Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery
Abstract
:1. Introduction
2. The Structure and Components of Niosomes
2.1. The Structure of the Niosomes
2.2. The Components of the Niosomes
3. Methods for Formulation and Evaluation of Niosomes
3.1. Formation of Niosome by the Proniosomes Method
3.2. Sonication
3.3. Micro Fluidization
3.4. Thin-Film Hydration Method
3.5. Reversed Phase Evaporation
3.6. Others
3.7. Characterization of Niosomes
3.7.1. Sizes and Zeta Potential of Niosomes
3.7.2. Encapsulation Efficiency of Niosomes
3.7.3. Stability of Niosomes
4. The Application of the Niosomes in Chemical Drugs, Protein Drugs and Gene Delivery
4.1. Chemical Drugs
4.2. Protein and Peptide Drugs
4.3. Gene Delivery
4.4. The In Vivo Stability, Biodistribution and Formation of Protein Corona of Niosomes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ravi, M.K. Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci. 2000, 3, 234. [Google Scholar]
- Kadam, R.S.; Bourne, D.W.; Kompella, U.B. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: Contribution of reduced clearance. Drug Metab. Dispos. Biol. Fate Chem. 2012, 40, 1380. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.K.; Jain, T.K.; Reddy, M.K.; Labhasetwar, V. Nano-Sized Carriers for Drug Delivery. Nanobiotechnology 2008, 329–348. [Google Scholar] [CrossRef]
- Malipeddi, V.R.; Dua, K.; Pinto, T.D.J.A.; Kikuchi, I.S.; Kulkarni, G.T.; Pant, I.; Awasthi, R. Opportunities and Challenges in Nano-structure Mediated Drug Delivery: Where Do We Stand? Curr. Nanomed. 2016, 6, 78–104. [Google Scholar]
- Barenholz, Y.C. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef]
- Khatoon, M.; Shah, K.U.; Din, F.U.; Shah, S.U.; Rehman, A.U.; Dilawar, N.; Khan, A.N. Proniosomes derived niosomes: Recent advancements in drug delivery and targeting. Drug Deliv. 2017, 24, 56–69. [Google Scholar] [CrossRef]
- Abdelkader, H.; Alani, A.W.; Alany, R.G. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014, 21, 87. [Google Scholar] [CrossRef]
- Yu-Cheng, T.; Subho, M.; Leaf, H. Lipid-based systemic delivery of siRNA. Adv. Drug Deliv. Rev. 2009, 61, 721–731. [Google Scholar] [Green Version]
- Khan, R.; Irchhaiya, R. Niosomes: A potential tool for novel drug delivery. J. Pharm. Investig. 2016, 46, 1–10. [Google Scholar] [CrossRef]
- Uchegbu, I.F.; Vyas, S.P. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm. 1998, 172, 33–70. [Google Scholar] [CrossRef]
- Naresh Kalra, G.J.; Singh, G.; Choudhary, S. Non-ionic surfantant vesicles and their therapeutics potentials. J. Innov. Pharm. Biol. Sci. 2016, 3, 193–201. [Google Scholar]
- Marianecci, C.; Marzio, L.D.; Rinaldi, F.; Celia, C.; Paolino, D.; Alhaique, F.; Esposito, S.; Carafa, M. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface Sci. 2014, 205, 187–206. [Google Scholar] [CrossRef]
- Moghassemi, S.; Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release 2014, 185, 22–36. [Google Scholar] [CrossRef]
- Uchegbu, I.F.; Florence, A.T. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Adv. Colloid Interface Sci. 1995, 58, 1–55. [Google Scholar] [CrossRef]
