Animal Models, Prophylaxis, and Therapeutics for Arenavirus Infections
Abstract
:2. Animal Modeling
2.1. The Guinea Pig as a Model for Hemorrhagic Fever
Animal | Pathogen | Signs of Disease |
---|---|---|
Hartley Guinea Pig | GTOV | Lesions in the gastrointestinal tract, lung, intestines, vessels, spleen, and lymph nodes. |
Interstitial pneumonia | ||
Viral antigen in the lungs, liver, lymph nodes, spleen, intestines, lung, heart, brain, and stomach | ||
Lethal Disease characterized by pulmonary and adrenal hemorrhage and bone marrow depletion | ||
LASV | Infection results in 30% mortality and viremia | |
Animals not succumbing to disease were relatively resistant to infection | ||
JUNV | Complete mortality when infected with the Romero strain | |
Infection with the Romero strain was associated with encephalitis, paralysis, decrease in body weight, elevated AST, thrombocytopenia, febrile temperatures | ||
XJ strain caused limited pathogenicity | ||
FLEV | Lethal in 20% of animals | |
Disease marked by weight loss | ||
No signs of disease in animals that did not succumb to disease | ||
PICV | Resistant to Infection with adapted PICV strains | |
Serial passages of PICV leads to a debilitating viral infection that results in mortality | ||
Serially passaged PICV infection results in high viremia and viral titers in tissues and culminates in terminal shock | ||
Strain 13 Guinea Pig | GTOV | Lesions in the gastrointestinal tract, lung, intestines, vessels, spleen, and lymph nodes |
Interstitial pneumonia | ||
Viral antigen in the lungs, liver, lymph nodes, spleen, intestines, lung, heart, brain, and stomach | ||
Lethal Disease characterized by pulmonary and adrenal hemorrhage and bone marrow depletion | ||
LASV | Higher lever of viral replication and onset of viremia faster when compared to Hartley guinea pigs | |
Interstitial pneumonia | ||
Lesions in the kidney and spleen | ||
Uniformed lethality | ||
Strain 13 Guinea Pig | JUNV | Complete mortality when infected with the Romero strain |
Infection with the Romero strain was associated with encephalitis, paralysis, decrease in body weight, elevated AST, thrombocytopenia, febrile temperatures | ||
XJ strain caused limited pathogenicity | ||
PICV | Infection with adapted PICV strains results in mortality |
2.2. The Syrian Golden Hamster as a Model for Hemorrhagic Fever
Animal | Pathogen | Signs of Disease |
---|---|---|
Syrian Golden Hamster | PICV | Infection leads to complete mortality |
Disease is marked by weight loss, elevated AST, viremia, and viral titers in the liver and spleen | ||
Mortality is associated with vascular permeability | ||
FLEV | Infection results in 60–80% mortality depending on the age of the animal | |
Disease is marked by hunched posture, ruffled fur, petechiae, hemorrhage, weight loss, and terminal viremia | ||
Viral titers in the pancreas, kidneys, adrenal glands, heart, lungs, lymph nodes, brain, small intestines, liver and spleen | ||
Mortality may be associated with vascular permeability | ||
PIRV | Infection results in uniform mortality | |
Disease is marked by elevated temperatures, weight loss, viremia, lethargy, petechia, epistaxis, ecchymoses, and neurologic signs of disease | ||
Hemorrhage observed in the liver, lung, heart, spleen, and brain | ||
MHA Hamster | LCMV | Resistance and susceptibility is dependent on the viral strain |
Infection with LCMV-WE results in viremia, weight loss, and mortality 2–3 weeks post challenge | ||
