Envelope Protein Mutations L107F and E138K Are Important for Neurovirulence Attenuation for Japanese Encephalitis Virus SA14-14-2 Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells, Plasmids, and Viruses
2.2. DNA Cloning
2.3. In Vitro RNA Transcription, Transfection, and Viral Recovery
2.4. Nucleotide Sequencing of the Revertant Viruses
2.5. Growth Analysis of Revertants and Control Viruses
2.6. Mouse Experiments
2.7. Statistical Analysis
2.8. Ethical Approval
3. Results
3.1. Construction of Infectious JEV Full-Length cDNA Clones Containing Specific Reverse Mutations in the E Protein
3.2. Growth Analysis of Revertants and Control Viruses
3.3. Mutation at Residue E138 in Combination with E107 Is Critical to the Attenuated Neurovirulence of JEV SA14-14-2
3.4. Reverse Mutations in the E Protein Increased the Mortality and Decreased the AST of I.C.-Inoculated Mice
3.5. Effects of Specific Reverse Mutations on JEV SA14-14-2 Neuroinvasiveness
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wills, M.R.; Sil, B.K.; Cao, J.X.; Yu, Y.X.; Barrett, A.D. Antigenic characterization of the live attenuated Japanese encephalitis vaccine virus SA14-14-2: A comparison with isolates of the virus covering a wide geographic area. Vaccine 1992, 10, 861–872. [Google Scholar] [CrossRef]
- Liu, Z.L.; Hennessy, S.; Strom, B.L.; Tsai, T.F.; Wan, C.M.; Tang, S.C.; Xiang, C.F.; Bilker, W.B.; Pan, X.P.; Yao, Y.J.; et al. Short-term safety of live attenuated Japanese encephalitis vaccine (SA14-14-2): Results of a randomized trial with 26,239 subjects. J. Infect. Dis. 1997, 176, 1366–1369. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Burns, N.J.; Chang, G.J.; Zhang, M.J.; Wills, M.R.; Trent, D.W.; Sanders, P.G.; Barrett, A.D. Comparison of nucleotide and deduced amino acid sequence of the 5’ non-coding region and structural protein genes of the wild-type Japanese encephalitis virus strain SA14 and its attenuated vaccine derivatives. J. Gen. Virol. 1994, 75, 1505–1510. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Chang, G.J.; Xie, H.; Trent, D.W.; Barrett, A.D. Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14. J. Gen. Virol. 1995, 76, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y. Phenotypic and genotypic characteristics of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and their stabilities. Vaccine 2010, 28, 3635–3641. [Google Scholar] [CrossRef] [PubMed]
- Chambers, T.J.; Droll, D.A.; Jiang, X.; Wold, W.S.; Nickells, J.A. JE Nakayama/JE SA14-14-2 virus structural region intertypic viruses: Biological properties in the mouse model of neuroinvasive disease. Virology 2007, 366, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.D.; Gibson, C.A.; Miller, B.R.; Mathews, J.H.; Mitchell, C.J.; Roehrig, J.T.; Wood, D.J.; Taffs, F.; Sil, B.K.; Whitby, S.N.; et al. Analysis of a yellow fever virus isolated from a fatal case of vaccine-associated human encephalitis. J. Infect. Dis. 1994, 169, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Taffs, R.E.; Chumakov, K.M.; Rezapkin, G.V.; Lu, Z.; Douthitt, M.; Dragunsky, E.M.; Levenbook, I.S. Genetic stability and mutant selection in Sabin 2 strain of oral poliovirus vaccine grown under different cell culture conditions. Virology 1995, 209, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Chambers, T.J.; Liang, Y.; Droll, D.A.; Schlesinger, J.J.; Davidson, A.D.; Wright, P.J.; Jiang, X. Yellow fever virus/dengue-2 virus and yellow fever virus/dengue-4 virus chimeras: Biological characterization, immunogenicity, and protection against dengue encephalitis in the mouse model. J. Virol. 2003, 77, 3655–3668. [Google Scholar] [CrossRef] [PubMed]
