Extended Duration Vascular Endothelial Growth Factor Inhibition in the Eye: Failures, Successes, and Future Possibilities
Abstract
:1. Introduction
2. Vascular Endothelial Growth Factor (VEGF) Physiology and Pharmacokinetics
3. Currently Available Therapies
3.1. Pegaptanib
3.2. Bevacizumab
3.3. Ranibizumab
3.4. Aflibercept
3.5. Conbercept
4. Therapies under Development
4.1. Abicipar Pegol
4.2. Brolucizumab
4.3. Ranibizumab Port Delivery System
4.4. Gene Therapy
4.5. Encapsulated Cell Technology
4.6. Colloidal Carriers
4.7. Pump Delivery
4.8. Topical Therapy
5. Discussion
Author Contributions
Conflicts of Interest
References
- Connolly, D.T.; Heuvelman, D.M.; Nelson, R.; Olander, J.V.; Eppley, B.L.; Delfino, J.J.; Siegel, N.R.; Leimgruber, R.M.; Feder, J. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J. Clin. Investig. 1989, 84, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Henzel, W.J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 1989, 161, 851–858. [Google Scholar] [CrossRef]
- Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E.; et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 1994, 131, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Damico, L.; Shams, N.; Lowman, H.; Kim, R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006, 26, 859–870. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Ophthalmology. Available online: https://www.aao.org/eyenet/article/treat-extend-strategy-is-there-consensus (accessed on 11 December 2017).
- The CATT Research Group; Martin, D.F.; Maguire, M.G.; Ying, G.S.; Grunwald, J.E.; Fine, S.L.; Jaffe, G.J. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2011, 364, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Nork, T.M.; Dubielzig, R.R.; Christian, B.J.; Miller, P.E.; Miller, J.M.; Cao, J.; Zimmer, E.P.; Wiegand, S.J. Prevention of experimental choroidal neovascularization and resolution of active lesions by VEGF trap in nonhuman primates. Arch. Ophthalmol. 2011, 129, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Tolentino, M.J.; Miller, J.W.; Gragoudas, E.S.; Chatzistefanou, K.; Ferrara, N.; Adamis, A.P. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Arch. Ophthalmol. 1996, 114, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, H.; Kitsukawa, T.; Kawakami, A.; Takagi, S.; Shimizu, M.; Hirata, T. Roles of a neuronal cell-surface molecule, neuropilin, in nerve fiber fasciculation and guidance. Cell Tissue Res. 1997, 90, 465–470. [Google Scholar] [CrossRef]
- Zhong, X.; Huang, H.; Shen, J.; Zacchigna, S.; Zentilin, L.; Giacca, M.; Vinores, S.A. Vascular endothelial growth factor-B gene transfer exacerbates retinal and choroidal neovascularization and vasopermeability without promoting inflammation. Mol. Vis. 2011, 17, 492–507. [Google Scholar] [PubMed]
- Rakic, J.M.; Lambert, V.; Devy, L.; Luttun, A.; Carmeliet, P.; Claes, C.; Nguyen, L.; Foidart, J.M.; Noël, A.; Munaut, C.; et al. Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3186–3193. [Google Scholar] [CrossRef]
- Adamis, A.P.; Miller, J.W.; Bernal, M.T.; D’Amico, D.J.; Folkman, J.; Yeo, T.K.; Yeo, K.T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 1994, 118, 445–450. [Google Scholar] [CrossRef]
- Nomura, M.; Yamagishi, S.I.; Harada, S.I.; Hayashi, Y.; Yamashima, T.; Yamashita, J.; Yamamoto, H. Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J. Biol. Chem. 1995, 270, 28316–28324. [Google Scholar] [PubMed]
- Semenza, G. Signal transduction to hypoxia-inducible factor 1. Biochem. Pharmacol. 2002, 64, 993–998. [Google Scholar] [CrossRef]
- Ben-Av, P.; Crofford, L.J.; Wilder, R.L.; Hla, T. Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: A potential mechanism for inflammatory angiogenesis. FEBS Lett. 1995, 372, 83–87. [Google Scholar] [CrossRef]
- Yuan, F.; Chen, Y.; Dellian, M.; Safabakhsh, N.; Ferrara, N.; Jain, R.K. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor-vascular permeability factor antibody. Proc. Natl. Acad. Sci. USA 1996, 93, 14765–14770. [Google Scholar] [CrossRef] [PubMed]
- De Vries, C.; Escobedo, J.A.; Ueno, H.; Houck, K.; Ferrara, N.; Williams, L.T. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992, 255, 989–991. [Google Scholar] [CrossRef] [PubMed]
- Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr.; Feinsod, M.; Guyer, D.R. VEGF Inhibition Study in Ocular Neovascularization Clinical Trial Group. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 2004, 351, 2805–2816. [Google Scholar] [CrossRef] [PubMed]
- Bevacizumab Product Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/125085s225lbl.pdf (accessed on 11 December 2017).