IFN- α/βγ-/- Mice | JUNV | 17%–24% reduction in body weight |
Viral titers in the brain, liver, spleen, and heart | ||
Lesions in the liver | ||
Infection leads to mortality | ||
STAT-1 Knockout Mice | MACV | Infection resulting in mortality |
Disease process is dependent on the route of challenge | ||
Viral titers associated with the spleen, kideny, liver, and lungs | ||
Increases in ALT and AST levels | ||
Changes in cytokine and chemokine levels | ||
Histopathological changes in the liver, thymus, spleen, lymph nodes, and pancreas | ||
CBA Mice | LASV | Intracerebral infection with LASV (Josiah) results in 80–100% mortality |
Clinical signs of disease: weight loss, ruffle fur, loss of mobility, and paralysis | ||
SWR/J mice | Infection results in mild state of disease | |
Infection results in severe disease, high viremia, and viral titers in specific tissues |
2.3. The Mouse as a Model for Hemorrhagic Fever
4. Animal Models for LCMV Infection
5. Therapeutics and Prophylactics
Product | Pathogen | Model | Result Summary | Mechanism |
---|---|---|---|---|
T-705 | adapted PICV | Guinea Pig | Increased survival in treated animals | Disrupts early/intermediate viral replication |
Reductions in fevers and viremia, and reductions in AST levels. | ||||
DEF201/Ribavirin | PICV | Hamsters | Increased survival and decrease in viremia | Promotion of cIFN-α |
TFP | JUNV/TACV | Cell Culture | Reduction in viral replication | Interferes with viral penetration |
CPZ | JUNV/TACV | Cell Culture | Reduction in viral replication | Early entry inhibitor |
ST-336 | TACV | Newborn mice | Increased survival and a delay in mortality | Inhibits viral entry |
ST-294 | TACV | Newborn mice | Increased survival and a delay in mortality | Inhibits pH-induced membrane fusion |
ST-193 | LASV | Strain 13 guinea pigs | Less severe disease, lower viremia, and enhanced survival | Inhibits pH-induced membrane fusion |
Kinase Inhibitor Cocktail | PIRV | Hamsters | Increased survival and decrease in viremia and viral titers | Inhibits kinases required for viral infection |
Immune serum treatment | JUNV | Guinea pigs | Increased survival | Increase of neutralizing antibodies |
Ribavirin | JUNV | Rhesus macaques | Protection from clinical disease | Induction of mutation in RNA-dependent replication |
6. Concluding Remarks and Perspectives
Acknowledgments
Conflict of Interest
References
- Jay, M.T.; Glaser, C.; Fulhorst, C.F. The Arenaviruses. JAVMA 2005, 227, 904–915. [Google Scholar] [CrossRef]
- Price, J.L. Serological evidence of infection of Tacaribe virus and arboviruses in Trinidadian bats. Am. J. Trop. Med. Hyg. 1978, 27, 162–167. [Google Scholar]
- Buchmeier, M.J.; de la Torre, J.-C.; Peters, C.J. Arenaviridae: The Viruses and Their Replication. In Fields Virology; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 1791–1827. [Google Scholar]
- Gowen, B.; Holbrook, M.R. Animal Models of highly pathogenic RNA viral infecitons: Hemorrhagic fever viruses. Antivir Res. 2008, 78, 79–90. [Google Scholar]
- U.S Department of Health and Human Services, Biosafety in Microbiology and Biomedical Laboratories, 5th ed; U.S. Government Printing Office: Washington, DC, USA, 2007.
- Armstrong, C.; Lillie, R.D. Experimental lymphocytic choriomeningitis of monkeys and mice produced by a virus encountered in studies of the 1933 St. Louis encephalitis epidemic. Public Health Rep. 1934, 49, 1027. [Google Scholar]
