Development of a Magnetic Electrochemical Bar Code Array for Point Mutation Detection in the H5N1 Neuraminidase Gene
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Preparation of QDs (CdS, PbS and ZnS)
2.3. Labeling of Influenzas’ Derived DNA and RNA Oligonucleotides with QDs (CdS, PbS and ZnS)
Probe | Target |
---|---|
China 5´ UCUGCAUUCCAG AAAAA 3´ | China 5´ CU GGAAUGCAGA (Th) 3´ |
China 5´ UCUGCAUUCCAGAUGGGAGCAUGAGAUGAAAAA 3´ | China 5´ CAUCUCAUGCUCCCAUCUGGAAUGCAGA (Th) 3´ |
2.4. Characterization of ODN-QDs by MALDI-TOF/TOF
2.5. Automatic Isolation of ODN-QDs
2.6. Electrochemical Method for Detection of CA and Metal Peak of ODN-QDs
2.7. Descriptive Statistics
3. Results and Discussion
3.1. Characterization of DNA Oligonucleotide Labeled with QDs (CdS, PbS and ZnS) by MALDI-TOF/TOF
3.2. Scheme of Fully Automated MPs Isolation Followed by Electrochemical Detection of Target ODN Labeled with QDs
3.3. Optimization of AdTS SWV and DPASV Method
3.4. Hybridization Experiments–Influence of Different Hybridization Condition of Hybridization Efficiency
3.4.1. Influence of Temperature and Different Length of ODN-QDs on Hybridization
3.4.2. Effect of Different Lengths of Mixture of Short and Long ODN-QDS on Hybridization
3.4.3. Influence of Two Optimal Hybridization Temperatures (25 °C and 50 °C) on Efficiency of Hybridization of Mixture of Short and Long ODN-QDs
3.4.4. Isolation and Detection of RNA ODN-QDs
4. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- Shoham, D. Influenza type A virus: An outstandingly protean pathogen and a potent modular weapon. Crit. Rev. Microbiol. 2013, 39, 123–138. [Google Scholar] [CrossRef]
- Plourde, J.R.; Pyles, J.A.; Layton, R.C.; Vaughan, S.E.; Tipper, J.L.; Harrod, K.S. Neurovirulence of H5N1 infection in ferrets is mediated by multifocal replication in distinct permissive neuronal cell regions. PLoS One 2012, 7, 1–11. [Google Scholar]
- Gilbert, M.; Jambal, L.; Karesh, W.B.; Fine, A.; Shiilegdamba, E.; Dulam, P.; Sodnomdarjaa, R.; Ganzorig, K.; Batchuluun, D.; Tseveenmyadag, N.; et al. Highly pathogenic avian influenza virus among wild birds in mongolia. PLoS One 2012, 7, 1–9. [Google Scholar]
- Wei, K.F.; Chen, Y.F.; Chen, J.; Wu, L.J.; Xie, D.X. Evolution and adaptation of hemagglutinin gene of human H5N1 influenza virus. Virus Genes 2012, 44, 450–458. [Google Scholar]
- Abdelwhab, E.M.; Hafez, H.M. Insight into alternative approaches for control of avian influenza in poultry, with emphasis on highly pathogenic H5N1. Viruses 2012, 4, 3179–3208. [Google Scholar]
- Zhang, J.F. Advances and future challenges in recombinant adenoviral vectored H5N1 influenza vaccines. Viruses 2012, 4, 2711–2735. [Google Scholar] [CrossRef]
- Weinheimer, V.K.; Becher, A.; Tonnies, M.; Holland, G.; Knepper, J.; Bauer, T.T.; Schneider, P.; Neudecker, J.; Ruckert, J.C.; Szymanski, K.; et al. Influenza A viruses target type II pneumocytes in the human lung. J. Infect. Dis. 2012, 206, 1685–1694. [Google Scholar] [CrossRef]
