Experimental Inoculation of Egyptian Fruit Bats (Rousettus aegyptiacus) with Ebola Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Animals
2.3. Virus
2.4. Experimental Inoculations
Sample Type, Bat ID, Sex and Number of Bats Tested Post Mortem | Days after Inoculation | |||||
---|---|---|---|---|---|---|
3 (n = 4)a | 5 (n = 3) | 7 (n = 5) | 10 (n = 3) | 21 (n = 4) | 37 (n = 5) | |
17b (M), 103 (F), 106 (F), 110 (M) | 20 (M), 81E (F), 452 (F) | 02D (F), 100 (M), 105 (F), 109 (M), 111 (M) | 112 (F) 47B (F), 426 (F) | 1 (F), 33 (M), 91B (F), 113 (F) | 5 (F), 31(F), 104 (F), A63 (F), E0F (M) | |
Blood | 1/13c; 106 38.21d,VI− | 0/11 | 0/5 | 0/3 | n.t. | n.t. |
Liver | 0/4 | 0/3 | 1/5; 02D 39.34, VI− | 0/3 | 0/4 | 0/5 |
Spleen | 0/4 | 0/3 | 0/5 | 0/3 | 0/4 | 0/5 |
Kidney | 0/4 | 0/3 | 0/5 | 0/3 | 0/4 | 0/5 |
Lung | 0/4 | 0/3 | 1/5; 02D 36.31, VI− | 0/3 | 0/4 | 0/5 |
Small intestine | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Large intestine | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Stomach | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Reproductivee,forgans | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Bladder | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Rectum | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Heart | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Skin | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Muscle | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Salivary glands | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Conjunctiva | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Braing | 0/4 | 0/3 | 0/5 | n.s. | 0/4 | 0/5 |
Sample Type, bat ID, Sex and Number of Bats Tested Post Mortem | Day after i.p. and i.m. Inoculation | ||
---|---|---|---|
5 (n = 4)a | 7 (n = 2) | 16 (n = 5) | |
I.P.: 16b (F), 101 (M) | I.P.: 102 (F) | I.P.: 37 (M), 759 (F), 944 (F) | |
I.M.: 21 (F), 107 (F) | I.M.: 108 (M) | I.M.: 15 (M), 15C (M) | |
Blood | I.P.: 0/2 c; I.M.: 0/2 | I.P.: 1/1 (102: 35.08, VI−) | I.P.: 0/3 |
I.M.: 1/1 (108: 36.8, VI−) | I.M.: 1/2 (15: 37.89, VI−) | ||
Liver | I.P.: 0/2; I.M.: 0/2 | I.P.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
I.M.: 1/1 (108: 40.0, VI−) | |||
Spleen | I.P.: 0/2; I.M.: 0/2 | I.P.: 1/1 (102: 40.0, VI−) | I.P.: 0/3 |
I.M.: 0/1 | I.M.: 1/2 (15: 35.88, VI−) | ||
Kidney | I.P.: 0/2; I.M.: 0/2 | I.P.: 1/1 (102: 36.66, VI−) | I.P.: 0/3; I.M.: 0/2 |
I.M.: 0/1 | |||
Lung | I.P.: 0/2; I.M.: 0/2 | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
Small intestine | I.P.: 0/2; I.M.: 0/2 | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
Large intestine | I.P.: 0/2 | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
I.M.: 1/2 (107: 39.17d, VI−) | |||
Stomach | I.P.: 2/2 (101: 39.68; 16: 39.4, VI−) | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
I.M.: 1/2 (107: 38.93, VI−) | |||
Reproductive organse,f | I.P.: 0/2; I.M.: 0/2 | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
Bladder | I.P.: 0/2; I.M.: 0/2 | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
Rectum | I.P.: 0/2; I.M.: 0/2 | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
Heart | I.P.: 0/2; I.M.: 0/2 | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
Skin | I.P.: 1/2 (101: 39.57, VI−) | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
I.M.: 0/2 | |||