- Pardakhty, J.V.S.T.A. Niosomes of Ascorbic Acid and α-Tocopherol in the Cerebral Ischemia-Reperfusion Model in Male Rats. Biomed. Res. Int. 2014, 2014, 816103. [Google Scholar]
- Ritwiset, A.; Krongsuk, S.; Johns, J.R. Molecular structure and dynamical properties of niosome bilayers with and without cholesterol incorporation: A molecular dynamics simulation study. Appl. Surf. Sci. 2016, 380, 23–31. [Google Scholar] [CrossRef]
- Puras, G.; Mashal, M.; Zárate, J.; Agirre, M.; Ojeda, E.; Grijalvo, S.; Eritja, R.; Diaz-Tahoces, A.; Navarrete, G.M.; Avilés-Trigueros, M. A novel cationic niosome formulation for gene delivery to the retina. J. Control. Release 2014, 174, 27–36. [Google Scholar] [CrossRef]
- Primavera, R.; Palumbo, P.; Celia, C.; Cinque, B.; Carata, E.; Carafa, M.; Paolino, D.; Cifone, M.G.; Marzio, L.D. An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers. Eur. J. Pharm. Biopharm. 2018, 127, 432–442. [Google Scholar] [CrossRef]
- Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Nematollahi, M.H. Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast Cancer cell line: A Nano-herbal treatment for Cancer. Daru J. Pharm. Sci. 2018, 26, 1–7. [Google Scholar] [CrossRef]
- Berlepsch, H.V.; Thota, B.; Wyszogrodzka, M.; De, S.C.; Haag, R.; Böttcher, C. Controlled self-assembly of stomatosomes by use of single-component fluorinated dendritic amphiphiles. Soft Matter 2018, 14, 5256–5269. [Google Scholar] [CrossRef]
- Lorena, T.; Rita, M.; Loredana, M.; Michele, P.; Sebastiano, A.; Nevio, P. Transferrin-conjugated pluronic niosomes as a new drug delivery system for anticancer therapy. Langmuir Acs J. Surf. Colloids 2013, 29, 12638–12646. [Google Scholar]
- Cametti, C. Polyion-induced aggregation of oppositely charged liposomes and charged colloidal particles: The many facets of complex formation in low-density colloidal systems. Chem. Phys. Lipids 2008, 155, 63–73. [Google Scholar] [CrossRef]
- Ertekin, Z.C.; Bayindir, Z.S.; Yuksel, N. Stability Studies on Piroxicam Encapsulated Niosomes. Curr. Drug Deliv. 2015, 12, 192–199. [Google Scholar] [CrossRef]
- Anil, V.; Daniel, K.; Ida, R.; Else Marie, A.; Peter, A.; Yvonne, P. A comparative study of cationic liposome and niosome-based adjuvant systems for protein subunit vaccines: Characterisation, environmental scanning electron microscopy and immunisation studies in mice. J. Pharm. Pharm. 2010, 58, 787–799. [Google Scholar]
- Khalil, R.M.; Abdelbary, G.A.; Basha, M.; Awad, G.E.; Elhashemy, H.A. Design and Evaluation of Proniosomes as a Carrier for Ocular Delivery of Lomefloxacin HCl. J. Liposome Res. 2017, 27, 118–129. [Google Scholar] [CrossRef]
- Muzzalupo, R.; Pérez, L.; Pinazo, A.; Tavano, L. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release. Int. J. Pharm. 2017, 529, 245–252. [Google Scholar] [CrossRef]
- Yuksel, N.; Bayindir, Z.S.; Aksakal, E.; Ozcelikay, A.T. In situ niosome forming maltodextrin proniosomes of candesartan cilexetil: In vitro and in vivo evaluations. Int. J. Biol. Macromol. 2016, 82, 453–463. [Google Scholar] [CrossRef]
- Hu, C.; Rhodes, D.G. Proniosomes: A Novel Drug Carrier Preparation. Int. J. Pharm. 2000, 185, 23–35. [Google Scholar] [CrossRef]