- Chen, F.; Yan, Z.Q.; Liu, J.; Ji, J.; Chang, S.; Liu, D.; Qin, J.P.; Ma, J.Y.; Bi, Y.Z.; Xie, Q.M. Phylogenetic analysis of hemagglutinin genes of 40 H9N2 subtype avian influenza viruses isolated from poultry in China from 2010 to 2011. Virus Genes 2012, 45, 69–75. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Wang, X.; Ragupathy, V.; Zhang, P.H.; Tang, W.; Ye, Z.P.; Eichelberger, M.; Hewlett, I. Rapid detection and differentiation of swine-origin influenza A virus (H1N1/2009) from other seasonal influenza A viruses. Viruses 2012, 4, 3012–3019. [Google Scholar] [CrossRef]
- Alberts, B. INTRODUCTION H5N1. Science 2012, 336, 1521–1521. [Google Scholar] [CrossRef]
- Takekawa, J.Y.; Prosser, D.J.; Newman, S.H.; Bin Muzaffar, S.; Hill, N.J.; Yan, B.P.; Xiao, X.M.; Lei, F.M.; Li, T.X.; Schwarzbach, S.E.; et al. Victims and vectors: Highly pathogenic avian influenza H5N1 and the ecology of wild birds. Avian Biol. Res. 2010, 3, 51–73. [Google Scholar] [CrossRef]
- Leung, Y.H.C.; Cheung, P.; Zhang, L.J.; Wu, Y.O.; Chow, K.C.; Ho, C.K.; Chow, C.K.; Ng, C.F.; Li, B.; Tsang, C.L.; et al. Influenza viruses in wild birds in Hong Kong, 2003–2010. Influenza Other Respir. Viruses 2011, 5, 77–78. [Google Scholar]
- Capua, I.; Alexander, D.J. Ecology, epidemiology and human health implications of avian influenza viruses: Why do we need to share genetic data? Zoonoses Public Health 2008, 55, 2–15. [Google Scholar] [CrossRef]
- Neumann, G.; Chen, H.; Gao, G.F.; Shu, Y.L.; Kawaoka, Y. H5N1 influenza viruses: Outbreaks and biological properties. Cell Res. 2010, 20, 51–61. [Google Scholar] [CrossRef]
- Bragstad, K.; Jorgensen, P.H.; Handberg, K.; Hammer, A.S.; Kabell, S.; Fomsgaard, A. First introduction of highly pathogenic H5NI avian influenza A viruses in wild and domestic birds in Denmark, Northern Europe. Virol. J. 2007, 4, 1–10. [Google Scholar] [CrossRef]
- Rebel, J.M.J.; Peeters, B.; Fijten, H.; Post, J.; Cornelissen, J.; Vervelde, L. Highly pathogenic or low pathogenic avian influenza virus subtype H7N1 infection in chicken lungs: Small differences in general acute responses. Vet. Res. 2011, 42, 1–11. [Google Scholar]
- Comin, A.; Klinkenberg, D.; Marangon, S.; Toffan, A.; Stegeman, A. Transmission dynamics of low pathogenicity avian influenza infections in Turkey flocks. PLoS One 2011, 6, 1–9. [Google Scholar]
- Kabir, S.M.L. Avian flu (H5N1): Threat of “global pandemic” is growing and it’s impact on the developing countries’ economy. Afr. J. Microbiol. Res. 2010, 4, 1192–1194. [Google Scholar]
- Yamada, S.; Suzuki, Y.; Suzuki, T.; Le, M.Q.; Nidom, C.A.; Sakai-Tagawa, Y.; Muramoto, Y.; Ito, M.; Kiso, M.; Horimoto, T.; et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 2006, 444, 378–382. [Google Scholar] [CrossRef]
- Fauci, A.S.; Collins, F.S. Benefits and risks of influenza research: lessons learned. Science 2012, 336, 1522–1523. [Google Scholar] [CrossRef]
- Nguyen, T.; Rivailler, P.; Davis, C.T.; Hoa, D.T.; Balish, A.; Dang, N.H.; Jones, J.; Vui, D.T.; Simpson, N.; Huong, N.T.; et al. Evolution of highly pathogenic avian influenza (H5N1) virus populations in Vietnam between 2007 and 2010. Virology 2012, 432, 405–416. [Google Scholar] [CrossRef]
- Tang, D.J.; Lam, Y.M.; Siu, Y.L.; Lam, C.H.; Chu, S.L.; Peiris, J.S.M.; Buchy, P.; Nal, B.; Bruzzone, R. A single residue substitution in the receptor-binding domain of H5N1 hemagglutinin is critical for packaging into pseudotyped lentiviral particles. PLoS One 2012, 7, 1–12. [Google Scholar]