- Chambers, T.J.; Nestorowicz, A.; Mason, P.W.; Rice, C.M. Yellow fever/Japanese encephalitis chimeric viruses: Construction and biological properties. J. Virol. 1999, 73, 3095–3101. [Google Scholar] [PubMed]
- Chambers, T.J.; Jiang, X.; Droll, D.A.; Liang, Y.; Wold, W.S.; Nickells, J. Chimeric Japanese encephalitis virus/dengue 2 virus infectious clone: Biological properties, immunogenicity, and protection against dengue encephalitis in mice. J. Gen. Virol. 2006, 87, 3131–3140. [Google Scholar] [CrossRef] [PubMed]
- Muylaert, I.R.; Chambers, T.J.; Galler, R.; Rice, C.M. Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: Effects on virus replication and mouse neurovirulence. Virology 1996, 222, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Mishin, V.P.; Cominelli, F.; Yamshchikov, V.F. A “minimal” approach in design of flavivirus infectious DNA. Virus Res. 2001, 81, 113–123. [Google Scholar] [CrossRef]
- Ruggli, N.; Rice, C.M. Functional cDNA clones of the Flaviviridae: Strategies and applications. Adv. Virus Res. 1999, 53, 183–207. [Google Scholar] [PubMed]
- Zhang, F.; Huang, Q.; Ma, W.; Jiang, S.; Fan, Y.; Zhang, H. Amplification and cloning of the full-length genome of Japanese encephalitis virus by a novel long RT-PCR protocol in a cosmid vector. J. Virol. Methods 2001, 96, 171–182. [Google Scholar] [CrossRef]
- Sumiyoshi, H.; Hoke, C.H.; Trent, D.W. Infectious Japanese encephalitis virus RNA can be synthesized from in vitro-ligated cDNA templates. J. Virol. 1992, 66, 5425–5431. [Google Scholar] [PubMed]
- Yun, S.I.; Kim, S.Y.; Rice, C.M.; Lee, Y.M. Development and application of a reverse genetics system for Japanese encephalitis virus. J. Virol. 2003, 77, 6450–6465. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.J.; Monath, T.P. Chimeric flaviviruses: Novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis. Adv. Virus Res. 2003, 61, 469–509. [Google Scholar] [PubMed]
- Nitayaphan, S.; Grant, J.A.; Chang, G.J.; Trent, D.W. Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology 1990, 177, 541–552. [Google Scholar] [CrossRef]
- Zhao, Z.; Date, T.; Li, Y.; Kato, T.; Miyamoto, M.; Yasui, K.; Wakita, T. Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. J. Gen. Virol. 2005, 86, 2209–2220. [Google Scholar] [CrossRef] [PubMed]
- Galler, R.; Freire, M.S.; Jabor, A.V.; Mann, G.F. The yellow fever 17D vaccine virus: Molecular basis of viral attenuation and its use as an expression vector. Braz. J. Med. Biol. Res. 1997, 30, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Liu, J.; Yang, H.Q.; Zhao, Y.; Wang, W.; Mu, J.C.; Huang, Y.X.; Liu, R.; Sun, Y.; Yu, Y.X.; et al. Genetic property of attenuated Japanese encephalitis virus strain SA14-14-2 after subculture in suckling mouse brain. Chin. J. Biol. 2007, 20, 19–21. [Google Scholar]