- Childs, J.E.; Peters, C.J. Ecology and Epidemiology of Arenaviruses and their Hosts. The Arenaviridae; Plenum Press: New York, NY, USA, 1993; pp. 331–384. [Google Scholar]
- Buckley, S.M.; Casals, J. Lassa fever, a new virus disease of man from West Africa. Isolation and characterizaiton of the virus. Am. J. Trop. Med. Hyg. 1970, 19, 680–691. [Google Scholar]
- McCormick, J.B.; Webb, P.; Krebs, J.; Johnson, K.; Smith, E. A prospective study of the epidemiology and ecology of Lassa fever. J. Infect. Dis. 1987, 155, 437–444. [Google Scholar] [CrossRef]
- Cummins, D.; McCormick, J.B.; Bennett, D.; Samba, J.A.; Farrar, B.; Machin, S.J.; Fisher-Hoch, S.P. Acute sensorineural deafness in Lassa fever. J. Am. Med. Assoc. 1990, 264, 2093–2096. [Google Scholar] [CrossRef]
- Peters, C.J. Lymphocytic choriomeningitis virus, Lassa virus, and the South American hemorrhagic fevers. In Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases; Mandell, G.L., Bennett, J.E., Dolin, R., Eds.; Churchill Livingstone: Philadephia, PA, USA, 2000; pp. 1855–1862. [Google Scholar]
- Hall, W.C.; Geisbert, T.W.; Huggins, J.W.; Jahrling, P.B. Experimental infectin of guinea pigs with Venezuelan hemorrhagic fever virus (Guanarito): A model of human disease. Am. J. Trop. Med. Hyg. 1996, 55, 81–88. [Google Scholar]
- Jahrling, P.B.; Smith, S.; Hesse, R.A.; Rhoderick, J.B. Pathogenesis of Lassa virus infection in guinea pigs. Infect Immun. 1982, 37, 771–778. [Google Scholar]
- Yun, N.E.; Linde, N.S.; Dziuba, N.; Zacks, M.A.; Smith, J.N.; Smith, J.K.; Aronson, J.F.; Chumakova, O.V.; Lander, H.M.; Peters, C.J.; et al. Pathogenesis of XJ and Romero Strains of Junin virus in two strains of guinea pigs. Am. J. Trop. Med. Hyg. 2008, 79, 275–282. [Google Scholar]
- Tesh, R.B.; Jahrling, P.B.; Salas, R.A.; Shope, R.E. Description of Guanarito virus (Arenaviridae: Arenavirus), The etiologic agent of Venezuelan Hemorrhagic fever. Am. J. Trop. Med. Hyg. 1994, 50, 452–459. [Google Scholar]
- Jahrling, P.B.; Hesse, R.A.; Rhoderick, J.B.; Elwell, M.A.; Moe, J.B. Pathogenesis of a Pichinde Virus strain adapted to produce lethal infections in Guinea Pigs. Infect Immun 1981, 32, 872–880. [Google Scholar]
- Aronson, J.F.; Herzog, N.K.; Jerrels, T.R. Pathological and virological features of arenavirus disease in guinea pigs. Am. J. Pathol. 1994, 145, 228–235. [Google Scholar]
- Gowen, B.; Barnard, D.L.; Smee, D.; Wong, M.H.; Pace, A.; Jung, K.H.; Winslow, S.G.; Bailey, K.W.; Blatt, L.M.; Sidwell, R.W. Interferon alfacon-1 protects hmasters from lethal pichinde viurs infection. Antimicrob. Agents Chemother. 2005, 49, 2378–2386. [Google Scholar] [CrossRef]
- Gowen, B.B.; Julander, J.G.; London, N.R.; Wowng, M.-H.; Larson, D.; Morrey, J.D.; Li, D.Y.; Bray, M. Assessing changes in vascular permeability in a hamster model of viral hemorrhagic fever. Virology Journal 2011, 7, 240. [Google Scholar]
- Carlton, M.; Gillespie, R.; Garver, J.; Draguljic, D.; Vela, E. The Syrian Golden Hamster as a model to study flexal virus pathogenesis. Archives of Clinical Microbiology 2012, 3, 1–9. [Google Scholar]
- Sbrana, E.; Mateo, R.I.; Xiao, S.-Y.; Popov, V.L.; Newman, P.C.; Tesh, R.B. Clinical laboratory, virologic, and pathologic changes in hamsters experimentally infected with Pirital virus (Arenaviridae): A rodent model of Lassa fever. Am. J. Trop. Med. Hyg. 2006, 74, 1096–1102. [Google Scholar]
- Vela, E.M.; Knostman, K.A.; Warren, R.L.; Garver, J.N.; Stammen, R. The disease progression associated with Pirital virus infection in the Syrian golden hamster. JIDI 2010, 2, 15–23. [Google Scholar]