- Park, A.W.; Glass, K. Dynamic patterns of avian and human influenza in east and southeast Asia. Lancet Infect. Dis. 2007, 7, 543–548. [Google Scholar] [CrossRef]
- Rao, S.S.; Styles, D.; Kong, W.; Andrews, C.; Gorres, J.P.; Nabel, G.J. A gene-based avian influenza vaccine in poultry. Poult. Sci. 2009, 88, 860–866. [Google Scholar] [CrossRef]
- Webster, R.G.; Govorkova, E.A. Focus on research: H5N1 influenza–Continuing evolution and spread. N. Engl. J. Med. 2006, 355, 2174–2177. [Google Scholar] [CrossRef]
- Peiris, J.S.M.; de Jong, M.D.; Guan, Y. Avian influenza virus (H5N1): A threat to human health. Clin. Microbiol. Rev. 2007, 20, 243–267. [Google Scholar] [CrossRef]
- Uyeki, T.M.; Bresee, J.S. Detecting human-to-human transmission of avian influenza a (H5N1). Emerg. Infect. Dis. 2007, 13, 1969–1970. [Google Scholar] [CrossRef]
- Hayden, F.G.; de Jong, M.D. Emerging influenza antiviral resistance threats. J. Infect. Dis. 2011, 203, 6–10. [Google Scholar] [CrossRef]
- Cai, Z.P.; Ducatez, M.F.; Yang, J.L.; Zhang, T.; Long, L.P.; Boon, A.C.; Webby, R.J.; Wan, X.F. Identifying antigenicity-associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning. J. Mol. Biol. 2012, 422, 145–155. [Google Scholar] [CrossRef]
- Zhao, G.; Zhong, L.; Lu, X.L.; Hu, J.; Gu, X.B.; Kai, Y.; Song, Q.Q.; Sun, Q.; Liu, J.B.; Peng, D.X.; et al. Characterisation of a highly pathogenic H5N1 clade 2.3.2 influenza virus isolated from swans in Shanghai, China. Virus Genes 2012, 44, 55–62. [Google Scholar] [CrossRef]
- Nidom, C.A.; Yamada, S.; Nidom, R.V.; Rahmawati, K.; Alamudi, M.Y.; Kholik; Indrasari, S.; Hayati, R.S.; Horimoto, K.I.; Kawaoka, Y. Genetic characterization of H5N1 influenza viruses isolated from chickens in Indonesia in 2010. Virus Genes 2012, 44, 459–465. [Google Scholar] [CrossRef]
- Huang, K.; Zhu, H.V.; Fan, X.H.; Wang, J.; Cheung, C.L.; Duan, L.; Hong, W.S.; Liu, Y.M.; Li, L.F.; Smith, D.K.; et al. Establishment and lineage replacement of H6 influenza viruses in domestic ducks in Southern China. J. Virol. 2012, 86, 6075–6083. [Google Scholar] [CrossRef]
- Miyoshi-Akiyama, T.; Akasaka, Y.; Oogane, T.; Kondo, Y.; Matsushita, T.; Funatogawa, K.; Kirikae, T. Development and evaluation of a line probe assay for rapid typing of influenza viruses and detection of the H274Y mutation. J. Virol. Methods 2012, 185, 276–280. [Google Scholar] [CrossRef]
- Redlberger-Fritz, M.; Aberle, S.W.; Strassl, R.; Popow-Kraupp, T. Rapid identification of neuraminidase inhibitor resistance mutations in seasonal influenza virus A(H1N1), A(H1N1)2009, and A(H3N2) subtypes by melting point analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1593–1601. [Google Scholar] [CrossRef]
- Bao, J.R.; Huard, T.K.; Piscitelli, A.E.; Tummala, P.R.; Aleemi, V.E.; Coon, S.L.; Master, R.N.; Lewinski, M.A.; Clark, R.B. Reverse-transcription polymerase chain reaction/pyrosequencing to characterize neuraminidase H275 residue of influenza A 2009 H1N1 virus for rapid and specific detection of the viral oseltamivir resistance marker in a clinical laboratory. Diagn. Microbiol. Infect. Dis. 2011, 71, 396–402. [Google Scholar] [CrossRef]