- Shehata, T.M.; Abdallah, M.H.; Ibrahim, M.M. Proniosomal oral tablets for controlled delivery and enhanced pharmacokinetic properties of acemetacin. AAPS PharmSciTech 2015, 16, 1–9. [Google Scholar] [CrossRef]
- Sankar, V.; Praveen, C.; Prasanth, K.G.; Srinivas, C.R.; Ruckmann, K. Formulation and evaluation of a proniosome hydrocortisone gel in comparison with a commercial cream. Die Pharm. 2009, 64, 731–734. [Google Scholar]
- Pando, D.; Gutiérrez, G.; Coca, J.; Pazos, C. Preparation and characterization of niosomes containing resveratrol. J. Food Eng. 2013, 117, 227–234. [Google Scholar] [CrossRef]
- Lo, C.T.; Jahn, A.; Locascio, L.E.; Vreeland, W.N. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing. Langmuir Acs J. Surf. Colloids 2010, 26, 8559–8566. [Google Scholar] [CrossRef]
- Obeid, M.A.; Elburi, A.; Young, L.C.; Mullen, A.B.; Tate, R.J.; Ferro, V.A. Formulation of non-ionic surfactant vesicles (NISV) prepared by microfluidics for therapeutic delivery of siRNA into cancer cells. Mol. Pharm. 2017, 14, 2450–2458. [Google Scholar] [CrossRef]
- Obeid, M.A.; Khadra, I.; Mullen, A.B.; Tate, R.J.; Ferro, V.A. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int. J. Pharm. 2017, 516, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Pardakhty, A.; Varshosaz, J.; Rouholamini, A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int. J. Pharm. 2007, 328, 130–141. [Google Scholar] [CrossRef]
- Bhagyashree, K.; Seema, T.; Ankur, G.; Dada, P.; Deepa, P.; Ismail, M.; Basavan, D. Development and biological evaluation of Gymnema sylvestre extract-loaded nonionic surfactant-based niosomes. Nanomedicine 2013, 8, 1295–1305. [Google Scholar]
- Zarei, M.; Norouzian, D.; Honarvar, B.; Mohammadi, M.; Shamabadi, H.E.; Akbarzadeh, A. Paclitaxel Loaded Niosome Nanoparticle Formulation Prepared via Reverse Phase Evaporation Method: An in vitro Evaluation. Pak. J. Biol. Sci. 2013, 16, 295–298. [Google Scholar] [CrossRef]
- Jain, S.; Vyas, S.P. Mannosylated niosomes as adjuvant-carrier system for oral mucosal immunization. J. Liposome Res. 2006, 16, 331–345. [Google Scholar] [CrossRef]
- Shegokar, R.; Al, S.L.; Mitri, K. Present status of nanoparticle research for treatment of tuberculosis. J. Pharm. Pharm. Sci. 2011, 14, 100–116. [Google Scholar] [CrossRef]
- Bragagni, M.; Mennini, N.; Ghelardini, C.; Mura, P. Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting. J. Pharm. Pharm. Sci. 2012, 15, 184–196. [Google Scholar] [CrossRef]
- Pando, D.; Matos, M.; Gutiérrez, G.; Pazos, C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf. B Biointerfaces 2015, 128, 398–404. [Google Scholar] [CrossRef]
- Chowdhury, P.; Uma Shankar, M.S. Formulation and evaluation of Rifampicin and Ofloxacin niosomes for Drug-resistant TB on Logarithmic-phase cultures of Mycobacterium tuberculosis. Int. J. Rev. Life Sci. 2016, 3, 628–633. [Google Scholar]
- Amiri, B.; Ahmadvand, H.; Farhadi, A.; Najmafshar, A.; Chiani, M.; Norouzian, D. Delivery of vinblastine-containing niosomes results in potent in vitro/in vivo cytotoxicity on tumor cells. Drug Dev. Ind. Pharm. 2018, 44, 1371–1376. [Google Scholar] [CrossRef]
- Pham, T.T.; Jaafar-Maalej, C.; Charcosset, C.; Fessi, H. Liposome and niosome preparation using a membrane contactor for scale-up. Colloids Surf. B Biointerfaces 2012, 94, 15–21. [Google Scholar] [CrossRef]
