Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines
Abstract
:1. Introduction
2. The Need for Better H5N1 Pandemic Vaccines
6. Future Directions
Acknowledgments
Conflict of Interest
References
- Thompson, W.W.; Shay, D.K.; Weintraub, E.; Brammer, L.; Bridges, C.B.; Cox, N.J.; Fukuda, K. Influenza-associated hospitalizations in the United States. JAMA 2004, 292, 1333–1340. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Estimates of deaths associated with seasonal influenza: United States, 1976-2007. MMWR Morb. Mortal. Wkly. Rep. 2010, 59, 1057–1062.
- Pérez Velasco, R.; Praditsitthikorn, N.; Wichmann, K.; Mohara, A.; Kotirum, S.; Tantivess, S.; Vallenas, C.; Harmanci, H.; Teerawattananon, Y. Systematic review of economic evaluations of preparedness strategies and interventions against influenza pandemics. PLoS One 2012, 7, e30333. [Google Scholar]
- Lagacé-Wiens, P.R.; Rubinstein, E.; Gumel, A. Influenza epidemiology: Past, present, and future. Crit. Care Med. 2010, 38, e1–e9. [Google Scholar] [CrossRef]
- Fouchier, R.A.; Munster, V.; Wallensten, A.; Bestebroer, T.M.; Herfst, S.; Smith, D.; Rimmelzwaan, G.F.; Olsen, B.; Osterhaus, A.D. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol. 2005, 79, 2814–2822. [Google Scholar] [CrossRef]
- Tong, S.; Li, Y.; Rivailler, P.; Conrardy, C.; Castillo, D.A.; Chen, L.M.; Recuenco, S.; Ellison, J.A.; Davis, C.T.; York, I.A.; Turmelle, A.S.; Moran, D.; Rogers., S.; Shi, M.; Tao, Y.; Weil, M.R.; Tang, K.; Rowe, L.A.; Sammons, S.; Xu, X.; Frace, M.; Lindblade, K.A.; Cox, N.J.; Anderson, L.J.; Rupprecht, C.E.; Donis, R.O. A distinct lineage of influenza A virus from bats. Proc. Natl. Acad. Sci. USA 2012, 109, 4269–4274. [Google Scholar]
- Scholtissek, C.; Rohde, W.; Von Hoyningen, V.; Rott, R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 1978, 87, 13–20. [Google Scholar] [CrossRef]
- Reid, A.H.; Fanning, T.G.; Hultin, J.V.; Taubenberger, J.K. Origin and evolution of the 1918 "Spanish" influenza virus hemagglutinin gene. Proc. Natl. Acad. Sci. USA 1999, 96, 1651–1656. [Google Scholar]
- Trifonov, V.; Khiabanian, H.; Rabadan, R. Geographic dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus. N. Engl. J. Med. 2009, 361, 115–119. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Wkly. Epidemiol. Rec. 2012, 87, 97–108.
- Centers for Disease Control and Prevention (CDC). From the Centers for Disease Control and Prevention. Update: Isolation of avian influenza A(H5N1) viruses from humans: Hong Kong, 1997-1998. JAMA 1998, 279, 347–348. [CrossRef]
- Health Protection Agency. Influenza A virus subtype H5N1 infection in humans: Update. Commun. Dis. Rep. CDR Wkly. 1997, 7, 453.
- Adams, S.; Sandrock, C. Avian influenza: Update. Med. Princ. Pract. 2010, 19, 421–432. [Google Scholar] [CrossRef]
- World Health Organization (WHO). 10 August 2012 update. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003-2012. Available online: http://www.who.int/influenza/human_animal_interface/EN_GIP_20120502CumulativeNumberH5N1cases.pdf (accessed on 20 August 2012).
- Dudley, J.P. Mammalian-transmissible highly pathogenic H5N1 influenza: Epidemiological context. MBio. 2012, 3, e00071–12. [Google Scholar]
- Herfst, S.; Schrauwen, E.J.; Linster, M.; Chutinimitkul, S.; de Wit, E.; Munster, V.J.; Sorrell, E.M.; Bestebroer, T.M.; Burke, D.F.; Smith, D.J.; Rimmelzwaan, G.F.; Osterhaus, A.D.; Fouchier, R.A. Airborne transmission of influenza A/H5N1 virus between ferrets. Science 2012, 336, 1534–1541. [Google Scholar]
- Imai, M.; Watanabe, T.; Hatta, M.; Das, S.C.; Ozawa, M.; Shinya, K.; Zhong, G.; Hanson, A.; Katsura, H.; Watanabe, S.; Li, C.; Kawakami, E.; Yamada, S.; Kiso, M.; Suzuki, Y.; Maher, E.A.; Neumann, G.; Kawaoka, Y. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 2012, 486, 420–428. [Google Scholar]
- Russell, C.A.; Fonville, J.M.; Brown, A.E.; Burke, D.F.; Smith, D.L.; James, S.L.; Herfst, S.; van Boheemen, S.; Linster, M.; Schrauwen, E.J.; Katzelnick, L.; Mosterín, A.; Kuiken, T.; Maher, E.; Neumann, G.; Osterhaus, A.D.; Kawaoka, Y.; Fouchier, R.A.; Smith, D.J. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science 2012, 336, 1541–1547. [Google Scholar]
- Webster, R.G. Mammalian-transmissible H5N1 influenza: the dilemma of dual-use research. MBio. 2012, 3, e00005–12. [Google Scholar]
- World Health Organization (WHO). Pandemic influenza preparedness and response: A WHO guidance document. Available online: http://whqlibdoc.who.int/publications/2009/9789241547680_eng.pdf (accessed on 20 August 2012).
- Lee, V.J.; Lye, D.C.; Wilder-Smith, A. Combination strategies for pandemic influenza response - A systematic review of mathematical modeling studies. BMC Med. 2009, 7, 76. [Google Scholar] [CrossRef] [Green Version]
- Schuchat, A.; Bell, B.P.; Redd, S.C. The science behind preparing and responding to pandemic influenza: the lessons and limits of science. Clin. Infect. Dis. 2011, 52, S8–12. [Google Scholar] [CrossRef]
- Emanuel, E.J.; Wertheimer, A. Public health. Who should get influenza vaccine when not all can? Science 2006, 312, 854–855. [Google Scholar] [CrossRef]
- Smith, K.A.; Colvin, C.J.; Weber, P.S.; Spatz, S.J.; Coussens, P.M. High titer growth of human and avian influenza viruses in an immortalized chick embryo cell line without the need for exogenous proteases. Vaccine 2008, 26, 3778–3782. [Google Scholar] [CrossRef]
- Rockman, S.; Brown, L. Pre-pandemic and pandemic influenza vaccines. Hum. Vaccin. 2010, 6, 792–801. [Google Scholar] [CrossRef]
- Clayville, L.R. Influenza update: A review of currently available vaccines. Pharmacy and Therapeutics 2011, 36, 659–684. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Available online: http://www.cdc.gov/vaccines/pubs/vis/downloads/vis-flulive.pdf (accessed on 20 August 2012).