- Deng, Y.M.; Caldwell, N.; Hurt, A.; Shaw, T.; Kelso, A.; Chidlow, G.; Williams, S.; Smith, D.; Barr, I. A comparison of pyrosequencing and neuraminidase inhibition assays for the detection of oseltamivir-resistant pandemic influenza A(H1N1) 2009 viruses. Antivir. Res. 2011, 90, 87–91. [Google Scholar] [CrossRef]
- Leang, S.K.; Deng, Y.M.; Shaw, R.; Caldwell, N.; Iannello, P.; Komadina, N.; Buchy, P.; Chittaganpitch, M.; Dwyer, D.E.; Fagan, P.; et al. Influenza antiviral resistance in the Asia-Pacific region during 2011. Antivir. Res. 2013, 97, 206–210. [Google Scholar] [CrossRef]
- Chairat, K.; Tarning, J.; White, N.J.; Lindegardh, N. Pharmacokinetic properties of anti-influenza neuraminidase inhibitors. J. Clin. Pharmacol. 2013, 53, 119–139. [Google Scholar]
- Li, H.; Shih, W.Y.; Shih, W.H. Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications. Ind. Eng. Chem. Res. 2007, 46, 2013–2019. [Google Scholar]
- Hennequin, B.; Turyanska, L.; Ben, T.; Beltran, A.M.; Molina, S.I.; Li, M.; Mann, S.; Patane, A.; Thomas, N.R. Aqueous near-infrared fluorescent composites based on apoferritin-encapsulated PbS quantum dots. Adv. Mater. 2008, 20, 3592–3596. [Google Scholar] [CrossRef]
- Genbank. Available online: http://www.ncbi.nlm.nih.gov/genbank/ (accessed on 1 July 2013).
- Krejcova, L.; Huska, D.; Hynek, D.; Kopel, P.; Adam, V.; Hubalek, J.; Trnkova, L.; Kizek, R. Using of paramagnetic microparticles and quantum dots for isolation and electrochemical detection of influenza viruses’ specific nucleic acids. Int. J. Electrochem. Sci. 2013, in press. [Google Scholar]
- Krejcova, L.; Hynek, D.; Kopel, P.; Adam, V.; Hubalek, J.; Trnkova, L.; Kizek, R. Paramagnetic particles isolation of influenza oligonucleotide labelled with CdS QDs. Chromatographia 2013, 76, 355–362. [Google Scholar] [CrossRef]
- Huska, D.; Adam, V.; Babula, P.; Trnkova, L.; Hubalek, J.; Zehnalek, J.; Havel, L.; Kizek, R. Microfluidic robotic device coupled with electrochemical sensor field for handling of paramagnetic micro-particles as a tool for determination of plant mRNA. Microchim. Acta 2011, 173, 189–197. [Google Scholar] [CrossRef]
- Huska, D.; Hubalek, J.; Adam, V.; Vajtr, D.; Horna, A.; Trnkova, L.; Havel, L.; Kizek, R. Automated nucleic acids isolation using paramagnetic microparticles coupled with electrochemical detection. Talanta 2009, 79, 402–411. [Google Scholar]
- Krejcova, L.; Dospivova, D.; Ryvolova, M.; Kopel, P.; Hynek, D.; Krizkova, S.; Hubalek, J.; Adam, V.; Kizek, R. Paramagnetic particles coupled with an automated flow injection analysis as a tool for influenza viral protein detection. Electrophoresis 2012, 33, 3195–3204. [Google Scholar]
- Zitka, O.; Krizkova, S.; Krejcova, L.; Hynek, D.; Gumulec, J.; Masarik, M.; Sochor, J.; Adam, V.; Hubalek, J.; Trnkova, L.; et al. Microfluidic tool based on the antibody-modified paramagnetic particles for detection of 8-hydroxy-2'-deoxyguanosine in urine of prostate cancer patients. Electrophoresis 2011, 32, 3207–3220. [Google Scholar] [CrossRef]