- Alsarra, I.A.; Bosela, A.A.; Ahmed, S.M.; Mahrous, G.M. Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur. J. Pharm. Biopharm. 2005, 59, 485–490. [Google Scholar] [CrossRef]
- El-Laithy, H.M.; Shoukry, O.; Mahran, L.G. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: Preclinical and clinical studies. Eur. J. Pharm. Biopharm. 2011, 77, 43–55. [Google Scholar] [CrossRef]
- Varshosaz, J.; Pardakhty ABaharanchi, S.M. Sorbitan monopalmitate-based proniosomes for transdermal delivery of chlorpheniramine maleate. Drug Deliv. 2005, 12, 75–82. [Google Scholar] [CrossRef]
- Mavaddati, M.A.; Moztarzadeh, F.; Baghbani, F. Effect of Formulation and Processing Variables on Dexamethasone Entrapment and Release of Niosomes. J. Clust. Sci. 2015, 26, 1–14. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Shanmugam, S.; Lee, W.S.; Lee, W.M.; Kim, J.O.; Oh, D.H.; Kim, D.D.; Kim, J.S.; Yoo, B.K.; Choi, H.G.; et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int. J. Pharm. 2009, 377, 1–8. [Google Scholar] [CrossRef]
- Agarwal, R.; Katare, O.P.; Vyas, S.P. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int. J. Pharm. 2001, 228, 43–52. [Google Scholar] [CrossRef]
- Guinedi, A.S.; Mortada, N.D.; Mansour, S.; Hathout, R.M. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int. J. Pharm. 2005, 306, 71–82. [Google Scholar] [CrossRef]
- Mehta, S.K.; Jindal, N.; Kaur, G. Quantitative investigation, stability and in vitro release studies of anti-TB drugs in Triton niosomes. Colloids Surf. B Biointerfaces 2011, 87, 173–179. [Google Scholar] [CrossRef]
- Anna, M.; Katharina, L. Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol. Biosci. 2014, 14, 458–477. [Google Scholar]
- Rinaldi, F.; Hanieh, P.N.; Chan, L.K.N. Chitosan Glutamate-Coated Niosomes A Proposal for Nose-to-Brain Delivery. Pharmaceutics 2018, 10, 38. [Google Scholar] [CrossRef]
- Tangri, P.; Khurana, S. Niosomes: Formulation and evaluation. Int. J. Biopharm. 2011, 2, 47–53. [Google Scholar]
- Shi, B.; Fang, C.; Pei, Y. Stealth PEG-PHDCA niosomes: effects of chain length of PEG and particle size on niosomes surface properties, in vitro drug release, phagocytic uptake, in vivo pharmacokinetics and antitumor activity. J. Pharm. Sci. 2006, 95, 1873–1887. [Google Scholar] [CrossRef]
- Dan, N. Chapter 2—Core–shell drug carriers: Liposomes, polymersomes, and niosomes. Nanostruct. Drug Deliv. 2017, 63–105. [Google Scholar] [CrossRef]
- Celia, C.; Trapasso, E.; Cosco, D.; Paolino, D.; Fresta, M. Turbiscan lab expert analysis of the stability of ethosomes and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids Surf. B Biointerfaces 2009, 72, 155–160. [Google Scholar] [CrossRef]
- Mahale, N.B.; Thakkar, P.D.; Mali, R.G.; Walunj, D.R.; Chaudhari, S.R. Niosomes: Novel sustained release nonionic stable vesicular systems —An overview. Adv. Colloid Interface Sci. 2012, 183–184, 46–54. [Google Scholar] [CrossRef]