- Diabetic Retinopathy Clinical Research Network; Wells, J.A.; Glassman, A.R.; Ayala, A.R.; Jampol, L.M.; Aiello, L.P.; Antoszyk, A.N.; Arnold-Bush, B.; Baker, C.W.; Bressler, N.M.; et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N. Engl. J. Med. 2015, 372, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Ranibizumab Product Label. Available online: https://www.google.com/search?source=hp&ei=HjcvWtyCI5KgjwSIx43wBg&q=ranibizumab+product+label&oq=ranibizumab+product+la&gs_l=psy-ab.1.0.33i160k1l3.1532.6084.0.8731.22.19.0.3.3.0.313.2540.0j7j5j1.13.0....0...1c.1.64.psy-ab.7.15.2345...0j46j0i131k1j0i46k1j0i3k1j0i10k1j0i22i30k1.0.XaF7BcYR0Ig (accessed on 11 December 2017).
- Aflibercept Product Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/125387lbl.pdf (accessed on 12 December 2017).
- Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S.D.; Ho, L.; Russell, M.; Boland, P.; Leidich, R.; Hylton, D.; Burova, E.; et al. VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 2002, 99, 11393–11398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, J.; Yan, M.; Luo, D.; Zhu, W.; Kaiser, P.K.; Yu, D.C. KH902 Phase 1 Study Group. A phase 1 study of KH902, a vascular endothelial growth factor receptor decoy, for exudative age-related macular degeneration. Ophthalmology 2011, 118, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Channa, R.; Berger, B.B.; Heier, J.S.; Brown, D.M.; Fiedler, U.; Hepp, J.; Stumpp, M.T. Treatment of Diabetic Macular Edema with a Designed Ankyrin Repeat Protein That Binds Vascular Endothelial Growth Factor: A Phase I/II Study. Am. J. Ophthalmol. 2013, 155, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Tietz, J.; Spohn, G.; Schmid, G.; Konrad, J.; Jampen, S.; Maurer, P.; Schmidt, A.; Escher, D. Affinity and potency of RTH258 (ESBA1008), a novel inhibitor of vascular endothelial growth factor a for the treatment of retinal disorders. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1501. [Google Scholar]
- Novartis Media Release. Available online: https://www.novartis.com/news/media-releases/novartis-brolucizumab-rth258-demonstrates-superiority-versus-aflibercept-key (accessed on 10 December 2017).
- Retina Today Website. Available online: http://retinatoday.com/2014/08/long-acting-anti-vegf-delivery (accessed on 15 January 2016).
- Healio Online News. Available online: https://www.healio.com/ophthalmology/retina-vitreous/news/online/%7Bd94023a0-da11-4e37-94a0-ab173941d238%7D/genentech-completes-enrollment-in-ranibizumab-port-delivery-system-trial (accessed on 10 December 2017).
- Heier, J. Top line results from the phase I and IIa clinical trials of AVA-101. In Proceedings of the 2015 American Academy of Ophthalmology Annual Meeting, Las Vegas, NV, USA, 15 November 2015. [Google Scholar]
- Kauper, K.; McGovern, C.; Sherman, S.; Heatherton, P.; Rapoza, R.; Stabila, P.; Dean, B.; Lee, A.; Borges, S.; Bouchard, B.; et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7484–7491. [Google Scholar] [CrossRef] [PubMed]
- Neurotech Press Release. Available online: http://www.neurotechusa.com/nc-503-ect.html (accessed on 10 December 2017).
