Chloroform-Injection (CI) and Spontaneous-Phase-Transition (SPT) Are Novel Methods, Simplifying the Fabrication of Liposomes with Versatile Solution to Cholesterol Content and Size Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chloroform Injection Method
2.2. Liposome Preparation by SPT Method
2.3. Sizing and Purification
2.4. Dynamic light scattering
2.5. Scanning Electron Microscopy
2.6. Atomic Force Microscopy
2.7. Entrapped Volume
2.8. Accelerated Stability Studies
2.9. Data Reporting
3. Results
3.1. Key Outcomes of Optimization Studies
3.1.1. Optimization of the Organic Phase
3.1.2. Optimization of the Aqueous Phase
3.1.3. Optimization of HPCE/Cho Molar Ratio
3.1.4. Optimization of Processing Temperature
3.2. Parameters of Optimised Formulation
3.3. Comparison of CI and SPT Methods
3.3.1. Size Distribution Analysis
3.3.2. Effect of Sizing by Serial Filtration
3.3.3. Scanning Electron Microscopy
3.4. Properties of Optimized Liposomes
3.4.1. Size Distribution and Surface Charge Analysis
3.4.2. Atomic Force Microscope Topography
3.4.3. Entrapped Aqueous Volume.
3.4.4. Accelerated Stability Studies
3.4.5. Process Validation
4. Discussion
4.1. Key Features of Optimization Studies
4.2. Properties of Optimized CI and SPT Liposomes
4.3. Vesiculation Pathway
4.4. Stability of the Liposomes
4.5. Scalability
4.6. Pros and Cons of the Methods
4.7. Comparison with Other Methods
5. Conclusions
Data Availability Statement
Author Contributions
Funding
Conflicts of Interest
References
- Crosasso, P.; Ceruti, M.; Brusa, P.; Arpicco, S.; Dosio, F.; Cattel, L. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J. Control. Release 2000, 63, 19–30. [Google Scholar] [CrossRef]
- Shigehiro, T.; Kasai, T.; Murakami, M.; Sekhar, S.; Tominaga, Y.; Okada, M.; Kudoh, T.; Mizutani, A.; Murakami, H.; Salomon, D.S.; et al. Efficient drug delivery of paclitaxel glycoside: A novel solubility gradient encapsulation into liposomes coupled with immunoliposomes preparation. PLoS ONE 2014, 9, e107976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhang, H.; Xu, H.; Zhao, Y.; Li, Z.; Li, J.; Wang, H.; Zhuge, D.; Guo, X.; Xu, H.; et al. Novel multi-drug delivery hydrogel using scar-homing liposomes improves spinal cord injury repair. Theranostics 2018, 8, 4429. [Google Scholar] [CrossRef] [PubMed]
- Patil, Y.P.; Jadhav, S. Novel methods for liposome preparation. Chem. Phys. Lipids 2014, 177, 8–18. [Google Scholar] [CrossRef]
- Maione-Silva, L.; De Castro, E.G.; Nascimento, T.L.; Cintra, E.R.; Moreira, L.C.; Cintra, B.A.S.; Valadares, M.C.; Lima, E.M. Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation, retention and enhances collagen synthesis by fibroblasts. Sci. Rep. 2019, 9, 522. [Google Scholar] [CrossRef] [Green Version]
- Chorachoo, J.; Amnuaikit, T.; Voravuthikunchai, S.P. Liposomal encapsulated rhodomyrtone: A novel antiacne drug. Evid. Based Complementary Altern. Med. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Vyas, S.; E Kannan, M.; Jain, S.; Mishra, V.; Singh, P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int. J. Pharm. 2004, 269, 37–49. [Google Scholar] [CrossRef]
- Dar, M.J.; McElroy, C.A.; Khan, M.I.; Satoskar, A.R.; Khan, G.M. Development and evaluation of novel miltefosine-polyphenol co-loaded second generation nano-transfersomes for the topical treatment of cutaneous leishmaniasis. Expert Opin. Drug Deliv. 2019, 17, 1–14. [Google Scholar] [CrossRef]