- Junyaprasert, V.B.; Singhsa, P.; Jintapattanakit, A. Influence of chemical penetration enhancers on skin permeability of ellagic acid-loaded niosomes. Asian J. Pharm. Sci. 2013, 8, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Sarthak, M.; Chiranjib, B.; Surajit, G.; Jagannath, K.; Nilmoni, S. Modulation of the photophysical properties of curcumin in nonionic surfactant (Tween-20) forming micelles and niosomes: A comparative study of different microenvironments. J. Phys. Chem. B 2013, 117, 6957. [Google Scholar]
- Jiradej, M.; Narinthorn, K.; Worapaka, M.; Friedrich, G.T.; Werner, R.G.; Aranya, M. Enhancement of transdermal absorption, gene expression and stability of tyrosinase plasmid (pMEL34)-loaded elastic cationic niosomes: Potential application in vitiligo treatment. J. Pharm. Sci. 2010, 99, 3533–3541. [Google Scholar]
- Attia, N.; Mashal, M.; Grijalvo, S.; Eritja, R.; Zárate, J.; Puras, G.; Pedraz, J.L. Stem cell-based gene delivery mediated by cationic niosomes for bone regeneration. Nanomed. Nanotechnol. Biol. Med. 2017, 14, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Dufes, C.; Gaillard, F.; Uchegbu, I.F.; Schätzlein, A.G.; Olivier, J.C.; Muller, J.M. Glucose-targeted niosomes deliver vasoactive intestinal peptide (VIP) to the brain. Int. J. Pharm. 2004, 285, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkhu, J. Non-Ionic Surfactant Technology for the Delivery and Administration of Sub-Unit Flu Antigens. Ph.D. Thesis, Aston University, Birmingham, UK, 2013. [Google Scholar]
- Rentel, C.O.; Bouwstra, J.A.; Naisbett, B.; Junginger, H.E. Niosomes as a novel peroral vaccine delivery system. Int. J. Pharm. 1999, 186, 161–167. [Google Scholar] [CrossRef]
- Taymouri, S.; Varshosaz, J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv. Biomed. Res. 2016, 5, 48. [Google Scholar] [PubMed]
- Wang, J.; Sui, M.; Fan, W. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr. Drug Metab. 2010, 11, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.F.; Kharshoum, R.M.; Elela, F.I.A.; Amr, G.F.; Abdellatif, K.R.A. Evaluation and optimization of pH-responsive niosomes as a carrier for efficient treatment of breast cancer. Drug Deliv. Transl. Res. 2018, 8, 633–644. [Google Scholar] [CrossRef]
- Juliano, R.L. Microparticulate Drug Carriers. In Directed Drug Delivery; Springer Nature: Basel, Switzerland, 1985. [Google Scholar]
- Shilpa, S.; Srinivasan, B.P.; Chauhan, M. Niosomes as vesicular carriers for delivery of proteins and biologicals. Int. J. Drug Deliv. 2011, 3, 14–24. [Google Scholar] [CrossRef]
- Khaksa, G.; D’Souza, R.; Lewis, S.; Udupa, N. Pharmacokinetic study of niosome encapsulated insulin. Indian J. Exp. Biol. 2000, 38, 901. [Google Scholar]
- Ning, M.; Guo, Y.; Pan, H.; Yu, H.; Gu, Z. Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: Studies in rats. Drug Deliv. 2005, 12, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Pardakhty, A.; Moazeni, E.; Varshosaz, J.; Hajhashemi, V.A.; Najafabadi, A.R. Pharmacokinetic study of niosome-loaded insulin in diabetic rats. Daru J. Pharm. Sci. 2011, 19, 404–411. [Google Scholar]
- Yoshida, H.; Lehr, C.M.; Kok, W.; Junginger, H.E.; Verhoef, J.C.; Bouwstra, J.A. Niosomes for oral delivery of peptide drugs. J. Control. Release 1992, 21, 145–153. [Google Scholar] [CrossRef]