- Kolaskar, A.S.; Kulkarni-Kale, U. Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. Virology 1999, 261, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Roehrig, J.T.; Hunt, A.R.; Johnson, A.J.; Hawkes, R.A. Synthetic peptides derived from the deduced amino acid sequence of the E-glycoprotein of Murray Valley encephalitis virus elicit antiviral antibody. Virology 1989, 171, 49–60. [Google Scholar] [CrossRef]
- Roehrig, J.T.; Johnson, A.J.; Hunt, A.R.; Bolin, R.A.; Chu, M.C. Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology 1990, 177, 668–675. [Google Scholar] [CrossRef]
- Despres, P.; Frenkiel, M.P.; Deubel, V. Differences between cell membrane fusion activities of two dengue type-1 isolates reflect modifications of viral structure. Virology 1993, 196, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Rey, F.A.; Heinz, F.X.; Mandl, C.; Kunz, C.; Harrison, S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 1995, 375, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Lin, Y.L.; Liao, C.L.; Lin, C.G.; Huang, Y.L.; Yeh, C.T.; Lai, S.C.; Jan, J.T.; Chin, C. Generation and characterization of organ-tropism mutants of Japanese encephalitis virus in vivo and in vitro. Virology 1996, 223, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Gualano, R.C.; Pryor, M.J.; Cauchi, M.R.; Wright, P.J.; Davidson, A.D. Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J. Gen. Virol. 1998, 79, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Yoshida, M.; Shiosaka, T.; Fujita, S.; Kobayashi, Y. Mutations in the envelope protein of Japanese encephalitis virus affect entry into cultured cells and virulence in mice. Virology 1992, 191, 158–165. [Google Scholar] [CrossRef]
- McMinn, P.C.; Marshall, I.D.; Dalgarno, L. Neurovirulence and neuroinvasiveness of Murray Valley encephalitis virus mutants selected by passage in a monkey kidney cell line. J. Gen. Virol. 1995, 76, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Sumiyoshi, H.; Tignor, G.H.; Shope, R.E. Characterization of a highly attenuated Japanese encephalitis virus generated from molecularly cloned cDNA. J. Infect. Dis. 1995, 171, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P.; Arroyo, J.; Levenbook, I.; Zhang, Z.X.; Catalan, J.; Draper, K.; Guirakhoo, F. Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: Relevance to development and safety testing of live, attenuated vaccines. J. Virol. 2002, 76, 1932–1943. [Google Scholar] [CrossRef] [PubMed]
- McMinn, P.C.; Weir, R.C.; Dalgarno, L. A mouse-attenuated envelope protein variant of Murray Valley encephalitis virus with altered fusion activity. J. Gen. Virol. 1996, 77, 2085–2088. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, J.; Guirakhoo, F.; Fenner, S.; Zhang, Z.X.; Monath, T.P.; Chambers, T.J. Molecular basis for attenuation of neurovirulence of a yellow fever virus/Japanese encephalitis virus chimera vaccine (ChimeriVax-JE). J. Virol. 2001, 75, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.I.; Song, B.H.; Kim, J.K.; Yun, G.N.; Lee, E.Y.; Li, L.; Kuhn, R.J.; Rossmann, M.G.; Morrey, J.D.; Lee, Y.M. A molecularly cloned, live-attenuated Japanese encephalitis vaccine SA14–14–2 virus: A conserved single amino acid in the ij hairpin of the viral E glycoprotein determines neurovirulence in mice. PLoS Pathog. 2014, 10, e1004290. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.A.; Khomandiak, S.; Ashbrook, A.W.; Weller, R.; Heise, M.T.; Morrison, T.E.; Dermody, T.S. A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. J. Virol. 2014, 88, 2385–2397. [Google Scholar] [CrossRef] [PubMed]
