HPV Genotyping 9G Membrane Test
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPV Detection and Genotyping by the Sequencing
2.2. HPV Genotyping 9G Membrane Test and HPV2 Genotyping 9G Membrane Test
Cervical Cytology | Sequencing | HPV genotyping 9G membrane test | |||
---|---|---|---|---|---|
HPV + | HPV - | HPV + | HPV - | ||
Normal | 362 | 74 (20.4%) | 288 | 74 (20.8%) | 288 |
ASC-US | 47 | 39 (83.0%) | 8 | 39 (83.0%) | 8 |
ASC-H | 9 | 7 (77.8%) | 2 | 7 (77.8%) | 2 |
LSIL | 9 | 8 (88.9%) | 1 | 8 (88.9%) | 1 |
HSIL | 12 | 12 (100%) | 12 (100%) |
HPV genotyping 9G membrane Test | Normal | ASC-US | ASC-H | LSIL | HSIL | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | A | B | ||
HPV Type | |||||||||||
HPV 16 | 11 | 11 | 7 | 7 | 3 | 3 | 2 | 2 | 7 | 7 | |
HPV 18 | 4 | 4 | 2 | 2 | |||||||
HPV 45 | 2 | 2 | |||||||||
HPV 31 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | |||
HPV 33 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | |||
HPV2 genotyping 9G membrane Test | |||||||||||
Line A | HPV 66 | 2 | 2 | 2 | 2 | ||||||
HPV 52 | 11 | 11 | 7 | 7 | 2 | 2 | |||||
Line B | HPV 59 | ||||||||||
HPV 56 | 2 | 2 | 4 | 4 | 2 | 2 | |||||
Line C | HPV 35 | 1 | 1 | ||||||||
HPV 51 | 1 | 1 | 1 | 1 | 1 | 1 | |||||
HPV 58 | 5 | 5 | 6 | 6 | 1 | 1 | 4 | 4 | |||
HPV 68 | 5 | 5 | 1 | 1 | |||||||
HPV 69 | |||||||||||
Line D | HPV 70 | ||||||||||
HPV 39 | 7 | 7 | 1 | 1 | 1 | 1 | |||||
Line E | HPV 73 | ||||||||||
HPV 53 | |||||||||||
HPV 26 | |||||||||||
NOT HR-HPV Types | 20 | 20 | 4 | 4 | |||||||
Negative | 288 | 288 | 8 | 8 | 2 | 2 | 1 | 1 |
2.3. Statistical Analysis
2.4. Discussion
3. Experimental Section
3.1. Materials
3.2. Instruments
3.3. Composition of Different Solutions Used
3.4. Typical Method for Preparation of the HPV Genotyping 9G Membranes
HPV genotyping 9G membrane | |||
---|---|---|---|
Line | Probes | Type | Sequence |
T16 | Probe 1 | HPV16 | 5’-GGGGGGGGG TTTTTTTTT GTA CCT ACG ACA AGG GGA GG-3’ |
T18 | Probe 2 | HPV18 | 5’-GGGGGGGGG TTTTTTTTT GTA TAG CAG ACT TGT TGA GG-3’ |
T45 | Probe 3 | HPV45 | 5’-GGGGGGGGG TTTTTTTTT GTA TAG TAG ACA AGT GGA GG-3’ |
T33 | Probe 4 | HPV33 | 5’-GGGGGGGGG TTTTTTTTT ATA TAT AAG ACA AGT TGA AG-3’ |
T31 | Probe 5 | HPV31 | 5’-GGGGGGGGG TTTTTTTTT GTA TTT AAG ACA AGG TGA GG-3’ |
HC | Probe 6 | HC | 5’-GGGGGGGGG CTTTATTTT CC ACT GTT CTC GGC ACG-3’ |
PCR | Probe 7 | PCR | 5’-GGGGGGGGG CTTTATCTT GAC ATG KKG ARG ART ATG A-3’ |
PC | Probe 8 | PC | 5’-GGGGGGGGG TGATTT ACA GTT TAT DTT TC-3’ |
HPV2 genotyping 9G membrane | |||
Line | Probes | Type | Sequence |
Line-A | Probe 9 | HPV66 | 5’-GGGGGGGGG TTTTTTTTT ATA CCT TCG CCA AGT GGA GG-3’ |
Probe 10 | HPV52 | 5’-GGGGGGGGG TTTTTTTTT ATA CCT TCG TCA TGG CGA GG-3’ | |
Line-B | Probe 11 | HPV59 | 5’-GGGGGGGGG TTTTTTTTT ATA TGC CAG ACA AGT GGA GG-3’ |
Probe 12 | HPV56 | 5’-GGGGGGGGG TTTTTTTTT GTA CCT TAG ACA AGT GGA GG-3’ | |
Line-C | Probe 13 | HPV35 | 5’-GGGGGGGGG TTTTTTTTT ATA TTT AAG GCT TGG TGA AG-3’ |
Probe 14 | HPV51 | 5’-GGGGGGGGG TTTTTTTTT ATA TAT TAG GCA TGG GGA AG-3’ | |