- Vela, E.M.; Knostman, K.A.; Mott, J.M.; Warren, R.L.; Garver, J.N.; Vela, L.J.; Stammen, R.L. Genistein, a general kinase inhibitor, as a potential antiviral for arenaviral hemorrhagic fever as described in the Pirital virus-Syrian golden hamster model. Antiviral Res. 2010, 87, 318–328. [Google Scholar] [CrossRef]
- Xiao, S.-Y.; Zhang, H.; Yang, Y.; Tesh, R.B. Pirital virus (Arenaviridae) infection in the Syrian golden hamster, Mesocricetus auratus: A new animal model for arenaviral hemorrhagic fever. Am. J. Trop. Med. Hyg. 2001, 64, 111–118. [Google Scholar]
- Fulhorst, C.F.; Bowen, M.D.; Salas, R.A.; de Manzione, N.M.C.; Duno, G.; Utrera, A.; Ksiazek, T.G.; Peters, C.J.; Nichol, S.T.; de Miller, E.; et al. Isolation and characterization of Pirital virus, a newly discovered South American arenavirus. Am. J. Trop. Med. Hyg. 1997, 56, 548–553. [Google Scholar]
- Bradfute, S.B.; Stuthman, K.S.; Shurtleff, A.C.; Bavari, S. A STAT-1 knockout mouse model for Machupo virus pathogenesis. Virology Journal 2011, 8, 300. [Google Scholar] [CrossRef]
- Kolokoltsova, O.A.; Yun, N.E.; Poussard, A.L.; Smith, J.K.; Smith, J.N.; Salazar, M.; Walker, A.; Tseng, C.T.K.; Aronson, J.F.; Paessler, S. Mice lacking alpha/beta and gamma interferon receptors are susceptible to Junin virus infection. J. Virol. 2010, 84, 13063–13067. [Google Scholar] [CrossRef]
- Uckun, F.M.; Petkevich, A.S.; Vassilev, A.O.; Tibbles, H.E.; Titov, L. Stampidine prevents mortatiy in an experimental mouse model of viral hemorrhagic fever caused by Lassa virus. Bmc. Infect. Dis. 2004, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jahrling, P.B.; Hesse, R.A.; Eddy, G.A.; Johnson, K.M.; Callis, R.T.; Stephen, E.L. Lassa virus infection of rhesus monkeys: Pathogenesis and treatment with ribavirin. J. Infect. Dis. 1980, 141, 580–589. [Google Scholar] [CrossRef]
- Lange, J.V.; Mitchell, S.W.; McCormick, J.B.; Walker, D.H.; Evatt, B.L.; Ramsey, R.R. Kinetic study of platelets adn fibrinogen in Lassa virus-infected monkeys and early pathologic events in Mopeia virus-infected monkeys. Am. J. Trop. Med. Hyg. 1985, 34, 999–1007. [Google Scholar]
- Walker, D.H.; Johnson, K.M.; Lange, J.V.; Gardner, J.J.; Kiley, M.P.; McCormick, J.B. Experimental infection of rhesus monkeys with Lassa virus and closely related arenavirus, Mozambique virus. J. Infect. Dis. 1982, 141, 360–368. [Google Scholar]
- Lange, J.V.; Mitchell, S.W.; McCormick, J.B.; Walker, D.H.; Evatt, B.L.; Ramsey, R.R. Kinetic Study of Platelets and Fibrinogen in Lassa Virus-Infected Monkeys and Early Pathologic Events in Mopeia Virus-Infected Monkeys. Am. J. Trop. Med. Hyg. 1985, 34, 999–1007. [Google Scholar]
- Callis, R.T.; Jahrling, P.B.; DePeoli, A. Pathology of Lassa virus infection in the rhesus monkey. Am. J. Trop. Med. Hyg. 1982, 31, 1038–1045. [Google Scholar]
- Fisher-Hoch, S.P.; Mitchell, S.W.; Sasso, D.R.; Lange, J.V.; Ramsey, R.R.; McCormick, J.B. Physiologic and immunologic disturbances associated with shock in a primate model of Lassa fever. J. Infect. Dis. 1987, 155, 465–474. [Google Scholar] [CrossRef]
- Hensley, L.E.; Smith, M.A.; Geisbert, J.B.; Fritz, E.A.; Daddario-DiCaprio, K.M.; Larsen, T.; Geisbert, T.W. Pathogenesis of lassa fever in cynomolgus macaques. J. Virol. 2011, 8, 1–15. [Google Scholar] [CrossRef]
- Mcleod, C.G.; Stookey, J.L.; Eddy, G.A.; Scott, K. Pathology of chronic Bolivian hemorrhagic fever in the rhesus monkey. Am. J. Pathol. 1976, 84, 211–224. [Google Scholar]