- Haaheim, L.R.; Madhun, A.S.; Cox, R. Pandemic influenza vaccines - The challenges. Viruses 2009, 1, 1089–1109. [Google Scholar] [CrossRef]
- Singh, N.; Pandey, A.; Mittal, S.K. Avian influenza pandemic preparedness: Developing prepandemic and pandemic vaccines against a moving target. Expert Rev. Mol. Med. 2010, 12, e14. [Google Scholar] [CrossRef]
- Horimoto, T.; Kawaoka, Y. Designing vaccines for pandemic influenza. Curr. Top. Microbiol. Immunol. 2009, 333, 165–176. [Google Scholar] [CrossRef]
- Tutykhina, I.L.; Logunov, D.Y.; Shcherbinin, D.N.; Shmarov, M.M.; Tukhvatulin, A.I.; Naroditsky, B.S.; Gintsburg, A.L. Development of adenoviral vector-based mucosal vaccine against influenza. J. Mol. Med. (Berl). 2011, 89, 331–341. [Google Scholar] [CrossRef]
- Tang, D.C.; Zhang, J.; Toro, H.; Shi, Z.; Van Kampen, K.R. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines. Expert Rev. Vaccines. 2009, 8, 469–481. [Google Scholar] [CrossRef]
- Vemula, S.V.; Mittal, S.K. Production of adenovirus vectors and their use as a delivery system for influenza vaccines. Expert. Opin. Biol. Ther. 2010, 10, 1469–1487. [Google Scholar] [CrossRef]
- Toro, H.; Tang, D.C. Protection of chickens against avian influenza with nonreplicating adenovirus-vectored vaccine. Poult. Sci. 2009, 88, 867–871. [Google Scholar] [CrossRef]
- Lambe, T. Novel viral vectored vaccines for the prevention of influenza. Mol. Med. 2012. [Google Scholar] [CrossRef]
- Rowe, W.P.; Huebner, R.J.; Gilmore, L.K.; Parrott, R.H.; Ward, T.G. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc. Soc. Exp. Biol. Med. 1953, 84, 570–573. [Google Scholar]
- Bangari, D.S.; Mittal, S.K. Development of nonhuman adenoviruses as vaccine vectors. Vaccine. 2006, 24, 849–862. [Google Scholar] [CrossRef]
- Smith, J.G.; Wiethoff, C.M.; Stewart, P.L.; Nemerow, G.R. Adenovirus. Curr. Top. Microbiol. Immunol. 2010, 343, 195–224. [Google Scholar]
- Lichtenstein, D.L.; Wold, W.S. Experimental infections of humans with wild-type adenoviruses and with replication-competent adenovirus vectors: replication, safety, and transmission. Cancer Gene Ther. 2004, 11, 819–829. [Google Scholar] [CrossRef]
- Reddy, V.S.; Natchiar, S.K.; Stewart, P.L.; Nemerow, G.R. Crystal structure of human adenovirus at 3.5 A resolution. Science 2010, 329, 1071–1075. [Google Scholar] [CrossRef]
- Ginsberg, H.S. The life and times of adenoviruses. Adv. Virus. Res. 1999, 54, 1–13. [Google Scholar] [CrossRef]
- Russell, W.C. Adenoviruses: Update on structure and function. J. Gen. Virol. 2009, 90, 1–20. [Google Scholar] [CrossRef]
- Young, C.S. The structure and function of the adenovirus major late promoter. Curr. Top. Microbiol. Immunol. 2003, 272, 213–249. [Google Scholar]
- Graham, F.L.; Smiley, J.; Russell, W.C.; Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen.Virol. 1977, 36, 59–74. [Google Scholar] [CrossRef]
- Kovesdi, I.; Hedley, S.J. Adenoviral producer cells. Viruses 2010, 2, 1681–1703. [Google Scholar] [CrossRef]
- Evans, R.K; Nawrocki, D.K.; Isopi, L.A.; Williams, D.M.; Casimiro, D.R.; Chin, S.; Chen, M.; Zhu, D.M.; Shiver, J.W.; Volkin, D.B. Development of stable liquid formulations for adenovirus-based vaccines. J. Pharm. Sci. 2004, 93, 2458–2475. [Google Scholar] [CrossRef]
- Croyle, M.A.; Cheng, X.; Wilson, J.M. Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene. Ther. 2001, 8, 1281–1290. [Google Scholar] [CrossRef]
- Alcock, R.; Cottingham, M.G.; Rollier, C.S.; Furze, J.; De Costa, S.D.; Hanlon, M.; Spencer, A.J.; Honeycutt, J.D.; Wyllie, D.H.; Gilbert, S.C.; Bregu, M.; Hill, A.V. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. Sci. Transl. Med. 2010, 2, 19–ra12. [Google Scholar] [CrossRef]
- Lewis, D.J.; Huo, Z.; Barnett, S.; Kromann, I.; Giemza, R.; Galiza, E.; Woodrow, M.; Thierry-Carstensen, B.; Andersen, P.; Novicki, D.; Del Giudice, G.; Rappuoli, R. Transient facial nerve paralysis (Bell's palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One 2009, 4, e6999. [Google Scholar]
- Molinier-Frenkel, V.; Lengagne, R.; Gaden, F.; Hong, S.S.; Choppin, J.; Gahery-Ségard, H.; Boulanger, P.; Guillet, J.G. Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response. J. Virol. 2002, 76, 127–135. [Google Scholar] [CrossRef]
- Hartman, Z.C.; Appledorn, D.M.; Amalfitano, A. Adenovirus vector induced innate immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res. 2008, 132, 1–14. [Google Scholar] [CrossRef]
- Wei, C.J.; Boyington, J.C.; McTamney, P.M.; Kong, W.P.; Pearce, M.B.; Xu, L.; Andersen, H.; Rao, S.; Tumpey, T.M.; Yang, Z.Y.; Nabel, G.J. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 2010, 329, 1060–1064. [Google Scholar] [CrossRef]
- Van Kampen, K.R.; Shi, Z..; Gao, P.; Zhang, J.; Foster, K.W.; Chen, D.T.; Marks, D.; Elmets, C.A.; Tang, D.C. Safety and immunogenicity of adenovirus-vectored nasal and epicutaneous influenza vaccines in humans. Vaccine 2005, 23, 1029–1036. [Google Scholar] [CrossRef]
- Hashem, A.; Jaentschke, B.; Gravel, C.; Tocchi, M.; Doyle, T.; Rosu-Myles, M.; He, R.; Li, X. Subcutaneous immunization with recombinant adenovirus expressing influenza A nucleoprotein protects mice against lethal viral challenge. Hum. Vaccin. Immunother. 2012, 8, 425–430. [Google Scholar]
- Song, K.; Bolton, D.L.; Wei, C.J.; Wilson, R.L.; Camp, J.V.; Bao, S.; Mattapallil, J.J.; Herzenberg, L.A.; Herzenberg, L.A.; Andrews, C.A.; Sadoff, J.C.; Goudsmit, J.; Pau, M.G.; Seder, R.A.; Kozlowski, P.A.; Nabel, G.J.; Roederer, M.; Rao, S.S. Genetic immunization in the lung induces potent local and systemic immune responses. Proc. Natl. Acad. Sci. USA 2010, 107, 22213–22218. [Google Scholar]
- Roy, C.J.; Ault, A.; Sivasubramani, S.K.; Gorres, J.P.; Wei, C.J.; Andersen, H.; Gall, J.; Roederer, M.; Rao, S.S. Aerosolized adenovirus-vectored vaccine as an alternative vaccine delivery method. Respir. Res. 2011, 12, 153. [Google Scholar] [CrossRef]