- Lasic, D. Liposomes. Am. Sci. 1992, 80, 20–31. [Google Scholar]
- Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011, 63, 131–135. [Google Scholar] [CrossRef]
- Ying, X.; Wen, H.; Lu, W.-L.; Du, J.; Guo, J.; Tian, W.; Men, Y.; Zhang, Y.; Li, R.-J.; Yang, T.-Y.; et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J. Control. Release 2010, 141, 183–192. [Google Scholar] [CrossRef]
- Wang, J.; Kang, Y.-X.; Pan, W.; Lei, W.; Feng, B.; Wang, X.-J. Enhancement of anti-inflammatory activity of curcumin using phosphatidylserine-containing nanoparticles in cultured macrophages. Int. J. Mol. Sci. 2016, 17, 969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, U.M.; Ngo, D.; Nguyen, T.M.; Nguyen, Q.T.; Ton, J. Enhanced selective cytotoxicity in pancreatic cancer cells using EGF-conjugated liposome-encapsulated curcumin. In IFMBE Proceedings; Springer: Singapore, 2017; pp. 217–221. [Google Scholar]
- Mugabe, C.; Azghani, A.O.; Omri, A. Liposome-mediated gentamicin delivery: Development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J. Antimicrob. Chemother. 2005, 55, 269–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.-C.; Deng, B.; Lin, C.; Carter, K.A.; Geng, J.; Razi, A.; He, X.; Chitgupi, U.; Federizon, J.; Sun, B.; et al. A malaria vaccine adjuvant based on recombinant antigen binding to liposomes. Nat. Nanotechnol. 2018, 13, 1174. [Google Scholar] [CrossRef]
- Le, U.M.; Cui, Z. Biodistribution and tumor-accumulation of gadolinium (Gd) encapsulated in long-circulating liposomes in tumor-bearing mice for potential neutron capture therapy. Int. J. Pharm. 2006, 320, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Bally, M.; Bailey, K.; Sugihara, K.; Grieshaber, D.; Vörös, J.; Städler, B. Liposome and lipid bilayer arrays towards biosensing applications. Small 2010, 6, 2481–2497. [Google Scholar] [CrossRef]
- Wagner, A.; Vorauer-Uhl, K. Liposome technology for industrial purposes. J. Drug Deliv. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Szoka, F.; Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 1978, 75, 4194–4198. [Google Scholar] [CrossRef] [Green Version]
- Deamer, D.; Bangham, A. Large volume liposomes by an ether vaporization method. Biochim. Biophys. Acta 1976, 443, 629–634. [Google Scholar] [CrossRef]
- Batzri, S.; Korn, E.D. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta 1973, 298, 1015–1019. [Google Scholar] [CrossRef]
- Ishii, F.; Takamura, A.; Ishigami, Y. Procedure for preparation of lipid vesicles (liposomes) using the coacervation (phase separation) technique. Langmuir 1995, 1, 483–486. [Google Scholar] [CrossRef]
- Deamer, D.W. Preparation and properties of ether-injection liposomes. Ann. N. Y. Acad. Sci. 1978, 308, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jacobs, R.E.; White, S.H. Preparation of multilamellar vesicles of defined size-distribution by solvent-spherule evaporation. Biochim. Biophys. Acta 1985, 812, 793–801. [Google Scholar] [CrossRef]
- Moscho, A.; Orwar, O.; Chiu, D.T.; Modi, B.P.; Zare, R.N. Rapid preparation of giant unilamellar vesicles. Proc. Natl. Acad. Sci. USA 1996, 93, 11443–11447. [Google Scholar] [CrossRef] [Green Version]
- Kagawa, Y.; Racker, E. Partial resolution of the enzymes catalyzing oxidative phosphorylation XXV. Reconstitution of vesicles catalyzing 32Pi—Adenosine triphosphate exchange. J. Biol. Chem. 1971, 246, 5477–5487. [Google Scholar]
