Reappraisal of Host and Viral Factors, as well as Methodological Issues" Viruses 4, no. 10: 2080-2096. https://doi.org/10.3390/v4102080
APA StylePrentice, H. A., & Tang, J. (2012). HIV–1 Dynamics: A Reappraisal of Host and Viral Factors, as well as Methodological Issues. Viruses, 4(10), 2080-2096. https://doi.org/10.3390/v4102080