- Saito, I.; Oya, Y.; Yamamoto, K.; Yuasa, T.; Shimojo, H. Construction of nondefective adenovirus type 5 bearing a 2.8-kilobase hepatitis B virus DNA near the right end of its genome. J. Virol. 1985, 54, 711–719. [Google Scholar]
- Morin, J.E.; Lubeck, M.D.; Barton, J.E.; Conley, A.J.; Davis, A.R.; Hung, P.P. Recombinant adenovirus induces antibody response to hepatitis B virus surface antigen in hamsters. Proc. Natl. Acad. Sci. USA 1987, 84, 4626–4630. [Google Scholar]
- Alkhatib, G.; Briedis, D.J. High-level eucaryotic in vivo expression of biologically active measles virus hemagglutinin by using an adenovirus type 5 helper-free vector system. J. Virol. 1988, 62, 2718–2727. [Google Scholar]
- Eloit, M.; Gilardi-Hebenstreit, P.; Toma, B.; Perricaudet, M. Construction of a defective adenovirus vector expressing the pseudorabies virus glycoprotein gp50 and its use as a live vaccine. J. Gen. Virol. 1990, 71, 2425–2431. [Google Scholar] [CrossRef]
- Zhu, J.; Grace, M.; Casale, J.; Chang, A.T.; Musco, M.L.; Bordens, R.; Greenberg, R.; Schaefer, E.; Indelicato, S.R. Characterization of replication-competent adenovirus isolates from large-scale production of a recombinant adenoviral vector. Hum. Gene. Ther. 1999, 10, 113–121. [Google Scholar] [CrossRef]
- Lochmüller, H.; Jani, A.; Huard, J.; Prescott, S.; Simoneau, M.; Massie, B.; Karpati, G.; Acsadi, G. Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells. Hum. Gene. Ther. 1994, 5, 1485–1491. [Google Scholar] [CrossRef]
- Hermens, W.T.; Verhaagen, J. Adenoviral vector-mediated gene expression in the nervous system of immunocompetent Wistar and T cell-deficient nude rats: preferential survival of transduced astroglial cells in nude rats. Hum. Gene. Ther. 1997, 8, 1049–1063. [Google Scholar] [CrossRef]
- Fallaux, F.J.; Bout, A.; van der Velde, I.; van den Wollenberg, D.J.; Hehir, K.M.; Keegan, J.; Auger, C.; Cramer, S.J.; van Ormondt, H.; van der Eb, A.J.; Valerio, D.; Hoeben, R.C. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene. Ther. 1998, 9, 1909–1917. [Google Scholar] [CrossRef]
- Ledwith, B.J.; Lanning, C.L.; Gumprecht, L.A; Anderson, C.A.; Coleman, J.B.; Gatto, N.T.; Balasubramanian, G.; Farris, G.M.; Kemp, R.K.; Harper, L.B.; Barnum, A.B.; Pacchione, S.J.; Mauer, K.L.; Troilo, P.F.; Brown, E.R.; Wolf, J.J.; Lebronl, J.A.; Lewis, J.A.; Nichols, W.W. Tumorigenicity assessments of Per.C6 cells and of an Ad5-vectored HIV-1 vaccine produced on this continuous cell line. Dev. Biol. (Basel) 2006, 123, 251–263, discussion 265-266. [Google Scholar]
- Lusky, M. Good manufacturing practice production of adenoviral vectors for clinical trials. Hum Gene Ther. 2005, 16, 281–291. [Google Scholar] [CrossRef]
- Subramanian, S.; Kim, J.J.; Harding, F.; Altaras, G.M.; Aunins, J.G.; Zhou, W. Scaleable production of adenoviral vectors by transfection of adherent PER.C6 cells. Biotechnol. Prog. 2007, 23, 1210–1217. [Google Scholar]
- Wang, Q.; Jia, X.C.; Finer, M.H. A packaging cell line for propagation of recombinant adenovirus vectors containing two lethal gene-region deletions. Gene. Ther. 1995, 2, 775–783. [Google Scholar]
- Amalfitano, A.; Begy, C.R.; Chamberlain, J.S. Improved adenovirus packaging cell lines to support the growth of replication-defective gene-delivery vectors. Proc. Natl. Acad. Sci. USA 1996, 93, 3352–3356. [Google Scholar] [CrossRef]
- Gorziglia, M.I.; Kadan, M.J.; Yei, S.; Lim, J.; Lee, G.M.; Luthra, R.; Trapnell, B.C. Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy. J. Virol. 1996, 70, 4173–4178. [Google Scholar]
- Gorziglia, M.I.; Lapcevich, C.; Roy, S.; Kang, Q.; Kadan, M.; Wu, V.; Pechan, P.; Kaleko, M. Generation of an adenovirus vector lacking E1, e2a, E3, and all of E4 except open reading frame 3. J. Virol. 1999, 73, 6048–6055. [Google Scholar]
- Mitani, K.; Graham, F.L.; Caskey, C.T.; Kochanek, S. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc. Natl. Acad. Sci. USA 1995, 92, 3854–3858. [Google Scholar] [CrossRef]
- Osada, T.; Yang, X.Y.; Hartman, Z.C.; Glass, O.; Hodges, B.L.; Niedzwiecki, D.; Morse, M.A.; Lyerly, H.K.; Amalfitano, A.; Clay, T.M. Optimization of vaccine responses with an E1, E2b and E3-deleted Ad5 vector circumvents pre-existing anti-vector immunity. Cancer Gene. Ther. 2009, 16, 673–682. [Google Scholar] [CrossRef]
- Weaver, E.A.; Nehete, P.N.; Buchl, S.S.; Senac, J.S.; Palmer, D.; Ng, P.; Sastry, K.J.; Barry, M.A. Comparison of replication-competent, first generation, and helper-dependent adenoviral vaccines. PLoS One 2009, 4, e5059. [Google Scholar]
- Mast, T.C.; Kierstead, L.; Gupta, S.B.; Nikas, A.A.; Kallas, E.G.; Novitsky, V.; Mbewe, B.; Pitisuttithum, P.; Schechter, M.; Vardas, E.; Wolfe, N.D.; Aste-Amezaga, M.; Casimiro, D.R.; Coplan, P.; Straus, W.L.; Shiver, J.W. International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine 2010, 28, 950–957. [Google Scholar]
- Barouch, D.H.; Kik, S.V.; Weverling, G.J.; Dilan, R.; King, S.L.; Maxfield, L.F.; Clark, S.; Ng'ang'a, D.; Brandariz, K.L.; Abbink, P.; Sinangil, F.; de Bruyn, G.; Gray, G.E.; Roux, S.; Bekker, L.G.; Dilraj, A.; Kibuuka, H.; Robb, M.L.; Michael, N.L.; Anzala, O.; Amornkul, P.N.; Gilmour, J.; Hural, J.; Buchbinder, S.P.; Seaman, M.S.; Dolin, R.; Baden, L.R.; Carville, A.; Mansfield, K.G.; Pau, M.G.; Goudsmit, J. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine 2011, 29, 5203–5209. [Google Scholar]
- Barouch, D.H.; McKay, P.F.; Sumida, S.M.; Santra, S.; Jackson, S.S.; Gorgone, D.A.; Lifton, M.A.; Chakrabarti, B.K.; Xu, L.; Nabel, G.J.; Letvin, N.L. Plasmid chemokines and colony-stimulating factors enhance the immunogenicity of DNA priming-viral vector boosting human immunodeficiency virus type 1 vaccines. J. Virol. 2003, 77, 8729–8735. [Google Scholar]