- Prasek, J.; Huska, D.; Jasek, O.; Zajickova, L.; Trnkova, L.; Adam, V.; Kizek, R.; Hubalek, J. Carbon composite micro- and nano-tubes based electrodes for detection of nucleic acids. Nanoscale Res. Lett. 2011, 6, 1–5. [Google Scholar]
- Huska, D.; Zitka, O.; Krystofova, O.; Adam, V.; Babula, P.; Zehnalek, J.; Bartusek, K.; Beklova, M.; Havel, L.; Kizek, R. Effects of cadmium(II) ions on early somatic embryos of Norway spruce studied by using electrochemical techniques and nuclear magnetic resonance. Int. J. Electrochem. Sci. 2010, 5, 1535–1549. [Google Scholar]
- Chomoucka, J.; Drbohlavova, J.; Masarik, M.; Ryvolova, M.; Huska, D.; Prasek, J.; Horna, A.; Trnkova, L.; Provaznik, I.; Adam, V.; et al. Nanotechnologies for society. New designs and applications of nanosensors and nanobiosensors in medicine and environmental analysis. Int. J. Nanotechnol. 2012, 9, 746–783. [Google Scholar]
- Berton, M.; Turelli, P.; Trono, D.; Stein, C.A.; Allemann, E.; Gurny, R. Inhibition of HIV-1 in cell culture by oligonucleotide-loaded nanoparticles. Pharm. Res. 2001, 18, 1096–1101. [Google Scholar]
- Schneider, T.; Becker, A.; Ringe, K.; Reinhold, A.; Firsching, R.; Sabel, B.A. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J. Neuroimmunol. 2008, 195, 21–27. [Google Scholar]
- Cai, H.; Zhu, N.N.; Jiang, Y.; He, P.G.; Fang, Y.Z. Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Biosens. Bioelectron. 2003, 18, 1311–1319. [Google Scholar]
- Sun, W.; Zhong, J.H.; Qin, P.; Jiao, K. Electrochemical biosensor for the detection of cauliflower mosaic virus 35 S gene sequences using lead sulfide nanoparticles as oligonucleotide labels. Anal. Biochem. 2008, 377, 115–119. [Google Scholar]
- Roh, C.; Lee, H.Y.; Kim, S.E.; Jo, S.K. A highly sensitive and selective viral protein detection method based on RNA oligonucleotide nanoparticle. Int. J. Nanomed. 2010, 5, 323–329. [Google Scholar]
- Bandyopadhyay, A.; Chatterjee, S.; Sarkar, K. Rapid isolation of genomic DNA from E. coli XL1 Blue strain approaching bare magnetic nanoparticles. Curr. Sci. 2011, 101, 210–214. [Google Scholar]
- Trachtova, S.; Kaman, O.; Spanova, A.; Veverka, P.; Pollert, E.; Rittich, B. Silica-coated La0.75Sr0.25MnO3 nanoparticles for magnetically driven DNA isolation. J. Sep. Sci. 2011, 34, 3077–3082. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, P.S.; Zhang, W.; Liang, M.; Gao, Y.W.; Yang, S.T.; Wang, T.C.; Qin, C.; Wang, C.Y.; Xia, X.Z. Antisense oligonucleotide inhibits avian influenza virus H5N1 replication by single chain antibody delivery system. Vaccine 2011, 29, 1558–1564. [Google Scholar]
- Malecka, K.; Grabowska, I.; Radecki, J.; Stachyra, A.; Gora-Sochacka, A.; Sirko, A.; Radecka, H. Voltammetric detection of a specific DNA sequence of avian influenza virus H5N1 using HS-ssDNA probe deposited onto gold electrode. Electroanalysis 2012, 24, 439–446. [Google Scholar]
- Ganbold, E.O.; Kang, T.; Lee, K.; Lee, S.Y.; Joo, S.W. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements. Colloid Surf. B-Biointerfaces 2012, 93, 148–153. [Google Scholar]
- Liu, X.G.; Cheng, Z.Q.; Fan, H.; Ai, S.Y.; Han, R.X. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode. Electrochim. Acta 2011, 56, 6266–6270. [Google Scholar] [CrossRef]