Positions in E Protein a | Virulent Strain | Attenuated Strain | ||||
---|---|---|---|---|---|---|
SA14/USA | SA14/CDC | SA14/JAP | SA14-14-2/PHK | SA14-14-2/PDK | SA14-5-3 | |
E107 | L | L | L | F | F | F |
E138 | E | E | E | K | K | K |
E176 | I | I | I | V | V | V |
E177 | T | T | T | A | T | T |
E264 | Q | Q | Q | H | Q | Q |
E279 | K | K | K | M | M | M |
E315 | A | V | A | V | V | V |
E439 | K | R | K | R | R | R |
Viruses | LD50 (log10PFU) * | |
---|---|---|
rJEV (SA14-14-2) | ≥6.48 | |
rJEV1 (E107) | 3.97 | |
rJEV2 (E138) | 2.89 | |
rJEV3 (E176/E177) | ≥6.43 | |
rJEV4 (E279) † | ≥6.24 | |
rJEV5 (E107/E138) | 1.70 | |
rJEV6 (E107/E176/E177) | 5.69 | |
rJEV7 (E138/E176/E177) | 3.64 | |
rJEV8 (E138/E279) | 2.82 | |
rJEV9 (E107/E138/E176/E177) | 1.99 | |
rJEV10 (E107/E138/E176/E177/E279) | 1.43 | |
rJEV11/SA14 | 0.66 | |
SA14 | −0.92 |
Viruses | No. of Dead Mice/Total No. of Mice (%) | AST (day) Mean ± SD |
---|---|---|
rJEV (SA14-14-2) | 0/6 (0) | - |
rJEV1 (E107) | 5/6 (83.3%) | 6.6 ± 0.9 $ |
rJEV2 (E138) | 6/6 (100%) | 6 ± 0 #,$ |
rJEV3 (E176/E177) | 1/6 (16.7%) | 11 ± 0 |
rJEV4 (E279) | 0/6 (0) | - |
rJEV5 (E107/E138) | 6/6 (100%) | 6 ± 0 # |
rJEV6 (E107/E176/E177) | 3/6 (50%) | 9 ± 0 |
rJEV7 (E138/E176/E177) | 6/6 (100%) | 6 ± 0 # |
rJEV8 (E138/E279) | 6/6 (100%) | 6 ± 0 # |
rJEV9 (E107/E138/E176/E177) | 6/6 (100%) | 6 ± 0 # |
rJEV10 (E107/E138/E176/E177/E279) | 6/6 (100%) | 6 ± 0 # |
rJEV11/SA14 | 6/6 (100%) | 5 ± 0 * |
SA14 | 6/6 (100%) | 4 ± 0 * |
Inocula | LD50 (log10PFU) |
---|---|
rJEV (SA14-14-2) | ≥6.14 |
rJEV1 (E107) | ≥7.32 |
rJEV2 (E138) | ≥6.20 |
rJEV3 (E176/E177) | ≥6.93 |
rJEV4 (E279) | ≥6.74 |
rJEV5 (E107/E138) | ≥6.54 |
rJEV6 (E107/E176/E177) | ≥6.71 |
rJEV7 (E138/E176/E177) | 5.76 |
rJEV8 (E138/E279) | 6.01 |
rJEV9 (E107/E138/E176/E177) | 5.40 |
rJEV10 (E107/E138/E176/E177/E279) | 5.53 |
rJEV11/SA14 | 3.17 |
SA14 | 1.86 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Yang, H.; Li, Z.; Wang, W.; Lin, H.; Liu, L.; Ni, Q.; Liu, X.; Zeng, X.; Wu, Y.; et al. Envelope Protein Mutations L107F and E138K Are Important for Neurovirulence Attenuation for Japanese Encephalitis Virus SA14-14-2 Strain. Viruses 2017, 9, 20. https://doi.org/10.3390/v9010020
Yang J, Yang H, Li Z, Wang W, Lin H, Liu L, Ni Q, Liu X, Zeng X, Wu Y, et al. Envelope Protein Mutations L107F and E138K Are Important for Neurovirulence Attenuation for Japanese Encephalitis Virus SA14-14-2 Strain. Viruses. 2017; 9(1):20. https://doi.org/10.3390/v9010020
Chicago/Turabian StyleYang, Jian, Huiqiang Yang, Zhushi Li, Wei Wang, Hua Lin, Lina Liu, Qianzhi Ni, Xinyu Liu, Xianwu Zeng, Yonglin Wu, and et al. 2017. "Envelope Protein Mutations L107F and E138K Are Important for Neurovirulence Attenuation for Japanese Encephalitis Virus SA14-14-2 Strain" Viruses 9, no. 1: 20. https://doi.org/10.3390/v9010020
APA StyleYang, J., Yang, H., Li, Z., Wang, W., Lin, H., Liu, L., Ni, Q., Liu, X., Zeng, X., Wu, Y., & Li, Y. (2017). Envelope Protein Mutations L107F and E138K Are Important for Neurovirulence Attenuation for Japanese Encephalitis Virus SA14-14-2 Strain. Viruses, 9(1), 20. https://doi.org/10.3390/v9010020