- Pichla-Gollon, S.L.; Lin, S.W.; Hensley, S.E.; Lasaro, M.O.; Herkenhoff-Haut, L.; Drinker, M.; Tatsis, N.; Gao, G.P.; Wilson, J.M.; Ertl, H.C.; Bergelson, J.M. Effect of preexisting immunity on an adenovirus vaccine vector: in vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo. J. Virol. 2009, 83, 5567–5573. [Google Scholar]
- Yang, Z.Y.; Wyatt, L.S.; Kong, W.P.; Moodie, Z.; Moss, B.; Nabel, G.J. Overcoming immunity to a viral vaccine by DNA priming before vector boosting. J. Virol. 2003, 77, 799–803. [Google Scholar] [CrossRef]
- Vogels, R.; Zuijdgeest, D.; van Rijnsoever, R.; Hartkoorn, E.; Damen, I.; de Béthune, M.P.; Kostense, S.; Penders, G.; Helmus, N.; Koudstaal, W.; Cecchini, M.; Wetterwald, A.; Sprangers, M.; Lemckert, A.; Ophorst, O.; Koel, B.; van Meerendonk, M.; Quax, P.; Panitti, L.; Grimbergen, J.; Bout, A.; Goudsmit, J.; Havenga, M. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: Efficient human cell infection and bypass of preexisting adenovirus immunity. J. Virol. 2003, 77, 8263–8271. [Google Scholar]
- Holterman, L.; Vogels, R.; van der Vlugt, R.; Sieuwerts, M.; Grimbergen, J.; Kaspers, J.; Geelen, E.; van der Helm, E.; Lemckert, A.; Gillissen, G.; Verhaagh, S.; Custers, J.; Zuijdgeest, D.; Berkhout, B.; Bakker, M.; Quax, P.; Goudsmit, J.; Havenga, M. Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: Low seroprevalence and non-cross-reactivity with Ad5. J. Virol. 2004, 78, 13207–13215. [Google Scholar]
- Lemckert, A.A.; Grimbergen, J.; Smits, S.; Hartkoorn, E.; Holterman, L.; Berkhout, B.; Barouch, D.H.; Vogels, R.; Quax, P.; Goudsmit, J.; Havenga, M.J. Generation of a novel replication-incompetent adenoviral vector derived from human adenovirus type 49: manufacture on PER.C6 cells, tropism and immunogenicity. J. Gen. Virol. 2006, 87, 2891–2899. [Google Scholar] [CrossRef]
- Abbink, P.; Lemckert, A.A.; Ewald, B.A.; Lynch, D.M.; Denholtz, M.; Smits, S.; Holterman, L.; Damen, I.; Vogels, R.; Thorner, A.R.; O'Brien, K.L.; Carville, A.; Mansfield, K.G.; Goudsmit, J.; Havenga, M.J.; Barouch, D.H. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J. Virol. 2007, 81, 4654–4663. [Google Scholar]
- Kahl, C.A.; Bonnell, J.; Hiriyanna, S.; Fultz, M.; Nyberg-Hoffman, C.; Chen, P.; King, C.R.; Gall, J.G. Potent immune responses and in vitro pro-inflammatory cytokine suppression by a novel adenovirus vaccine vector based on rare human serotype 28. Vaccine 2010, 28, 5691–5702. [Google Scholar] [CrossRef]
- Tatsis, N.; Tesema, L.; Robinson, E.R.; Giles-Davis, W.; McCoy, K.; Gao, G.P.; Wilson, J.M.; Ertl, H.C. Chimpanzee-origin adenovirus vectors as vaccine carriers. Gene. Ther. 2006, 13, 421–429. [Google Scholar] [CrossRef]
- Xiang, Z.; Gao, G.; Reyes-Sandoval, A.; Cohen, C.J.; Li, Y.; Bergelson, J.M.; Wilson, J.M.; Ertl, H.C. Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J. Virol. 2002, 76, 2667–2675. [Google Scholar]
- Roy, S.; Kobinger, G.P.; Lin, J.; Figueredo, J.; Calcedo, R.; Kobasa, D.; Wilson, J.M. Partial protection against H5N1 influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein. Vaccine 2007, 25, 6845–6851. [Google Scholar] [CrossRef]
- Singh, N.; Pandey, A.; Jayashankar, L.; Mittal, S.K. Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus. Mol. Ther. 2008, 16, 965–971. [Google Scholar] [CrossRef]
- Gao, Y.W.; Xia, X.Z.; Wang, L.G.; Liu, D.; Huang, G. Construction and experimental immunity of recombinant replication-competent canine adenovirus type 2 expressing hemagglutinin gene of H5N1 subtype tiger influenza virus. Wei Sheng Wu Xue Bao 2006, 46, 297–300. [Google Scholar]
- Patel, A.; Tikoo, S.; Kobinger, G. A porcine adenovirus with low human seroprevalence is a promising alternative vaccine vector to human adenovirus 5 in an H5N1 virus disease model. PLoS One 2010, 5, e15301. [Google Scholar]
- Wang, L.; Cheng, C.; Ko, S.Y.; Kong, W.P.; Kanekiyo, M.; Einfeld, D.; Schwartz, R.M.; King, C.R.; Gall, J.G.; Nabel, G.J. Delivery of human immunodeficiency virus vaccine vectors to the intestine induces enhanced mucosal cellular immunity. J. Virol. 2009, 83, 7166–7175. [Google Scholar] [CrossRef]
- Chen, H.; Xiang, Z.Q.; Li, Y.; Kurupati, R.K.; Jia, B.; Bian, A.; Zhou, D.M.; Hutnick, N.; Yuan, S.; Gray, C.; Serwanga, J.; Auma, B.; Kaleebu, P.; Zhou, X.; Betts, M.R.; Ertl, H.C. Adenovirus-based vaccines: Comparison of vectors from three species of adenoviridae. J. Virol. 2010, 84, 10522–10532. [Google Scholar]
- Fitzgerald, J.C.; Gao, G.P.; Reyes-Sandoval, A.; Pavlakis, G.N.; Xiang, Z.Q.; Wlazlo, A.P.; Giles-Davis, W.; Wilson, J.M.; Ertl, H.C. A simian replication-defective adenoviral recombinant vaccine to HIV-1 gag. .J. Immunol. 2003, 170, 1416–1422. [Google Scholar]
- Frahm, N.; DeCamp, A.C.; Friedrich, D.P.; Carter, D.K.; Defawe, O.D.; Kublin, J.G.; Casimiro, D.R.; Duerr, A.; Robertson, M.N.; Buchbinder, S.P.; Huang, Y.; Spies, G.A.; De Rosa, S.C.; McElrath, M.J. Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine. J. Clin. Invest. 2012, 122, 359–367. [Google Scholar]
- Seregin, S.S.; Amalfitano, A. Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin. Biol. Ther. 2009, 9, 1521–1531. [Google Scholar] [CrossRef]
- Dharmapuri, S.; Peruzzi, D.; Aurisicchio, L. Engineered adenovirus serotypes for overcoming anti-vector immunity. Expert Opin. Biol. Ther. 2009, 9, 1279–1287. [Google Scholar] [CrossRef]
- Stone, D.; Liu, Y.; Li, Z.Y.; Tuve, S.; Strauss, R.; Lieber, A. Comparison of adenoviruses from species B, C, E, and F after intravenous delivery. Mol. Ther. 2007, 15, 2146–2153. [Google Scholar] [CrossRef]
- Holst, P.J.; Ørskov, C.; Thomsen, A.R.; Christensen, J.P. Quality of the transgene-specific CD8+ T cell response induced by adenoviral vector immunization is critically influenced by virus dose and route of vaccination. J. Immunol. 2010, 184, 4431–4439. [Google Scholar] [CrossRef]