Probe 15 | HPV58 | 5’-GGGGGGGGG TTTTTTTTT ATA TGT ACG TCA TGT TGA AG-3’ | |
Probe 16 | HPV68 | 5’-GGGGGGGGG TTTTTTTTT ATA TAT TAG GCA TGT TGA GG-3’ | |
Probe 17 | HPV69 | 5’-GGGGGGGGG TTTTTTTTT GTT TAT AAG GCA TGG TGA GG-3 | |
Line-D | Probe 18 | HPV70 | 5’-GGGGGGGGG TTTTTTTTT ATA TAC TAG GCT TGT GGA GG-3’ |
Probe19 | HPV39 | 5’-GGGGGGGGG TTTTTTTTT ATA TAC CAG GCA CGT GGA GG-3’ | |
Line-E | Probe 20 | HPV73 | 5’-GGGGGGGGG TTTTTTTTT ATA TTT AAG ACA AGC AGA AG-3’ |
Probe 21 | HPV53 | 5’-GGGGGGGGG TTTTTTTTT GTA TGT TAG ACT TGC AGA GG-3’ | |
Probe 22 | HPV26 | 5’-GGGGGGGGG TTTTTTTTT ATT TAT AAG ACA TGG CGA AG-3’ | |
Target1 ( HC-Cy5-T1) | HC-Cy5 | 3’-GGATCACCGAGATACCATTGGAGACTGCG-Cy5-5’ | |
Forward primer | FP | 3`-GCMCAGGGWCATAAYAATGG-5’ | |
Reverse primer | RP-Cy5 | 3`-GAAAHATAAACTGTAAATCATAYTC-Cy5-5’ |
3.5. General Procedure for Hybridization, Washing, and Scanning
3.6. Clinical Samples
3.7. Study Subjects
3.8. DNA Extraction and (PCR) Amplification
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Weinstock, H.; Berman, S.; Cates, W., Jr. Sexually transmitted diseases among American youth: Incidence and prevalence estimates. Perspect. Sex. Reprod. Health 2004, 36, 6–10. [Google Scholar] [CrossRef]
- Chaturvedi, A.K. Beyond cervical cancer: Burden of other HPV-related cancers among men and women. J. Adolesc. Health 2010, 46, S20–S26. [Google Scholar] [CrossRef]
- Greenlee, R.T.; Murray, T.; Bolden, S.; Wingo, P.A. Cancer statistics. CA Cancer J. Clin. 2000, 50, 7–33. [Google Scholar] [CrossRef]
- Schwartz, S.M.; Daling, J.R.; Shera, K.A.; Madeleine, M.M.; McKnight, B.; Galloway, D.A.; Porter, P.L.; McDougall, J.K. Human papillomavirus and prognosis of invasive cervical cancer: A population-based study. J. Clin. Oncol. 2001, 19, 1906–1915. [Google Scholar]
- Walboomers, J.M.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.F.; Peto, J.; Meijer, C.J.; Muñoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar]
- Kjaer, S.K.; van den Brule, A.J.C.; Bock, J.E.; Poll, P.A.; Engholm, G.; Sherman, M.E.; Walbooomers, J.M.M.; Meijer, C.J. Human papillomavirus—the most significant risk determinant of cervical intraepithelial neoplasia. Int. J. Cancer 1996, 65, 601–606. [Google Scholar]
- Schiffman, M.H.; Bauer, H.M.; Hoover, R.N.; Glass, A.G.; Cadell, D.M.; Rush, B.B.; Scott, D.R.; Sherman, M.E.; Kumaran, R.J.; Wacholder, S.; et al. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J. Natl. Cancer Inst. 1993, 85, 958–964. [Google Scholar] [CrossRef]
- Meijer, C.J.; Snijders, P.J.; Castle, P.E. Clinical utility of HPV genotyping. Gynecol. Oncol. 2006, 103, 12–17. [Google Scholar] [CrossRef]
- Liu, C.H.; Ma, W.L.; Shi, R.; Ou, Y.Q.; Zhang, B.; Zheng, W.L. Possibility of using DNA chip technology for diagnosis of human papillomavirus. J. Biochem. Mol. Biol. 2003, 36, 349–353. [Google Scholar] [CrossRef]