- Oku, N.; Scheerer, J.F.; Macdonald, R.C. Preparation of giant liposomes. Biochim. Biophys. Acta 1982, 692, 384–388. [Google Scholar] [CrossRef]
- Buboltz, J.T.; Feigenson, G.W. A novel strategy for the preparation of liposomes: Rapid solvent exchange. Biochim. Biophys. Acta 1999, 1417, 232–245. [Google Scholar] [CrossRef] [Green Version]
- Kuroiwa, T.; Kiuchi, H.; Noda, K.; Kobayashi, I.; Maruyama, T.; Uemura, K.; Sato, S.; Mukataka, S.; Ichikawa, S. Controlled preparation of giant vesicles from uniform water droplets obtained by microchannel emulsification with bilayer-forming lipids as emulsifiers. Microfluid. Nanofluidics 2009, 6, 811. [Google Scholar] [CrossRef]
- Mijajlovic, M.; Wright, D.; Zivkovic, V.; Bi, J.; Biggs, M.J. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems. Colloids Surf. B Biointerfaces 2013, 104, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Castor, T.P. Methods and Apparatus For Making Liposomes. U.S. Patent Application No. 5,554,382, 10 September 1996. [Google Scholar]
- Akashi, K.; Miyata, H.; Itoh, H.; Kinosita, K. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 1996, 71, 3242–3250. [Google Scholar] [CrossRef] [Green Version]
- Grant, G.J.; Barenholz, Y.; Piskoun, B.; Bansinath, M.; Turndorf, H.; Bolotin, E.M. DRV liposomal bupivacaine: Preparation, characterization and in vivo evaluation in mice. Pharm. Res. 2001, 18, 336–343. [Google Scholar] [CrossRef] [PubMed]
- De Meyer, F.; Smit, B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl. Acad. Sci. USA 2009, 106, 3654–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, F.; Hunt, C.; Szoka, F.; Vail, W.; Papahadjopoulos, D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta 1979, 557, 9–23. [Google Scholar] [CrossRef]
- Meisel, J.W.; Gokel, G.W. A simplified direct lipid mixing lipoplex preparation: Comparison of liposomal-, dimethylsulfoxide- and ethanol-based methods. Sci. Rep. 2016, 6, 27662. [Google Scholar] [CrossRef]
- De Oliveira, R.; Albuquerque, D.; Cruz, T.; Yamaji, F.; Leite, F. Measurement of the nanoscale roughness by atomic force microscopy: Basic principles and applications. At. Force Microsc. 2012, 2012, 147–175. [Google Scholar]
- Nakano, K.; Tozuka, Y.; Yamamoto, H.; Kawashima, Y.; Takeuchi, H. A novel method for measuring rigidity of submicron-size liposomes with atomic force microscopy. Int. J. Pharm. 2008, 355, 203–209. [Google Scholar] [CrossRef]
- Guideline, I.H.T. Stability testing of new drug substances and products. Curr. Step 2003, 4, 1–24. [Google Scholar]
- Ruozi, B.; Tosi, G.; Forni, F.; Fresta, M.; Vandelli, M.A. Atomic force microscopy and photon correlation spectroscopy: Two techniques for rapid characterization of liposomes. Eur. J. Pharm. Sci. 2005, 25, 81–89. [Google Scholar] [CrossRef]
- Bolean, M.; Borin, I.A.; Simão, A.M.; Bottini, M.; Bagatolli, L.A.; Hoylaerts, M.F.; Millán, J.L.; Ciancaglini, P. Topographic analysis by atomic force microscopy of proteoliposomes matrix vesicle mimetics harboring TNAP and AnxA5. Biochim. Biophys. Acta 2017, 1859, 1911–1920. [Google Scholar] [CrossRef]
- Pons, M.; Foradada, M.; Estelrich, J. Liposomes obtained by the ethanol injection method. Int. J. Pharm. 1993, 95, 51–56. [Google Scholar] [CrossRef]
- Redondo-Morata, L.; Giannotti, M.I.; Sanz, F. Influence of cholesterol on the phase transition of lipid bilayers: A temperature-controlled force spectroscopy study. Langmuir 2012, 28, 12851–12860. [Google Scholar] [CrossRef] [PubMed]