- Kaufman, D.R.; Bivas-Benita, M.; Simmons, N.L.; Miller, D.; Barouch, D.H. Route of adenovirus-based HIV-1 vaccine delivery impacts the phenotype and trafficking of vaccine-elicited CD8+ T lymphocytes. J. Virol. 2010, 84, 5986–5996. [Google Scholar] [CrossRef]
- Suda, T.; Kawano, M.; Nogi, Y.; Ohno, N.; Akatsuka, T.; Matsui, M. The route of immunization with adenoviral vaccine influences the recruitment of cytotoxic T lymphocytes in the lung that provide potent protection from influenza A virus. Antiviral Res. 2011, 91, 252–258. [Google Scholar] [CrossRef]
- Steitz, J.; Wagner, R.A.; Bristol, T.; Gao, W.; Donis, R.O.; Gambotto, A. Assessment of route of administration and dose escalation for an adenovirus-based influenza A Virus (H5N1) vaccine in chickens. Clin. Vaccine. Immunol. 2010, 17, 1467–1472. [Google Scholar] [CrossRef]
- Holman, D.H.; Penn-Nicholson, A.; Wang, D.; Woraratanadharm, J.; Harr, M.K.; Luo, M.; Maher, E.M.; Holbrook, M.R.; Dong, J.Y. A complex adenovirus-vectored vaccine against Rift Valley fever virus protects mice against lethal infection in the presence of preexisting vector immunity. Clin. Vaccine Immunol. 2009, 16, 1624–1632. [Google Scholar] [CrossRef]
- Appledorn, D.M.; Aldhamen, Y.A.; Godbehere, S.; Seregin, S.S.; Amalfitano, A. Sublingual administration of an adenovirus serotype 5 (Ad5)-based vaccine confirms Toll-like receptor agonist activity in the oral cavity and elicits improved mucosal and systemic cell-mediated responses against HIV antigens despite preexisting Ad5 immunity. Clin. Vaccine Immunol. 2011, 18, 150–160. [Google Scholar] [CrossRef]
- Xiang, Z.Q.; Gao, G.P.; Reyes-Sandoval, A.; Li, Y.; Wilson, J.M.; Ertl, H.C. Oral vaccination of mice with adenoviral vectors is not impaired by preexisting immunity to the vaccine carrier. J. Virol. 2003, 77, 10780–10789. [Google Scholar] [CrossRef]
- Pandey, A.; Singh, N.; Vemula, S.V.; Couëtil, L.; Katz, J.M.; Donis, R.; Sambhara, S.; Mittal, S.K. Impact of preexisting adenovirus vector immunity on immunogenicity and protection conferred with an adenovirus-based H5N1 influenza vaccine. PLoS One 2012, 7, e33428. [Google Scholar]
- Xiang, Z.Q.; Yang, Y.; Wilson, J.M.; Ertl, H.C. A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology 1996, 219, 220–227. [Google Scholar] [CrossRef]
- Shi, Z.; Zeng, M.; Yang, G.; Siegel, F.; Cain, L.J.; van Kampen, K.R.; Elmets, C.A.; Tang, D.C. Protection against tetanus by needle-free inoculation of adenovirus-vectored nasal and epicutaneous vaccines. J. Virol. 2001, 75, 11474–11482. [Google Scholar] [CrossRef]
- Yu, J.R.; Kim, S.; Lee, J.B.; Chang, J. Single intranasal immunization with recombinant adenovirus-based vaccine induces protective immunity against respiratory syncytial virus infection. J. Virol. 2008, 82, 2350–2357. [Google Scholar] [CrossRef]
- Croyle, M.A.; Patel, A.; Tran, K.N.; Gray, M.; Zhang, Y.; Strong, J.E.; Feldmann, H.; Kobinger, G.P. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice. PLoS One 2008, 3, e3548. [Google Scholar] [CrossRef]
- Xu, Q.; Pichichero, M.E.; Simpson, L.L.; Elias, M.; Smith, L.A.; Zeng, M. An adenoviral vector-based mucosal vaccine is effective in protection against botulism. Gene Ther. 2009, 16, 367–375. [Google Scholar] [CrossRef]
- Richardson, J.S.; Abou, M.C.; Tran, K.N.; Kumar, A.; Sahai, B.M.; Kobinger, G.P. Impact of systemic or mucosal immunity to adenovirus on Ad-based Ebola virus vaccine efficacy in guinea pigs. J. Infect. Dis. 2011, 204, S1032–S1042. [Google Scholar] [CrossRef]
- Draghia, R.; Caillaud, C.; Manicom, R.; Pavirani, A.; Kahn, A.; Poenaru, L. Gene delivery into the central nervous system by nasal instillation in rats. Gene Ther. 1995, 2, 418–423. [Google Scholar]
- Damjanovic, D.; Zhang, X.; Mu, J.; Medina, M.F.; Xing, Z. Organ distribution of transgene expression following intranasal mucosal delivery of recombinant replication-defective adenovirus gene transfer vector. Genet. Vaccines Ther. 2008, 6, 5. [Google Scholar] [CrossRef]
- Huang, D.; Pereboev, A.V.; Korokhov, N.; He, R.; Larocque, L.; Gravel, C.; Jaentschke, B.; Tocchi, M.; Casley, W.L.; Lemieux, M.; Curiel, D.T.; Chen, W.; Li, X. Significant alterations of biodistribution and immune responses in Balb/c mice administered with adenovirus targeted to CD40(+) cells. Gene Ther. 2008, 15, 298–308. [Google Scholar] [CrossRef]
- Lemiale, F.; Kong, W.P.; Akyürek, L.M.; Ling, X.; Huang, Y.; Chakrabarti, B.K.; Eckhaus, M.; Nabel, G.J. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J. Virol. 2003, 77, 10078–10087. [Google Scholar]
- Näslund, T.I.; Uyttenhove, C.; Nordström, E.K.; Colau, D.; Warnier, G.; Jondal, M.; Van den Eynde, B.J.; Liljeström, P. Comparative prime-boost vaccinations using Semliki Forest virus, adenovirus, and ALVAC vectors demonstrate differences in the generation of a protective central memory CTL response against the P815 tumor. J. Immunol. 2007, 178, 6761–6769. [Google Scholar]
- Barefoot, B.; Thornburg, N.J.; Barouch, D.H.; Yu, J.S.; Sample, C.; Johnston, R.E.; Liao, H.X.; Kepler, T.B.; Haynes, B.F.; Ramsburg, E. Comparison of multiple vaccine vectors in a single heterologous prime-boost trial. Vaccine 2008, 26, 6108–6118. [Google Scholar] [CrossRef]
- Gao, W.; Soloff, A.C.; Lu, X.; Montecalvo, A.; Nguyen, D.C.; Matsuoka, Y.; Robbins, P.D.; Swayne, D.E.; Donis, R.O.; Katz, J.M.; Barratt-Boyes, S.M.; Gambotto, A. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J. Virol. 2006, 80, 1859–1864. [Google Scholar]
- Hoelscher, M.A.; Garg, S.; Bangari, D.S.; Belser, J.A.; Lu, X.; Stephenson, I.; Bright, R.A.; Katz, J.M.; Mittal, S.K.; Sambhara, S. Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet 2006, 367, 475–481. [Google Scholar] [CrossRef]