- Scott, S.K.; Hickman, R.L.; Lang, C.M.; Eddy, G.A.; Hilmas, D.; Spertzel, R.O. Studies of the coagulation system and blood pressure during experimental Bolivian hemorrhagic fever in rhesus monkeys. Am. J. Trop. Med. Hyg. 1978, 27, 1232–1239. [Google Scholar]
- Mcleod, C.G.; Stookey, J.L.; White, J.D.; Eddy, G.A.; Fry, G.A. Pathology of Bolivian hemorrhagic fever in the African green monkey. Am. J. Trop. Med. Hyg. 1978, 27, 822–826. [Google Scholar]
- Wagner, F.S.; Eddy, G.A.; Brand, O.M. The African green monkey as an alternate primate for studying Machupo virus infection. Am. J. Trop. Med. Hyg. 1977, 26, 159–162. [Google Scholar]
- Avila, M.; Samoilovich, S.R.; Laguens, R.P.; Merani, M.S.; Weissenbacher, M.C. Protection of Junin virus-infected marmosets by passive administration of immune serum: Association with late neurologic signs. J. Med. Virol. 1987, 21, 67–74. [Google Scholar] [CrossRef]
- Carrion, R.; Brasky, K.; Mansfield, K.; Johnson, C.; Gonzales, M.; Ticer, A.; Lukashevich, I.S.; Tardif, S.; Patterson, J. Lassa virus infeciton in experimentally infected marmosets: Liver pathology and immunophenotypic alterations in target tissues. J. Virol. 2007, 81, 6482–6490. [Google Scholar] [CrossRef]
- Lukashevich, I.S.; Carrion, J.; Salvato, M.S.; Mansfield, K.; Brasky, K.; Zapata, J.; Cairo, C.; Goicochea, M.; Hoosien, G.E.; Ticer, A.; et al. Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates. Vaccine 2008, 26, 5246–5254. [Google Scholar] [CrossRef]
- Baldridge, J.; McGraw, T.S.; Paoletti, A.; Buchmeier, M.J. Antibody prevents the establishment of persistent arenavirus infection in synergy with endogenous T cells. J. Virol. 1997, 71, 755–758. [Google Scholar]
- Buchmeier, M.J.; Welsh, R.M.; Dutko, F.J.; Oldstone, M.B. The virology and immunobiology of Lymphocytic choriomeningitis virus infection. Adv. Immunol. 1980, 30, 275–331. [Google Scholar] [CrossRef]
- Oldstone, M.B.; Tishon, A.; Buchmeier, M.J. Virus-induced immune complex disease: Genetic control of C1q binding complexes in the circulation of mice persistently infected with Lymphocytic choriomeningitis virus. J. Immunol. 1983, 130, 912–918. [Google Scholar]
- Monjan, A.A.; Cole, G.A.; Gilden, D.H.; Nathanson, N. Pathogenesis of cerebellar hypoplasia produced by Lymphocytic choriomeningitis virus infection of neonatal rats. J. Neuropathol. Exp. Neurol. 1973, 32, 110–124. [Google Scholar] [CrossRef]
- Genovesi, E.V.; Peters, C.J. Susceptibility of inbred Syrian golden hamsters (Mesocricetus auratus) to leathal disease by Lymphocytic choriomeningitis virus infection. Proc. Soc. Exp. Biol. Med. 1987, 185, 250–261. [Google Scholar]
- Genovesi, E.V.; Johnson, A.J.; Peters, C.J. Susceptibility and resistance of inbred strains of Syrian golden hamsters (Mesocricetus auratus) to lethal disease by Lymphocytic choriomeningitis virus. J. Gen. Virol. 1988, 69, 2209–2220. [Google Scholar] [CrossRef]
- Lukashevich, I.S.; Djavani, M.; Rodas, J.D.; Zapata, J.; Usborne, A.; Emerson, C.; Mitchen, J.; Jahrling, P.B. Salvato, M.S. Hemorrhagic fever occurs after intravenous, but not after intragastric, inoculation of rhesus macaques wiht Lymphocytic choriomeningitis virus. J. Med. Virol. 2002, 67, 171–186. [Google Scholar] [CrossRef]
- Rodas, J.D.; Lukashevich, I.S.; Zapata, J.; Cairo, C.; Tikhonov, I.; Djavani, M.; Pauza, D.; Salvato, M.S. Mucosal arenavirus infection of primates can protect them from lethal hemorrhagic fever. J. Med. Virol. 2004, 72, 424–435. [Google Scholar] [CrossRef]