- Lai, W.A.; Lin, C.H.; Yang, Y.S.; Lu, M.S.C. Ultrasensitive and label-free detection of pathogenic avian influenza DNA by using CMOS impedimetric sensors. Biosens. Bioelectron. 2012, 35, 456–460. [Google Scholar]
- Tian, J.P.; Zhao, H.M.; Liu, M.; Chen, Y.Q.; Quan, X. Detection of influenza A virus based on fluorescence resonance energy transfer from quantum dots to carbon nanotubes. Anal. Chim. Acta 2012, 723, 83–87. [Google Scholar]
- Chung, D.J.; Kim, K.C.; Choi, S.H. Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection. Appl. Surf. Sci. 2011, 257, 9390–9396. [Google Scholar] [CrossRef]
- Fan, H.; Ju, P.; Ai, S.Y. Controllable synthesis of CdSe nanostructures with tunable morphology and their application in DNA biosensor of Avian Influenza Virus. Sens. Actuator B-Chem. 2010, 149, 98–104. [Google Scholar]
- Adam, V.; Huska, D.; Hubalek, J.; Kizek, R. Easy to use and rapid isolation and detection of a viral nucleic acid by using paramagnetic microparticles and carbon nanotubes-based screen-printed electrodes. Microfluid. Nanofluid. 2010, 8, 329–339. [Google Scholar] [CrossRef]
- Chen, X.J.; Xie, H.; Seow, Z.Y.; Gao, Z.Q. An ultrasensitive DNA biosensor based on enzyme-catalyzed deposition of cupric hexacyanoferrate nanoparticles. Biosens. Bioelectron. 2010, 25, 1420–1426. [Google Scholar]
- Lim, S.H.; Buchy, P.; Mardy, S.; Kang, M.S.; Yu, A.D.C. Specific nucleic acid detection using photophysical properties of quantum dot probes. Anal. Chem. 2010, 82, 886–891. [Google Scholar]
- Tam, P.D.; Hieu, V.N.; Chien, N.D.; Le, A.T.; Tuan, M.A. DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. J. Immunol. Methods 2009, 350, 118–124. [Google Scholar] [CrossRef]
- Kim, S.A.; Kim, S.J.; Lee, S.H.; Park, T.H.; Byun, K.M.; Kim, S.G.; Shuler, M.L. Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor. J. Opt. Soc. Korea 2009, 13, 392–397. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Krejcova, L.; Hynek, D.; Kopel, P.; Rodrigo, M.A.M.; Adam, V.; Hubalek, J.; Babula, P.; Trnkova, L.; Kizek, R. Development of a Magnetic Electrochemical Bar Code Array for Point Mutation Detection in the H5N1 Neuraminidase Gene. Viruses 2013, 5, 1719-1739. https://doi.org/10.3390/v5071719
Krejcova L, Hynek D, Kopel P, Rodrigo MAM, Adam V, Hubalek J, Babula P, Trnkova L, Kizek R. Development of a Magnetic Electrochemical Bar Code Array for Point Mutation Detection in the H5N1 Neuraminidase Gene. Viruses. 2013; 5(7):1719-1739. https://doi.org/10.3390/v5071719
Chicago/Turabian StyleKrejcova, Ludmila, David Hynek, Pavel Kopel, Miguel Angel Merlos Rodrigo, Vojtech Adam, Jaromir Hubalek, Petr Babula, Libuse Trnkova, and Rene Kizek. 2013. "Development of a Magnetic Electrochemical Bar Code Array for Point Mutation Detection in the H5N1 Neuraminidase Gene" Viruses 5, no. 7: 1719-1739. https://doi.org/10.3390/v5071719
APA StyleKrejcova, L., Hynek, D., Kopel, P., Rodrigo, M. A. M., Adam, V., Hubalek, J., Babula, P., Trnkova, L., & Kizek, R. (2013). Development of a Magnetic Electrochemical Bar Code Array for Point Mutation Detection in the H5N1 Neuraminidase Gene. Viruses, 5(7), 1719-1739. https://doi.org/10.3390/v5071719