- Yvonne, P.; Mohammed, A.R.; Kirby, D.J.; Mcneil, S.E.; Bramwell, V.W. Vaccine adjuvant systems: Enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm. 2000, 364, 272–280. [Google Scholar]
- Mahato, R.I.; Rolland, A.; Tomlinson, E. Cationic Lipid-Based Gene Delivery Systems: Pharmaceutical Perspectives. Pharm. Res. 1997, 14, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Mintzer, M.A.; Simanek, E.E. Nonviral Vectors for Gene Delivery. Chem. Rev. 2009, 109, 259–302. [Google Scholar] [CrossRef] [PubMed]
- Jain, S. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int. J. Pharm. 2005, 296, 80–86. [Google Scholar]
- Yang, C.; Gao, S.; Song, P.; Dagnaes-Hansen, F.; Jakobsen, M.; Kjems, J. Theranostic Niosomes for Efficient siRNA/microRNA Delivery and Activatable Near-Infrared Fluorescent Tracking of Stem Cells. Acs Appl. Mater. Interfaces 2018, 10, 19494–19503. [Google Scholar] [CrossRef] [PubMed]
- Mayr, J.; Grijalvo, S.; Bachl, J.; Pons, R.; Eritja, R.; Díaz, D.D. Transfection of Antisense Oligonucleotides Mediated by Cationic Vesicles Based on Non-Ionic Surfactant and Polycations Bearing Quaternary Ammonium Moieties. Int. J. Mol. Sci. 2017, 18, 1139. [Google Scholar] [CrossRef] [PubMed]
- Hume, L.R. A Comparative Study of Niosomes (Non-Ionic Surfactant Vesicles) and Liposomes: Their Stability in Biological Environments. Doctoral Dissertation, University of Strathclyde, Glasgow, Scotland, 1987. [Google Scholar]
- Rogerson, A.; Cummings, J.; Willmott, N.; Florence, A.T. The distribution of doxorubicin in mice following administration in niosomes. J. Pharm. Pharm. 2011, 40, 337–342. [Google Scholar] [CrossRef]
- Uchegbu, I.F.; Double, J.A.; Turton, J.A.; Florence, A.T. Distribution, Metabolism and Tumoricidal Activity of Doxorubicin Administered in Sorbitan Monostearate (Span 60) Niosomes in the Mouse. Pharm. Res. 1995, 12, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Azmin, M.N.; Florence, A.T.; Handjani-Vila, R.M.; Stuart, J.F.; Vanlerberghe, G.; Whittaker, J.S. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J. Pharm. Pharm. 2011, 37, 237–242. [Google Scholar] [CrossRef]
- Ke, P.C.; Lin, S.; Parak, W.J.; Davis, T.P.; Caruso, F. A Decade of the Protein Corona. Acs Nano 2017, 11, 11773–11776. [Google Scholar] [CrossRef] [PubMed]
- Daniele, M.; Paolo, B.; Eugene, M.; Dawson, K.A.; Monopoli, M.P. Surfactant titration of nanoparticle-protein corona. Anal. Chem. 2014, 86, 12055–12063. [Google Scholar]
- Marilena, H.; Zahraa, A.A.; Mariarosa, M.; Collins, R.F.; Kenneth, D.; Kostas, K. In Vivo Biomolecule Corona around Blood-Circulating, Clinically Used and Antibody-Targeted Lipid Bilayer Nanoscale Vesicles. Acs Nano 2015, 9, 8142–8156. [Google Scholar]
- Tommy, C.; Iseult, L.; Stina, L.; Tord, B.R.; Eva, T.; Hanna, N.; Dawson, K.A.; Sara, L. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055. [Google Scholar] [Green Version]
Formulation Method | Components | Structures Size (nm) | Zeta Potential (mV) | Encapsulate Rate (%) | Application |
---|---|---|---|---|---|
Proniosomes | Span 60 | Unilamellar 4400 ± 210 | / | 99.2 ± 5.1 | Analgesic, anti-inflammation [45] |
Sugar esters | 1620 ± 170 | / | 98.74 ± 0.51 | Disorders cerebrovascular/cerebral degenerative diseases [46] | |