- Montali, R.J.; Connolly, B.M.; Armstrong, D.L.; Scanga, C.A.; Holmes, K.V. Pathology and immunohistochemistry of callitrichid hepatitis, an emerging disease of captive new world primates caused by Lymphocytic Choriomeningitis virus. Am. J. Pathol. 1995, 148, 1441–1449. [Google Scholar]
- Kenyon, R.H.; Green, D.E.; Eddy, G.A.; Peters, C.J. Treatment of junin virus-infected guinea pigs with immune serum: Development of late neurological disease. J. Med. Virol. 1986, 20, 207–218. [Google Scholar] [CrossRef]
- McKee., K.T., Jr.; Huggins, J.W.; Trahan, C.J.; Mahlandt, B. Ribavirin prophylaxis and therapy for experimental argentine hemorrhagic fever. Antimicrob. Agents Chemother. 1988, 32, 1304–1309. [Google Scholar] [CrossRef]
- McCormick, J.B.; King, I.; Webb, P.; Johnson, K.; O'Sullivan, R.; Smith, E.; Tripple, S.; Tong, T. Lassa fever: Effective therapy with Ribavirin. N. Engl. J. Med. 1986, 314, 20–26. [Google Scholar] [CrossRef]
- Furuta, Y.; Takahashi, Y.; Fukuda, M.; Kuno, T.; Kamiyama, K.; Kozaki, N.; Nomura, H.; Egawa, H.; Shiraki, K. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob. Agents. Chemother. 2002, 46, 977–981. [Google Scholar] [CrossRef]
- Furuta, Y.; Takahashi, Y.; Kuno-Maekawa, M.; Sangawa, H.; Uehara, S.; Kozak, N.; Nomura, H.; Egawa, H.; Shiraki, K. Mechanism of action of T-705 against influenza. Antimicrob. Agents. Chemother. 2005, 49, 981–986. [Google Scholar]
- Sidwell, R.W.; Barnard, D.I.; Day, C.W.; Smee, D.F.; Bailey, K.W.; Wong, M.H.; Morrey, J.D.; Furuta, Y. Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice. Antimicrob. Agents. Chemother. 2007, 51, 845–851. [Google Scholar] [CrossRef]
- Gowen, B.B.; Wong, M.H.; Jung, K.H.; Sanders, A.B.; Mendenhall, M.; Bailey, K.W.; Furuta, Y.; Sidwell, R.W. In Vitro and in vivo activities of T-705 against Arenavirus and Bunyavirus Infections. Antimicrob. Agents. Chemother. 2007, 51, 3168–3176. [Google Scholar] [CrossRef]
- Mendenhall, M.; Russell, A.; Smee, D.; Hall, J.; Skirpstunas, R.; Furuta, Y.; Gowen, B. Effective Oral Favipiravir (T-705) Therapy Initiated after the Onset of Clinical Disease in a Model of Arenavirus Hemorrhagic . PLoS Negl. Trop. Dis. 2011, 5, e1342. [Google Scholar] [CrossRef]
- Mendenhall, M.; Russell, A.; Juelich, T.; Messina, E.; Smee, D.; Freiberg, A.; Holbrook, M.R.; Furuta, Y.; de la Torre, J.-C.; Nunberg, J.H.; et al. T-705 (Favipiravir) Inhibition of Arenavirus Replication in Cell Culture. Antimicrob. Agents. Chemother. 2011, 55, 782–787. [Google Scholar] [CrossRef]
- Gowen, B.; Ennis, J.; Russell, A.; Sefing, E.J.; Wong, M.H.; Turner, J. Use of Recombinant Adenovirus Vectored Consensus IFN-á to Avert Severe Arenavirus Infection. PLoS One 2011, 6, e26072. [Google Scholar]
- Gowen, B.; Smee, D.; Wong, M.H.; Pace, A.; Jung, K.H.; Bailey, K.W.; Blatt, L.M.; Sidwell, R.W. Combinatorial ribavirin and interferon alfacon-1 therapy of acute arenaviral disease in hamsters. Antimicrob. Agents. Chemother. 2006, 17, 175–183. [Google Scholar]
- Candurra, N.A.; Maskin, L.; Damonte, E.B. Inhibition of arenavirus multiplication in vitro by phenotiazines. Antivir. Res. 1996, 31, 149–158. [Google Scholar]
- Castilla, V.; Larzabal, M.; Sgalippa, N.A.; Wachsman, M.B.; Coto, C.E. Antiviral mode of action of a synthetic brassinosteroid against Junin virus replication. Antivir. Res. 2005, 68, 88–95. [Google Scholar]