- Thomas, P.G.; Keating, R.; Hulse-Post, D.J.; Doherty, P.C. Cell-mediated protection in influenza infection. Emerg. Infect. Dis. 2006, 12, 48–54. [Google Scholar] [CrossRef]
- Lin, J.; Somanathan, S.; Roy., S.; Calcedo, R.; Wilson, J.M. Lung homing CTLs and their proliferation ability are important correlates of vaccine protection against influenza. Vaccine 2010, 28, 5669–5675. [Google Scholar] [CrossRef]
- Toro, H.; Tang, D.C.; Suarez, D.L.; Zhang, J.; Shi, Z. Protection of chickens against avian influenza with non-replicating adenovirus-vectored vaccine. Vaccine 2008, 26, 2640–2646. [Google Scholar] [CrossRef]
- Shmarov, M.M.; Sedova, E.S.; Verkhovskaya, L.V.; Rudneva, I.A; Bogacheva, E.A.; Barykova, Y.A.; Shcherbinin, D.N.; Lysenko, A.A.; Tutykhina, I.L.; Logunov, D.Y.; Smirnov, Y.A.; Naroditsky, B.S.; Gintsburg, A.L. Induction of a protective heterosubtypic immune response against the Influenza virus by using recombinant adenoviral vectors expressing hemagglutinin of the Influenza H5 virus. Acta Naturae 2010, 2, 111–118. [Google Scholar]
- Du, L.; Zhou, Y.; Jiang, S. Research and development of universal influenza vaccines. Microbes Infect. 2010, 12, 280–286. [Google Scholar] [CrossRef]
- Toro, H.; Tang, D.C.; Suarez, D.L.; Sylte, M.J.; Pfeiffer, J.; Van Kampen, K.R. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector. Vaccine 2007, 25, 2886–2891. [Google Scholar] [CrossRef]
- Soboleski, M.R.; Gabbard, J.D.; Price, G.E.; Misplon, J.A.; Lo, C.Y.; Perez, D.R.; Ye, J.; Tompkins, S.M.; Epstein, S.L. Cold-adapted influenza and recombinant adenovirus vaccines induce cross-protective immunity against pH1N1 challenge in mice. PLoS One 2011, 6, e21937. [Google Scholar]
- Price, G.E.; Soboleski, M.R.; Lo, C.Y.; Misplon, J.A.; Quirion, M.R.; Houser, K.V.; Pearce, M.B.; Pappas, C.; Tumpey, T.M.; Epstein, S.L. Single-dose mucosal immunization with a candidate universal influenza vaccine provides rapid protection from virulent H5N1, H3N2 and H1N1 viruses. PLoS One 2010, 5, e13162. [Google Scholar]
- Park, K.S.; Lee, J.; Ahn, S.S.; Byun, Y.H.; Seong, B.L.; Baek, Y.H.; Song, M.S.; Choi, Y.K.; Na, Y.J.; Hwang, I.; Sung, Y.C.; Lee, C.G. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge. Virology 2009, 395, 182–189. [Google Scholar] [CrossRef]
- Price, G.E.; Soboleski, M.R.; Lo, C.Y.; Misplon, J.A.; Pappas, C.; Houser, K.V.; Tumpey, T.M.; Epstein, S.L. Vaccination focusing immunity on conserved antigens protects mice and ferrets against virulent H1N1 and H5N1 influenza A viruses. Vaccine 2009, 27, 6512–6521. [Google Scholar]
- Hasegawa, H.; Ichinohe, T.; Ainai, A.; Tamura, S.; Kurata, T. Development of mucosal adjuvants for intranasal vaccine for H5N1 influenza viruses. Ther. Clin. Risk Manag. 2009, 5, 125–132. [Google Scholar]
- Tamura, S.; Tanimoto, T.; Kurata, T. Mechanisms of broad cross-protection provided by influenza virus infection and their application to vaccines. Jpn. J. Infect. Dis. 2005, 58, 195–207. [Google Scholar]
- Ichinohe, T.; Tamura, S.; Kawaguchi, A.; Ninomiya, A.; Imai, M.; Itamura, S.; Odagiri, T.; Tashiro, M.; Takahashi, H.; Sawa, H.; Mitchell, W.M.; Strayer, D.R.; Carter, W.A.; Chiba, J.; Kurata, T.; Sata, T.; Hasegawa, H. Cross-protection against H5N1 influenza virus infection is afforded by intranasal inoculation with seasonal trivalent inactivated influenza vaccine. J. Infect. Dis. 2007, 196, 1313–1320. [Google Scholar] [CrossRef]
- Perrone, L.A.; Ahmad, A.; Veguilla, V.; Lu, X.; Smith, G.; Katz, J.M.; Pushko, P.; Tumpey, T.M. Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. J. Virol. 2009, 83, 5726–5734. [Google Scholar]
- Lau, Y.F.; Wright, A.R.; Subbarao, K. The contribution of systemic and pulmonary immune effectors to vaccine-induced protection from H5N1 influenza virus infection. J. Virol. 2012, 86, 5089–5098. [Google Scholar] [CrossRef]
- Gustin, K.M.; Maines, T.R.; Belser, J.A.; van Hoeven, N.; Lu, X.; Dong, L.; Isakova-Sivak, I.; Chen, L.M.; Voeten, J.T.; Heldens, J.G.; van den Bosch, H.; Cox, N.J.; Tumpey, T.M.; Klimov, A.I.; Rudenko, L.; Donis, R.O.; Katz, J.M. Comparative immunogenicity and cross-clade protective efficacy of mammalian cell-grown inactivated and live attenuated H5N1 reassortant vaccines in ferrets. J. Infect. Dis. 2011, 204, 1491–1499. [Google Scholar] [CrossRef]
- Zhang, J.; Tarbet, E.B.; Feng, T.; Shi, Z.; Van Kampen, K.R.; Tang, D.C. Adenovirus-vectored drug-vaccine duo as a rapid-response tool for conferring seamless protection against influenza. PLoS One 2011, 6, e22605. [Google Scholar]
- McConnell, M.J.; Hanna, P.C.; Imperiale, M.J. Adenovirus-based prime-boost immunization for rapid vaccination against anthrax. Mol. Ther. 2007, 15, 203–210. [Google Scholar] [CrossRef]
- Holst, P.J.; Bartholdy, C.; Stryhn, A.; Thomsen, A.R.; Christensen, J.P. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens. J. Gen. Virol. 2007, 88, 1708–1716. [Google Scholar] [CrossRef]
- Fernández, E.; Toledo, J.R.; Chiong, M.; Parra, F.; Rodríguez, E.; Montero, C.; Méndez, L.; Capucci, L.; Farnós, O. Single dose adenovirus vectored vaccine induces a potent and long-lasting immune response against rabbit hemorrhagic disease virus after parenteral or mucosal administration. Vet. Immunol. Immunopathol. 2011, 142, 179–188. [Google Scholar] [CrossRef]
- Weaver, E.A.; Rubrum, A.M.; Webby, R.J.; Barry, M.A. Protection against divergent influenza H1N1 virus by a centralized influenza hemagglutinin. PLoS One 2011, 6, e18314. [Google Scholar]
- Hoelscher, M.A.; Jayashankar, L.; Garg, S.; Veguilla, V.; Lu, X.; Singh, N.; Katz, J.M.; Mittal, S.K.; Sambhara, S. New pre-pandemic influenza vaccines: an egg- and adjuvant-independent human adenoviral vector strategy induces long-lasting protective immune responses in mice. Clin. Pharmacol. Ther. 2007, 82, 665–671. [Google Scholar] [CrossRef]