- Joseph, R.R.; Tan, D.W.N.; Ramon, M.R.M.; Natarajan, J.V.; Agrawal, R.; Wong, T.T.; Venkatraman, S.S. Characterization of liposomal carriers for the trans-scleral transport of Ranibizumab. Sci. Rep. 2017, 7, 16803. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Hernándes, J.-C.; Caffey, S.; Abdallah, W.; Cavillo, P.; González, R.; Shih, J.; Brennan, J.; Zimmerman, J.; Martínez-Camarillo, J.C.; Rodriguez, A.R.; et al. One-Year Feasibility Study of Replenish MicroPump for Intravitreal Drug Delivery: A Pilot Study. Transl. Vis. Sci. Technol. 2014, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Saati, S.; Lo, R.; Li, P.Y.; Meng, E.; Varma, R.; Humayan, M.S. Mini drug pump for ophthalmic use. Trans. Am. Ophthalmol. Soc. 2009, 107, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Humayan, M.; Santos, A.; Altamirano, J.C.; Ribeiro, R.; Gonzalez, R.; de la Rosa, A.; Shih, J.; Pang, C.; Jiang, F.; Calvillo, P.; et al. Implantable micropump for drug delivery in patients with diabetic macular edema. Trans. Vis. Sci. Technol. 2014, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Chemdiv. Available online: http://www.chemdiv.com/panoptica-reports-positive-results-phase-12-clinical-trial-pan-90806-novel-topical-anti-vegf-eye-drop/ (accessed on 10 December 2017).
- Rosenfeld, P.J.; Moshfeghi, A.A.; Puliafito, C.A. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg. Lasers Imaging Retina 2005, 36, 331–335. [Google Scholar]
- Rosenfeld, P.J.; Fung, A.E.; Puliafito, C.A. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for macular edema from central retinal vein occlusion. Ophthalmic Surg. Lasers Imaging Retina 2005, 36, 336–339. [Google Scholar]
- Diabetic Retinopathy Clinical Research Network Writing Committee; Elman, M.J.; Qin, H.; Aiello, L.P.; Beck, R.W.; Bressler, N.M.; Ferris, F.L.; Glassman, A.R.; Maturi, R.K.; Melia, M. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment. Three-year randomized trial results. Ophthalmology 2012, 119, 2312–2318. [Google Scholar] [CrossRef] [PubMed]
- IVAN Study Investigators; Chakravarthy, U.; Harding, S.P.; Rogers, C.A.; Downes, S.M.; Lotery, A.J.; Wordsworth, S.; Reeves, B.C. Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: One-year findings from the IVAN randomized trial. Ophthalmology 2012, 119, 1399–1411. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Brown, D.M.; Chong, V.; Korobelnik, J.F.; Kaiser, P.K.; Nguyen, Q.D.; Kirchhof, B.; Ho, A.; Ogura, Y.; Yancopoulos, G.D.; et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 2012, 119, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.; Martin, J.; Ruan, Q.; Rafique, A.; Rosconi, M.P.; Shi, E.; Pyles, E.A.; Yancopoulos, G.D.; Stahl, N.; Wiegand, S.J. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012, 15, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Furfine, E.; Coppi, A.; Koehler-Stec, E.; Zimmer, E.; Tu, W.; Struble, C. Pharmacokinetics and ocular tissue penetration of VEGF Trap after intravitreal injections in rabbits. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1430. [Google Scholar]
- Schmidt-Erfurth, U.; Kaiser, P.K.; Korobelnik, J.F.; Brown, D.M.; Chong, V.; Nguyen, Q.D.; Ho, A.C.; Ogura, Y.; Simader, C.; Jaffe, G.J.; et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: Ninety-six-week results of the VIEW studies. Ophthalmology 2014, 121, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.R.; Dogra, A.; Stewart, M.; Das, T.; Chhablani, J. Intravitreal Ziv-Aflibercept: Clinical Effects and Economic Impact. Asia. Pac. J. Ophthalmol. 2017, 6, 561–568. [Google Scholar]
- Chen, X.; Li, J.; Li, M.; Zeng, M.; Li, T.; Xiao, W.; Wu, Q.; Ke, X.; Luo, D.; Tang, S.; et al. KH902 suppresses high glucose-induced migration and sprouting of human retinal endothelial cells by blocking VEGF and PlGF. Diabetes Obes. Metab. 2013, 15, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, X.; Li, M.; Li, S.; Xiao, W.; Chen, X.; Cai, M.; Wu, Q.; Luo, D.; Tang, S.; et al. Effects of intravitreal injection of KH902, a vascular endothelial growth factor receptor decoy, on the retina of streptozotocin-induced diabetic rats. Diabetes Obes. Metab. 2012, 14, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Sennhauser, G.; Grütter, M.G. Chaperone-Assisted Crystallography with DARPins. Structure 2008, 16, 1443–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Retinal Physician Website. Available online: https://www.retinalphysician.com/issues/2017/june-2017/allergan-seeks-durable-response-in-phase-3-darpin (accessed on 12 December 2017).