Muscle | I.P.: 0/2; I.M.: 0/2 | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
Salivary glands | I.P.: 0/2; I.M.: 0/2 | I.P. 0/1; I.M.: 0/1 | I.P. 0/3; I.M.: 0/2 |
Conjunctiva | I.P.: 0/2; I.M.: 0/2 | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
Braing | I.P.: 0/2; I.M.: 0/2 | I.P.: 0/1; I.M.: 0/1 | I.P.: 0/3; I.M.: 0/2 |
Type of Swab | Subcutaneous d.p.i.a | Intraperitoneal or Intramuscular d.p.i. | ||||
---|---|---|---|---|---|---|
3 | 5 | 7 | 10 | 5 | 7 | |
Oral | 0/13 b | 0/11 | 0/3 | 0/3 | 0/4 | 0/2 |
Nasal | 0/13 | 0/11 | 0/3 | 0/3 | 0/4 | 0/2 |
Ocular | 0/13 | 0/11 | 0/3 | 0/3 | 0/4 | 0/2 |
Vaginal/penile | 0/13 | 0/11 | 0/3 | 0/3 | 0/4 | 0/2 |
Rectal | 0/13 | 0/11 | 0/3 | 0/3 | 0/4 | 0/2 |
2.5. Serology
2.6. Real-Time Quantitative RT-PCR (Q-RT-PCR)
2.7. Virus Isolation
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kuhn, J.H.; Becker, S.; Ebihara, H.; Geisbert, T.W.; Johnson, K.M.; Kawaoka, Y.; Lipkin, W.I.; Negredo, A.I.; Netesov, S.V.; Nichol, S.T.; et al. Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations. Arch. Virol. 2010, 155, 2083–2103. [Google Scholar] [CrossRef] [PubMed]
- WHO Ebola Response Team. Ebola virus disease in West Africa—The first 9 months of the epidemic and forward projections. Engl. J. Med. 2014, 371, 1481–1495. [Google Scholar]
- Carroll, M.C.; Matthews, D.A.; Hiscox, J.A.; Elmore, M.J.; Pollakis, G.; Rambaut, A.; Hewson, R.; Garcı’a-Dorival, I.; Bore, J.A.; Koundouno, R.; et al. Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature 2015, 524, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Weyer, J.; Grobbelaar, A.; Blumberg, L. Ebola virus disease: History, epidemiology and outbreaks. Curr. Infect. Dis. Rep. 2015, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P. Ecology of Marburg and Ebola Viruses: Speculations and Directions for Future Research. J. Infect.Dis. 1999, 179, S127–S138. [Google Scholar] [CrossRef] [PubMed]
- Wahl-Jensen, V.; Radoshitzky, S.R.; de Kok-Mercado, F.; Taylor, S.L.; Bavari, S.; Jahrling, P.B.; Kuhn, J.H. Role of rodents and bats in human viral hemorrhagic fevers. In Viral Hemorrhagic Fevers; Singh, S.K., Ruzek, D., Eds.; CRS Press Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2014; pp. 99–127. [Google Scholar]
- Arata, A.; Johnson, B. Approaches towards studies on potential reservoirs of viral haemorrhagic fever in southern Sudan (1977). In Ebola Virus Haemorrhagic Fever; Pattyn, S., Ed.; Elsevier: New York, NY, USA, 1978; pp. 191–200. [Google Scholar]
- Formenty, P.; Boesch, C.; Wyers, M.; Steiner, C.; Donati, F.; Walker, F.; le Guenno, B. Ebola virus outbreak among wild chimpanzees living in a rain forest of Cote d’Ivoire. J. Infect. Dis. 1999, 179, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Swanepoel, R.; Leman, P.A.; Burt, F.J.; Zachariades, N.A.; Braack, L.E.; Ksiazek, T.G.; Rollin, P.E.; Zaki, S.R.; Peters, C.J. Experimental inoculation of plants and animals with Ebola virus. Emerg. Infect. Dis. 1996, 2, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Leroy, E.M.; Kumulungui, B.; Pourrut, X.; Rouquet, P.; Hassanin, A.; Yaba, P.; Délicat, A.; Paweska, J.T.; Gonzalez, J.-P.; Swanepoel, R. Fruit bats as reservoirs of Ebola virus. Nature 2005, 438, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Pourrut, X.; Délicat, A.; Rollin, P.E.; Ksiazek, T.G.; Gonzalez, J.-P.; Leroy, E.M. Spatial and temporal patterns of Zaire ebolavirus antibody prevalence in the possible reservoir bat species. J. Infect. Dis. 2007, 196, S176–S183. [Google Scholar] [CrossRef] [PubMed]