- Wachsman, M.; Lopez, E.; Ramirez, J.; Galagovsky, L.; Coto, C. Antiviral effect of brassinosteroids against herpes virus and arenaviruses. Antimicrob. Agents. Chemother 2000, 11, 71–77. [Google Scholar]
- Bolken, T.C.; Laquerre, S.; Zhang, Y.; Bailey, T.R.; Pevear, D.C.; Kickner, S.S.; Sperzel, L.E.; Jones, K.F.; Warren, T.K.; Manda Lund, S.; et al. Identification and characterization of potent small molecule inhibitor of hemorrhagic fever New World arenaviruses. Antivir. Res. 2006, 69, 86–97. [Google Scholar] [CrossRef]
- York, J.; Dai, D.; Amberg, S.M.; Nunberg, J.H. pH-Induced Activation of Arenavirus Membrane Fusion is Antagonized by Small-Molecule Inhibitors. J. Virol. 2008, 82, 10932–10939. [Google Scholar] [CrossRef]
- Cashman, K.A.; Smith, M.A.; Twenhafel, N.A.; Larson, R.A.; Jones, K.F.; Allen, R.D.; Dai, D.; Chinsangaram, J.; Bolken, T.C.; Hruby, D.E.; et al. Evaluation of Lassa antiviral compound ST-193 in a guinea pig model. Antivir. Res. 2011, 90, 70–79. [Google Scholar]
- Larson, R.A.; Dai, D.; Hosack, V.T.; Tan, Y.; Bolken, T.C.; Hruby, D.E.; Amberg, S.M. Identification of a Broad-Spectrum Arenavirus Entry Inhibitor. J. Virol. 2008, 82, 10768–10775. [Google Scholar] [CrossRef]
- Radoshitzky, S.R.; Abraham, J.; Spiropoulou, C.F.; Kuhn, J.H.; Nguyen, D.; Li, W.; Nagel, J.; Schmidt, P.J.; Nunberg, J.H.; Andrews, N.C.; et al. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 2007, 446, 92–96. [Google Scholar]
- Vela, E.M.; Bowick, G.C.; Herzog, N.K.; Aronson, J.F. Genistein treatment of cells inhibits arenavirus infection. Antivir. Res. 2008, 77, 153–156. [Google Scholar]
- Vela, E.M.; Bowick, G.C.; Herzog, N.K.; Aronson, J.F. Exploring kinase inhibitors as therapies for human arenavirus infections. Future Virol. 2008, 3, 243–251. [Google Scholar] [CrossRef]
- Andres, A.; Donovan, S.M.; Kuhlenschmidt, M.S. Soy isoflavones and virus infections. J. Nutr. Biochem. 2009, 20, 563–569. [Google Scholar] [CrossRef]
- Stantchev, T.S.; Markovic, I.; Telford, W.G.; Clouse, K.A.; Broder, C.C. The tyrosine kinase inhibitor genistein blocks HIV-1 infection in primary human macrophages. Virus Res. 2007, 123, 178–189. [Google Scholar] [CrossRef]
- Akiyama, T.; Ishida, J.; Nakagawa, S.; Ogawara, H.; Watanabe, S.; Itoh, N.; Shibuya, M.; Fukami, Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 1987, 262, 5592–5595. [Google Scholar]
- Damm, E.M.; Pelkmans, L.; Kartenbeck, J.; Mezzacasa, A.; Kurzchalia, T.; Helenius, A. Clathrin- and caveolin-1-independent endocytosis: Entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 2005, 168, 477–488. [Google Scholar] [CrossRef]
- Pelkmans, L.; Puntener, D.; Helenius, A. Local Actin Polymerization and Dynamin recruitment in SV40-Induced internalization of caveolae. Science 2002, 296, 535–539. [Google Scholar] [CrossRef]
- Hill, T.; Dean, N.; Mordan, L.; Lau, A.; Kanemitsu, M.; Boynton, A. PDGF-induced activation of phospholipase C is not required for induction of DNA synthesis. Science 1990, 248, 1660–1663. [Google Scholar]
- Huang, J.; Nasr, M.; Kim, Y.; Mathews, H. Genistein inhibits protein histidine kinase. J. Biol. Chem. 1992, 267, 15511–15515. [Google Scholar]
- Zwiller, J.; Sassone-Corsi, P.; Kakazu, K.; Boynton, A. Inhibition of PDGF-induced c-jun and c-fos expression by a tyrosine protein kinase inhibitor. Oncogene 1991, 6, 219–221. [Google Scholar]
- Walter, E. Genistin (an isoflavone glucoside) and its aglucone, genistein, from soybeans. J. Am. Chem. Soc. 1941, 63, 3273–3276. [Google Scholar] [CrossRef]