- Rao, S.S.; Kong, W.P.; Wei, C.J.; Van Hoeven, N.; Gorres, J.P.; Nason, M.; Andersen, H.; Tumpey, T.M.; Nabel, G.J. Comparative efficacy of hemagglutinin, nucleoprotein, and matrix 2 protein gene-based vaccination against H5N1 influenza in mouse and ferret. PLoS One 2010, 5, e9812. [Google Scholar]
- Patel, A.; Tran, K.; Gray, M.; Li, Y.; Ao, Z.; Yao, X.; Kobasa, D.; Kobinger, G.P. Evaluation of conserved and variable influenza antigens for immunization against different isolates of H5N1 viruses. Vaccine 2009, 27, 3083–3089. [Google Scholar] [CrossRef]
- Chen, Q.; Kuang, H.; Wang, H.; Fang, F.; Yang, Z.; Zhang, Z.; Zhang, X.; Chen, Z. Comparing the ability of a series of viral protein-expressing plasmid DNAs to protect against H5N1 influenza virus. Virus Gene. 2009, 38, 30–38. [Google Scholar] [CrossRef]
- Nayak, B.; Kumar, S.; DiNapoli, J.M.; Paldurai, A.; Perez, D.R.; Collins, P.L.; Samal, S.K. Contributions of the avian influenza virus HA, NA, and M2 surface proteins to the induction of neutralizing antibodies and protective immunity. J. Virol. 2010, 84, 2408–2420. [Google Scholar] [CrossRef]
- Continued evolution of highly pathogenic avian influenza A (H5N1): updated nomenclature. Influenza Other Respi. Viruses 2012, 6, 1–5. [CrossRef]
- Hoelscher, M.A.; Singh, N.; Garg, S.; Jayashankar, L.; Veguilla, V.; Pandey, A.; Matsuoka, Y.; Katz, J.M.; Donis, R.; Mittal, S.K.; Sambhara, S. A broadly protective vaccine against globally dispersed clade 1 and clade 2 H5N1 influenza viruses. J. Infect. Dis. 2008, 197, 1185–1188. [Google Scholar] [CrossRef]
- Hu, X.; Meng, W.; Dong, Z.; Pan, W.; Sun, C.; Chen, L. Comparative immunogenicity of recombinant adenovirus-vectored vaccines expressing different forms of hemagglutinin (HA) proteins from the H5 serotype of influenza A viruses in mice. Virus Res. 2011, 155, 156–162. [Google Scholar] [CrossRef]
- Patel, A.; Gray, M.; Li, Y.; Kobasa, D.; Yao, X.; Kobinger, G.P. Co-administration of certain DNA vaccine combinations expressing different H5N1 influenza virus antigens can be beneficial or detrimental to immune protection. Vaccine 2012, 30, 626–636. [Google Scholar] [CrossRef]
- Holman, D.H.; Wang, D.; Raja, N.U.; Luo, M.; Moore, K.M.; Woraratanadharm, J.; Mytle, N.; Dong, J.Y. Multi-antigen vaccines based on complex adenovirus vectors induce protective immune responses against H5N1 avian influenza viruses. Vaccine 2008, 26, 2627–2639. [Google Scholar] [CrossRef]
- Pratt, W.D.; Wang, D.; Nichols, D.K.; Luo, M.; Woraratanadharm, J.; Dye, J.M.; Holman, D.H.; Dong, J.Y. Protection of nonhuman primates against two species of Ebola virus infection with a single complex adenovirus vector. Clin. Vaccine Immunol. 2010, 17, 572–581. [Google Scholar] [CrossRef]
- Holman, D.H.; Wang, D.; Raviprakash, K.; Raja, N.U.; Luo, M.; Zhang, J.; Porter, K,R.; Dong, J.Y. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes. Clin. Vaccine Immunol. 2007, 14, 182–189. [Google Scholar] [CrossRef]
- Epstein, S.L.; Kong, W.P.; Misplon, J.A.; Lo, C.Y.; Tumpey, T.M.; Xu, L.; Nabel, G.J. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine 2005, 23, 5404–5410. [Google Scholar] [CrossRef]
- Tompkins, S., M.; Zhao, Z.S.; Lo, C.Y.; Misplon, J.A.; Liu, T.; Ye, Z.; Hogan, R.J.; Wu, Z.; Benton, K.A.; Tumpey, T.M.; Epstein, S.L. Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1. Emerg. Infect. Dis. 2007, 13, 426–435. [Google Scholar] [CrossRef]
- Lo, C.Y.; Wu, Z.; Misplon, J.A.; Price, G.E.; Pappas, C.; Kong, W.P.; Tumpey, T.M.; Epstein, S.L. Comparison of vaccines for induction of heterosubtypic immunity to influenza A virus: cold-adapted vaccine versus DNA prime-adenovirus boost strategies. Vaccine 2008, 26, 2062–2072. [Google Scholar]
- Jegerlehner, A.; Schmitz, N.; Storni, T.; Bachmann, M.F. Influenza A vaccine based on the extracellular domain of M2: Weak protection mediated via antibody-dependent NK cell activity. J. Immunol. 2004, 172, 5598–5605. [Google Scholar]
- Wei, C.J.; Yassine, H.M.; McTamney, P.M.; Gall, J.G.; Whittle, J.R.; Boyington, J.C.; Nabel, G.J. Elicitation of broadly neutralizing influenza antibodies in animals with previous influenza exposure. Sci. Transl. Med. 2012, 4, 147–ra114. [Google Scholar] [CrossRef]
- Maeda, K.; West, K.; Hayasaka, D.; Ennis, F.A.; Terajima, M. Recombinant adenovirus vector vaccine induces stronger cytotoxic T-cell responses than recombinant vaccinia virus vector, plasmid DNA, or a combination of these. Viral Immunol. 2005, 18, 657–667. [Google Scholar] [CrossRef]
- Lin, S.C.; Huang, M.H.; Tsou, P.C.; Huang, L.M.; Chong, P.; Wu, S.C. Recombinant trimeric HA protein immunogenicity of H5N1 avian influenza viruses and their combined use with inactivated or adenovirus vaccines. PLoS One 2011, 6, e20052. [Google Scholar]
- Hung, P.P.; Chanda, P.K.; Natuk, R.J.; Mason, B.B.; Chengalvala, M.; Bhat, B.M.; Molnar-Kimber, K.L.; Dheer, S.K.; Morin, J.E.; Mizutani, S.; et al. Adenovirus vaccine strains genetically engineered to express HIV-1 or HBV antigens for use as live recombinant vaccines. Nat. Immun. Cell Growth Regul. 1990, 9, 160–164. [Google Scholar]
- Hsu, K.H.; Lubeck, M.D.; Bhat, B.M.; Bhat, R.A.; Kostek, B.; Selling, B.H.; Mizutani, S.; Davis, A.R.; Hung, P.P. Efficacy of adenovirus-vectored respiratory syncytial virus vaccines in a new ferret model. Vaccine 1994, 12, 607–612. [Google Scholar] [CrossRef]
- Alexander, J.; Ward, S.; Mendy, J.; Manayani, D.J.; Farness, P.; Avanzini, J.B.; Guenther, B.; Garduno, F.; Jow, L.; Snarsky, V.; Ishioka, G.; Dong, X.; Vang, L.; Newman, M.J.; Mayall, T. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin. PLoS One 2012, 7, e31177. [Google Scholar]
- National Institutes of Health. Available online: http://www.clinicaltrials.gov/ (accessed on 20 August 2012).