- Pourrut, X.; Souris, M.; Towner, J.S.; Rollin, P.E.; Nichol, S.T.; Gonzalez, J.-P.; Leroy, E. Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect. Dis. 2009, 9. [Google Scholar] [CrossRef] [PubMed]
- Leroy, E.M.; Epelboin, A.; Mondonge, V.; Pourrut, X.; Gonzalez, J.P.; Muyembe-Tamfum, J.J.; Formenty, P. Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector Borne Zoonotic Dis. 2009, 9, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Hayman, D.T.S.; Emmerich, P.; Yu, M.; Wang, L.-F.; Suu-Ire, R.; Fooks, A.R.; Cunningham, A.A.; Wood, J.L.N. Long-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses. PLoS ONE 2010, 5, e11978. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, S.; Watanabe, S.; Masangkay, J.S.; Omatsu, T.; Ikegami, T.; Alviola, P.; Ueda, N.; Iha, K.; Fujii, H.; Ishii, Y.; et al. Reston Ebolavirus antibodies in bats, the Philippines. Emerg. Infect. Dis. 2011, 17, 1559–1560. [Google Scholar] [CrossRef] [PubMed]
- Olival, K.J.; Islam, A.; Yu, M.; Anthony, S.J.; Epstein, J.H.; Khan, S.A.; Khan, S.U.; Crameri, G.; Wang, L.; Lipkin, W.I.; et al. Ebola virus antibodies in fruit bats, Bangladesh. Emerg. Infect. Dis. 2013, 19, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhang, Y.; Li, J.; Zhang, Y.; Wang, L.-F.; Shi, Z. Serological evidence of ebolavirus infection in bats, China. Virol. J. 2012, 9, e236. [Google Scholar] [CrossRef] [PubMed]
- Saéz, A.M.; Weiss, S.; Nowak, K.; Lapeyre, V.; Kaba, M.; Regnaut, S.; Zimmermann, F.; Düx, A.; Ku, H.S.; Merkel, K.; et al. Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Mol. Med. 2015, 7, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; Miyamoto, H.; Nakayama, E.; Yoshida, R.; Nakamura, I.; Sawa, H.; Ishii, A.; Thomas, Y.; Nakagawa, E.; Matsuno, K.; et al. Seroepidemiological prevalence of multiple species of filoviruses in fruit bats (Eidolon helvum) migrating in Africa. J. Infect. Dis. 2015. [Google Scholar] [CrossRef] [PubMed]
- Swanepoel, R.; Smit, S.B.; Rollin, P.E.; Formenty, P.; Leman, P.A.; Kemp, A.; Burt, F.J.; Grobbelaar, A.A.; Croft, J.; Bausch, D.G.; et al. Studies of reservoir hosts for Marburg virus. Emerg. Infect. Dis. 2007, 13, 1847–1851. [Google Scholar] [CrossRef] [PubMed]
- Towner, J.S.; Amman, B.R.; Sealy, T.K.; Carroll, S.A.R.; Comer, J.A.; Kemp, A.; Swanepoel, R.; Paddock, C.D.; Balinandi, S.; Khristova, M.L.; et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009, 5, e1000536. [Google Scholar] [CrossRef] [PubMed]
- Amman, B.R.; Carroll, S.A.; Reed, Z.D.; Sealy, T.K.; Balinandi, S.; Swanepoel, R.; Kemp, A.; Erickson, B.R.; Comer, J.A.; Campbell, S.; et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012, 8, e1002877. [Google Scholar]
- Amman, B.R.; Nyakarahuka, L.; McElroy, A.K.; Dodd, K.A.; Sealy, T.K.; Schuh, A.J.; Shoemaker, T.R.; Balinandi, S.; Atimnedi, P.; Kaboyo, W.; et al. Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts, Uganda. Emerg. Infect. Dis. 2014, 20, 1761–1764. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; van Vuren, P.J.; Masumu, J.; Leman, P.A.; Grobbelaar, A.A.; Birkhead, M.; Clift, S.; Swanepoel, R.; Kemp, A. Virological and serological findings in Rousettus aegyptiacus experimentally inoculated with Vero cells-adapted Hogan strain of Marburg virus. PLoS ONE 2012, 7, e45479. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; van Jansen Vuren, P.; Fenton, K.A.; Graves, K.; Grobbelaar, A.A.; Moolla, N.; Leman, P.; Weyer, J.; Storm, N.; McCulloch, S.D.; et al. Lack of Marburg virus transmission from experimentally infected to susceptible in-contact Egyptian fruit bats. J. Infect. Dis. 2015. [Google Scholar] [CrossRef] [PubMed]