- Park, Y.; Lee, E.; Choi, J.; Jeong, S.; Kim, H. Comparison of the Abbott RealTime High-Risk Human Papillomavirus (HPV), Roche Cobas HPV, and hybrid capture 2 assays to direct sequencing and genotyping of HPV DNA. J. Clin. Microbiol. 2012, 50, 2359–2365. [Google Scholar] [CrossRef]
- Gubala, V.; Harris, L.F.; Ricco, A.J.; Tan, M.X.; Williams, D.E. Point of care diagnostics: Status and future. Anal. Chem. 2012, 84, 487–515. [Google Scholar] [CrossRef]
- Song, K.; Nimse, S.B.; Kim, J.; Kim, J.; Nguyen, V.; Ta, V.; Kim, T. 9G DNAChip: microarray based on the multiple interactions of 9 consecutive guanines. Chem. Commun. 2011, 47, 7104–7106. [Google Scholar] [CrossRef]
- Nimse, S.B.; Song, K.; Kim, J.; Ta, V.; Nguyen, V.; Kim, T. A generalized probe selection method for DNA chips. Chem. Commun. 2011, 47, 12444–12446. [Google Scholar] [CrossRef]
- Song, K.; Nimse, S.B.; An, H.; Kim, J.; Nguyen, V.; Ta, V.; Kim, T. HPV 9G DNAChip: Based on the 9G DNAChip technology. J. Virol. Methods 2012, 183, 132–138. [Google Scholar] [CrossRef]
- Nguyen, V.; Nimse, S.B.; Song, K.; Kim, J.; Ta, V.; Sung, H.W.; Kim, T. HPAI 9G DNAChip: Discrimination of highly pathogenic influenza virus genes. Chem. Commun. 2012, 48, 4582–4584. [Google Scholar]
- An, H.; Song, K.; Nimse, S.B.; Kim, J.; Nguyen, V.; Ta, V.; Sayyed, D.R.; Kim, T. HPV 9G DNA Chip: 100% clinical sensitivity and specificity. J. Clin. Microbiol. 2012, 20, 62–568. [Google Scholar]
- Song, K.; Nimse, S.B.; Kim, J.; Sayyed, D.R.; Kim, T. A new platform for a convenient genotyping system. Chem. Commun. 2013, 49, 2661–2663. [Google Scholar] [CrossRef]
- Ngom, B.; Guo, Y.; Wang, X.; Bi, D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: A review. Anal. Bioanal. Chem. 2010, 397, 1113–1135. [Google Scholar] [CrossRef]
- Haws, A.L.F.; He, Q.; Rady, P.L.; Zhang, L.; Grady, J.; Hughes, T.K.; Stisser, K.; Konig, R.; Tyring, S.K. Nested PCR with the PGMY09/11 and GP5+/6+ primer sets improves detection of HPV DNA in cervical samples. J. Virol. Methods 2004, 122, 87–93. [Google Scholar] [CrossRef]
- Husman, R.; Walboomers, J.M.M.; van den Brule, A.J.C.; Meijer, C.J.; Snijders, P.J.F. The use of general primers GP5 and GP6 elongated at their 3’ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J. Gen. Virol. 1995, 76, 1057–1062. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sayyed, D.R.; Song, K.-S.; Nimse, S.B.; An, H.; Kim, J.; Kim, T. HPV Genotyping 9G Membrane Test. Viruses 2013, 5, 2840-2855. https://doi.org/10.3390/v5112840
Sayyed DR, Song K-S, Nimse SB, An H, Kim J, Kim T. HPV Genotyping 9G Membrane Test. Viruses. 2013; 5(11):2840-2855. https://doi.org/10.3390/v5112840
Chicago/Turabian StyleSayyed, Danishmalik Rafiq, Keum-Soo Song, Satish Balasaheb Nimse, Heejung An, Junghoon Kim, and Taisun Kim. 2013. "HPV Genotyping 9G Membrane Test" Viruses 5, no. 11: 2840-2855. https://doi.org/10.3390/v5112840
APA StyleSayyed, D. R., Song, K. -S., Nimse, S. B., An, H., Kim, J., & Kim, T. (2013). HPV Genotyping 9G Membrane Test. Viruses, 5(11), 2840-2855. https://doi.org/10.3390/v5112840