- Gao, Y.W.; Xia, X.Z.; Wang, L.G.; Liu, D.; Huang, G. Construction and experimental immunity of recombinant replication-competent canine adenovirus type 2 expressing hemagglutinin gene of H5N1 subtype tiger influenza virus. Wei Sheng Wu Xue Bao 2006, 46, 297–300. [Google Scholar]
- Pfeiffer, D.U.; Minh, P.Q.; Martin, V.; Epprecht, M.; Otte, M.J. An analysis of the spatial and temporal patterns of highly pathogenic avian influenza occurrence in Vietnam using national surveillance data. Vet. J. 2007, 174, 302–309. [Google Scholar] [CrossRef]
- Les, S.; Dung, D.H. Vaccination of poultry in Vietnam against H5N1 highly pathogenic avian influenza. Available online: http://www.aitoolkit.org/site/DefaultSite/filesystem/documents/CASE%20STUDY_07-09-09%20final.pdf (accessed on 20 August 2012).
- Sánchez Ramos, O.; González Pose, A.; Gómez-Puerta, S.; Noda Gomez, J.; Vega Redondo, A.; Águila Benites, J.C.; Suárez Amarán, L.; Toledo Alonso, J.R. Avian CD154 enhances humoral and cellular immune responses induced by an adenovirus vector-based vaccine in chickens. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 259–265. [Google Scholar] [CrossRef]
- Toro, H.; Suarez, D.L.; Tang, D.C.; van Ginkel, F.W.; Breedlovea, C. Avian influenza mucosal vaccination in chickens with replication-defective recombinant adenovirus vaccine. Avian. Dis. 2011, 55, 43–47. [Google Scholar] [CrossRef]
- Madore, D.V.; Meade, B.D.; Rubin, F.; Deal, C.; Lynn, F. Meeting Contributors. Utilization of serologic assays to support efficacy of vaccines in nonclinical and clinical trials: meeting at the crossroads. Vaccine 2010, 28, 4539–4547. [Google Scholar] [CrossRef]
- Epstein, S.L.; Price, G.E. Cross-protective immunity to influenza A viruse. Expert Rev. Vaccines 2010, 9, 1325–1341. [Google Scholar] [CrossRef]
- Chen, M.W.; Cheng, T.J.; Huang, Y.; Jan, J.T.; Ma, S.H.; Yu, A.L.; Wong, C.H.; Ho, D.D. A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc. Natl. Acad. Sci. USA 2008, 105, 13538–13543. [Google Scholar]
- Laddy, D.J.; Yan, J.; Kutzler, M.; Kobasa, D.; Kobinger, G.P.; Khan, A.S.; Greenhouse, J.; Sardesai, N.Y.; Draghia-Akli, R.; Weiner, D.B. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens. PLoS One 2008, 3, e2517. [Google Scholar]
- Jones, F.R.; Gabitzsch, E.S.; Xu, Y.; Balint, J.P.; Borisevich, V.; Smith, J.; Smith, J.; Peng, B.H.; Walker, A.; Salazar, M.; Paessler, S. Prevention of influenza virus shedding and protection from lethal H1N1 challenge using a consensus 2009 H1N1 HA and NA adenovirus vector vaccine. Vaccine 2011, 29, 7020–7026. [Google Scholar] [CrossRef]
- Steitz, J.; Barlow, P.G.; Hossain, J.; Kim, E.; Okada, K.; Kenniston, T.; Rea, S.; Donis, R.O.; Gambotto, A. A candidate H1N1 pandemic influenza vaccine elicits protective immunity in mice. PLoS One 2010, 5, e10492. [Google Scholar]
- Catanzaro, A.T.; Koup, R.A.; Roederer, M.; Bailer, R.T.; Enama, M.E.; Moodie, Z.; Gu, L.; Martin, J.E.; Novik, L.; Chakrabarti, B.K.; Butman, B.T.; Gall, J.G.; King, C.R.; Andrews, C.A.; Sheets, R.; Gomez, P.L.; Mascola, J.R.; Nabel, G.J.; Graham, B.S. Vaccine Research Center 006 Study Team. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J. Infect. Dis. 2006, 194, 1638–1649. [Google Scholar]
- International Federation of Pharmaceutical Manufacturers & Associations. Cell culture based vaccines. Available online: http://www.ifpma.org/resources/influenza-vaccines/influenza- vaccines/cell-culture-based-vaccine.html (accessed on 21 October 2012).
- Novartis Vaccines and Diagnostics, Inc. Novartis Holly Springs cell culture influenza vaccine manufacturing facility first to be declared pandemic ready by U.S. government. Available online: http://www.novartisvaccines.com/newsroom/media-releases/2011/Holly_Springs_ HHS_pandemic_ready_US_Template_FINAL.pdf (accessed on 21 October 2012).
- Girard, M.P.; Katz, J.M.; Pervikov, Y.; Hombach, J.; Tam, J.S. Report of the 7th meeting on Evaluation of Pandemic Influenza Vaccines in Clinical Trials, World Health Organization, Geneva, 17-18, February 2011. Vaccine 2011, 29, 7579–7586. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, J. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines. Viruses 2012, 4, 2711-2735. https://doi.org/10.3390/v4112711
Zhang J. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines. Viruses. 2012; 4(11):2711-2735. https://doi.org/10.3390/v4112711
Chicago/Turabian StyleZhang, Jianfeng. 2012. "Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines" Viruses 4, no. 11: 2711-2735. https://doi.org/10.3390/v4112711
APA StyleZhang, J. (2012). Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines. Viruses, 4(11), 2711-2735. https://doi.org/10.3390/v4112711