- Amman, B.R.; Jones, M.E.B.; Sealy, T.K.; Uebelhoer, L.S.; Schuh, A.J.; Bird, B.H.; Coleman-Mccray, J.D.; Martin, B.E.; Nichol, S.T.; Towner, J.S. Oral shedding of Marburg virus in experimentally infected Egyptian fruit bats (Rousettus aegyptiacus). J. Wildl. Dis. 2015, 51, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Krähling, V.; Dolnik, O.; Kolesnikova, L.; Schmidt-Chanasit, J.; Jordan, I.; Sandig, V.; Günther, S.; Becker, S. Establishment of fruit bat cells (Rousettus aegyptiacus) as a model system for the investigation of filoviral infection. PLoS Negl.Trop. Dis. 2010, 4, e802. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.E.B.; Schuh, A.J.; Amman, B.R.; Sealy, T.K.; Zaki, S.R.; Nichol, S.T.; Towner, J.S. Experimental inoculation of Egyptian Rousette bats (Rousettus aegyptiacus) with viruses of the Ebolavirus and Marburgvirus genera. Viruses 2015, 7, 3420–3442. [Google Scholar] [CrossRef] [PubMed]
- Richards, G.A.; Murphy, S.; Jobson, R.; Mer, M.; Zinman, C.; Taylor, R.; Swanepoel, R.; Duse, A.; Sharp, G.; de la Rey, I.C.J.; Kassianides, C. Unexpected Ebola virus in a tertiary setting: Clinical and epidemiologic aspects. Crit. Care Med. 2000, 28, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; van Jansen Vuren, P.; Swanepoel, R. Validation of an indirect ELISA based on a recombinant nucleocapsid protein of Rift Valley fever virus for the detection of IgG antibody in humans. J. Virol. Meth. 2007, 146, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Panning, M.; Laue, T.; Olschlager, S.; Eickmann, M.; Becker, S.; Raith, S.; Courbot, M.-C.G.; Nilsson, M.; Gopal, R.; Lundkvist, A.; et al. Diagnostic reverse-transcription polymerase chain reaction kit for filoviruses based on the strain collections of all European biosafety level 4 laboratories. J. Infect. Dis. 2007, 196, S199–S204. [Google Scholar] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paweska, J.T.; Storm, N.; Grobbelaar, A.A.; Markotter, W.; Kemp, A.; Jansen van Vuren, P. Experimental Inoculation of Egyptian Fruit Bats (Rousettus aegyptiacus) with Ebola Virus. Viruses 2016, 8, 29. https://doi.org/10.3390/v8020029
Paweska JT, Storm N, Grobbelaar AA, Markotter W, Kemp A, Jansen van Vuren P. Experimental Inoculation of Egyptian Fruit Bats (Rousettus aegyptiacus) with Ebola Virus. Viruses. 2016; 8(2):29. https://doi.org/10.3390/v8020029
Chicago/Turabian StylePaweska, Janusz T., Nadia Storm, Antoinette A. Grobbelaar, Wanda Markotter, Alan Kemp, and Petrus Jansen van Vuren. 2016. "Experimental Inoculation of Egyptian Fruit Bats (Rousettus aegyptiacus) with Ebola Virus" Viruses 8, no. 2: 29. https://doi.org/10.3390/v8020029
APA StylePaweska, J. T., Storm, N., Grobbelaar, A. A., Markotter, W., Kemp, A., & Jansen van Vuren, P. (2016). Experimental Inoculation of Egyptian Fruit Bats (Rousettus aegyptiacus) with Ebola Virus. Viruses, 8(2), 29. https://doi.org/10.3390/v8020029