Span 40 and chol or DCP or lecithin | multi-lamellar more than 20 μm | / | 16.7 ± 1.01 (highest) | antihistaminic [47] | |
Sonication | Span 60 cholesterol | Multi-lamellar 35.77 | (probably higher zeta potential) | 29.2 % | anti-inflammation [48] |
Micro fluidization | Monopalmitin glycerol cholesterol dicetyl phosphate | From 60.96 ± 0.36 to 168.40 ± 2.26 in different buffer | From −76.83 ± 0.81 to −30.63 ± 2.06 in different buffer | / | [34] |
Thin-film hydration method (TFH) | Polyoxyethylene alkyl ethers or sorbitan monoesters | From 214 to 1368 | From −26.73 to −41.31 | 79.8 ± 3.5% (Span 40) 76.56 ± 2.1% (Span 20) | Treatment of Androgenetic alopecia [49] |
Span 60 and cholesterol | 5000 ± 1500 | / | 2.05 ± 0.043/210 Entrapment level (mg)/total lipid (mg) | Treatment of psoriasis [50] | |
Reversed phase evaporation (REV) | Span 40 or Span 60 | 3460, 3610 | / | 26.27% ± 1.96 (highest) | Treatment of glaucoma [51] |
Niosome Parameter | Measurement |
---|---|
Size | DLS, SEM, AFM, STM, CLS |
ζ-potential | DLS, Electrophoretic mobility |
Encapsulation efficiency (%) | The amount of the loaded drug is determined by HPLC, UV/VIS, Fluorescence |
Stability | DLS (determine size and zeta potential in 37 °C, or in serum to mimic the in vivo situation), Leaky of the loaded drugs |
Surfactant | Formulation Method | Loaded Drug | Encapsulation Rate (%) | Administrated | Application | Ref | |
---|---|---|---|---|---|---|---|
1 | Pluronic L64 | REV | Doxonrubicin | 38.73 ± 1.58 | /(cell level) | Anti-caner | [21] |
2 | Span 60 Tween 60 | REV | Ellagic acid | 38.73 ± 1.58 | Transdermal | Antioxidant | [60] |
3 | Tween 20 | TFH and Sonication | Curcumin | 74.5 ± 3.2 | / | Anti-cancer Antioxidant Anti-inflammatory | [61] |
4 | Tween61 | TFH and Sonication | Tyrosinase Plasmid (pMEL34) | 150 µg/16 mg of niosomal compositions | Transdermal (in vitro) | Treatment of vitiligo | [62] |
5 | Polysorbate Cationic lipid | REV | pUNO1-hBMP-7 plasmid | / | / | Bone regeneration | [63] |
6 | Cationic lipid Tween 80 squalene | REV | pCMSEGFP | / | Ocular | Gene delivery | [17] |
7 | Polyoxyethylene alkyl ethers | THF | Insulin | / | Oral | Diabetes | [35] |
8 | N-Palmitoyl-glucosamine Span 60 | Sonication | Vasoactive Intestinal peptide | 24.07 ± 0.83 | Intravenous administration | Anti-inflammatory Immunomodulatory neurological Disorders and so on | [64] |
9 | Monopalmitoyl glycerol | Melt method | H3N2 antigen (Radio-labellin) | / | Oral Intramuscular | Flu | [65] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, X.; Wei, M.; He, S.; Yuan, W.-E. Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics 2019, 11, 55. https://doi.org/10.3390/pharmaceutics11020055
Ge X, Wei M, He S, Yuan W-E. Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics. 2019; 11(2):55. https://doi.org/10.3390/pharmaceutics11020055
Chicago/Turabian StyleGe, Xuemei, Minyan Wei, Suna He, and Wei-En Yuan. 2019. "Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery" Pharmaceutics 11, no. 2: 55. https://doi.org/10.3390/pharmaceutics11020055
APA StyleGe, X., Wei, M., He, S., & Yuan, W. -E. (2019). Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics, 11(2), 55. https://doi.org/10.3390/pharmaceutics11020055