- Gaudreault, J.; Gunde, T.; Floyd, H.S.; Ellis, J.; Tietz, J.; Binggeli, D.; Keller, B.; Schmidt, A.; Escher, D. Preclinical pharmacology and safety of ESBA1008, a single-chain antibody fragment, investigated as potential treatment for age related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3025. [Google Scholar]
- Dugel, P.U.; Jaffe, G.J.; Sallstig, P.; Warburton, J.; Weichselberger, A.; Wieland, M. Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: A randomized trial. Ophthalmology 2017, 124, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Bioterppartners Announcement. Available online: http://www.bioterppartners.com/single-post/2015/08/17/Is-There-ANYTHING-Left-at-Avalanche-AAVL (accessed on 10 December 2017).
- Kim, S.H.; Lutz, R.J.; Wang, N.S.; Robinson, M.R. Transport Barriers in Transscleral Drug Delivery for Retinal Diseases. Ophthalmic Res. 2007, 39, 44–254. [Google Scholar] [CrossRef] [PubMed]
Currently Available Drugs | ||
Drug | Approvals | Comments |
Pegaptanib | Neovascular AMD |
|
Bevacizumab | Advanced carcinomas [20] Off-label for all ophthalmic use |
|
Ranibizumab | Neovascular AMD, DME, DR, Macular edema due to RVOs, Myopic CNVM [22] |
|
Aflibercept | Neovascular AMD [23], DME, DR, Macular edema due to RVOs |
|
Conbercept | Neovascular AMD (China only) |
|
Therapies Under Development or Recently Failed | ||
Drug | Technology | Comments |
Abicipar | Designed Ankyrin Repeat Protein (DARPin) |
|
Brolucizumab | Single strand, antibody fragment | |
Ranibizumab Port Delivery System | Trans-scleral refillable drug reservoir | |
AVA-101 | Adenovirus vector Insertion of soluble VEGF-receptor DNA |
|
NT-503 | Encapsulated Cell Technology using immortalized RPE cells | |
Colloidal Carriers | Liposomal formulated ranibizumab |
|
Posterior Micropump Delivery System | Microelectromechanical Systems (MEMS) Technology |
|
PAN-90806 | Small molecular weight drug |
|
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stewart, M.W. Extended Duration Vascular Endothelial Growth Factor Inhibition in the Eye: Failures, Successes, and Future Possibilities. Pharmaceutics 2018, 10, 21. https://doi.org/10.3390/pharmaceutics10010021
Stewart MW. Extended Duration Vascular Endothelial Growth Factor Inhibition in the Eye: Failures, Successes, and Future Possibilities. Pharmaceutics. 2018; 10(1):21. https://doi.org/10.3390/pharmaceutics10010021
Chicago/Turabian StyleStewart, Michael W. 2018. "Extended Duration Vascular Endothelial Growth Factor Inhibition in the Eye: Failures, Successes, and Future Possibilities" Pharmaceutics 10, no. 1: 21. https://doi.org/10.3390/pharmaceutics10010021
APA StyleStewart, M. W. (2018). Extended Duration Vascular Endothelial Growth Factor Inhibition in the Eye: Failures, Successes, and Future Possibilities. Pharmaceutics, 10(1), 21. https://doi.org/10.3390/pharmaceutics10010021