- Duan, W.; Kuo, I.; Selvarajan, S.; Chua, K.; Bay, B.; Wong, W. Antiinflammatory effects of genistein, a tyrosine kinase inhibitor, on a guine pig model of asthma. Am. J. Respir. Crit.Care Med. 2003, 167, 185–192. [Google Scholar] [CrossRef]
- Nevala, R.; Lassila, M.; Finckenberg, P.; Paukku, K.; Korpela, R.; Vapaatalo, H. Genistein treatment reduces arterial contractions by inhibiting tyrosine kinses in ovariectomized hypertensive rats. Eur. J. Pharmacol. 2002, 452, 87–96. [Google Scholar] [CrossRef]
- Cooke, P.S.; Selvaraj, V.; Yellayi, S. Genistein, Estrogen Receptors, and the Acquired Immune Response. J. Nutr. 2006, 136, 704–708. [Google Scholar]
- Akula, S.; Hurley, D.; Wixon, R.; Wang, C.; Chase, C. Effect of genistein on replication of bovine herpes virus type 1. Am. J. Vet. Res. 2002, 63, 1124–1128. [Google Scholar] [CrossRef]
- Andres, A.; Donovan, S.M.; KuhlenSchmidt, T.B.; Kuhlenschmidt, M.S. Isoflavones at concentrations present in soy infant formula inhibit Rotavirus infection in vitro. J. Nutr. 2007, 137, 2068–2073. [Google Scholar]
- Lecot, S.; Belouzard, S.; Dubuisson, J.; Rouille, Y. Bovine Viral Diarrhea Virus entry is dependent on Clathrin-Mediated Endocytosis. J. Virol. 2005, 79, 10826–10829. [Google Scholar] [CrossRef]
- Yura, Y.; Yoshida, H.; Sato, M. Inhibition of herpes simplex virus replication by genistein, an inhibitor of protein-tyrosine kinase. Arch. Virol. 1993, 132, 451–461. [Google Scholar] [CrossRef]
- Dangoria, N.S.; Breau, W.C.; Anderson, H.A.; Cishek, D.M.; Norkin, L.C. Extracellular simian virus 40 induces an ERK/MAP kinase-independent signalling pathway that activates primary response genes and promotes virus entry. J. Gen. Virol. 1996, 77, 2173–2182. [Google Scholar] [CrossRef]
- Vela, E.M.; Zhang, L.; Colpitts, T.M.; Davey, R.A.; Aronson, J.F. Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology 2007, 369, 1–11. [Google Scholar]
- Martinez, M.G.; Cordo, S.M.; Candurra, N.A. Characterization of Junin arenavirus cell entry. J. Gen. Virol. 2007, 88, 1776–1784. [Google Scholar] [CrossRef]
- Vela, E.M.; Colpitts, T.; Zhang, L.; Davey, R.; Aronson, J. Pichindé virus is trafficked through a dynamin 2 endocytic pathway that is dependent on cellular Rab5- and Rab7-mediated endosomes. Arch. Virol. 2008, 153, 1391–1396. [Google Scholar] [CrossRef]
- Kolokoltsov, A.; Adhikary, S.; Garver, J.; Johnson, L.; Davey, R.; Vela, E. Inhibition of Lassa virus and Ebola virus infection in host cells treated with the kinase inhibitors genistein and tryphostin. Arch. Virol. 2012, 157, 121–127. [Google Scholar] [CrossRef]
- Enria, D.; Bowen, M.; Mills, J.; Shieh, W.; Bausch, D.; Peters, C. Arenavirus Infections. In Tropical Infectious Diseases; Guerrant, R., Walker, D., Weller, P., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 1999; pp. 1191–1212. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vela, E. Animal Models, Prophylaxis, and Therapeutics for Arenavirus Infections. Viruses 2012, 4, 1802-1829. https://doi.org/10.3390/v4091802
Vela E. Animal Models, Prophylaxis, and Therapeutics for Arenavirus Infections. Viruses. 2012; 4(9):1802-1829. https://doi.org/10.3390/v4091802
Chicago/Turabian StyleVela, Eric. 2012. "Animal Models, Prophylaxis, and Therapeutics for Arenavirus Infections" Viruses 4, no. 9: 1802-1829. https://doi.org/10.3390/v4091802
APA StyleVela, E. (2012). Animal Models, Prophylaxis, and Therapeutics for Arenavirus Infections. Viruses, 4(9), 1802-1829. https://doi.org/10.3390/v4091802