- Maestrelli, F.; González-Rodríguez, M.L.; Rabasco, A.M.; Mura, P. Preparation and characterisation of liposomes encapsulating ketoprofen–cyclodextrin complexes for transdermal drug delivery. Int. J. Pharm. 2005, 298, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Porfire, A.; Muntean, D.-M.; Rus, L.; Sylvester, B.; Tomuță, I. A quality by design approach for the development of lyophilized liposomes with simvastatin. Saudi Pharm. J. 2017, 25, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Obeid, M.A.; Khadra, I.; Mullen, A.B.; Tate, R.; Ferro, V.A. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int. J. Pharm. 2017, 516, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Ruozi, B.; Belletti, D.; Tombesi, A.; Tosi, G.; Bondioli, L.; Forni, F.; Vandelli, M.A. AFM, ESEM, TEM and CLSM in liposomal characterization: A comparative study. Int. J. Nanomed. 2011, 6, 557. [Google Scholar] [CrossRef] [Green Version]
- Palmer, A.F.; Wingert, P.; Nickels, J.D. Atomic force microscopy and light scattering of small unilamellar actin-containing liposomes. Biophys. J. 2003, 85, 1233–1247. [Google Scholar] [CrossRef] [Green Version]
- Perkins, W.; Minchey, S.; Ahl, P.; Janoff, A. The determination of liposome captured volume. Chem. Phys. Lipids 1993, 64, 197–217. [Google Scholar] [CrossRef]
- Miyamoto, V.K.; Stoeckenius, W. Preparation and characteristics of lipid vesicles. J. Membr. Biol. 1971, 4, 252–269. [Google Scholar] [CrossRef]
- Xu, X.; Khan, M.A.; Burgess, D.J. A quality by design (QbD) case study on liposomes containing hydrophilic API: II. Screening of critical variables, and establishment of design space at laboratory scale. Int. J. Pharm. 2012, 423, 543–553. [Google Scholar] [CrossRef]
- Lasic, D. Mechanisms of liposome formation. J. Liposome Res. 1995, 5, 431–441. [Google Scholar] [CrossRef]
Description | Process Variables | Results | |||||||
---|---|---|---|---|---|---|---|---|---|
HPCE/DW (µmol/mL) | Cho/DW (µmol/mL) | HPCE/CHCl3 (µmol/mL) | Cho/CHCl3 (µmol/mL) | Temp (°C) | Physical Appearance | Count Rate* (KCPs) | PDI | Z-av (d. nm) | |
a—Organic phase volume variables | 0.15 | 0.20 | 1.50 | 2.00 | 25 | Uniform | 275.45 ± 3.42 | 0.22 ± 0.01 | 270 ± 17.30 |
0.15 | 0.20 | 2.00 | 2.50 | 25 | Uniform | 276.57 ± 2.20 | 0.24 ± 0.01 | 225.70 ± 1.70 | |
0.15 | 0.20 | 3.00 | 3.75 | 25 | Uniform | 170.28 ± 2.00 | 0.24 ± 0.01 | 242.15 ± 1.45 | |
0.15 | 0.20 | 4.00 | 5.00 | 25 | Uniform | 157.70 ± 9.38 | 0.26 ± 0.01 | 271.65 ± 3.35 | |
0.15 | 0.20 | 8.00 | 10.00 | 25 | Uniform | 148.39 ± 0.27 | 0.27 ± 0.01 | 285.80 ± 4.2 | |
b—Aqueous phase volume | 0.19 | 0.25 | 8.00 | 10.00 | 25 | Uniform | 195.58 ± 0.36 | 0.14 ± 0.04 | 484.55 ± 28.95 |
0.25 | 0.33 | 8.00 | 10.00 | 25 | Uniform | 402.68 ± 4.63 | 0.29 ± 0.00 | 264.65 ± 0.25 | |
0.38 | 0.50 | 8.00 | 10.00 | 25 | Uniform | 746.52 ± 6.09 | 0.19 ± 0.02 | 243.20 ± 0.40 | |
0.75 | 1.00 | 8.00 | 10.00 | 25 | ppt | - | - | - | |
1.50 | 2.00 | 8.00 | 10.00 | 25 | ppt | - | - | - | |
3.00 | 4.00 | 8.00 | 10.00 | 25 | ppt | - | - | - | |
6.00 | 8.00 | 8.00 | 10.00 | 25 | ppt | - | - | - | |
c—Cho concentration variables | 0.38 | 0.13 | 8.00 | 2.50 | 25 | Uniform | 227.50 ± 5.50 | 0.35 ± 0.01 | 1136.85 ± 34.85 |
0.38 | 0.25 | 8.00 | 5.00 | 25 | Uniform | 342.65 ± 2.35 | 0.37 ± 0.02 | 1464.56 ± 71.26 | |
0.38 | 0.38 | 8.00 | 7.50 | 25 | Uniform | 175.15 ± 58.5 | 0.99 ± 0.01 | 3381.11 ± 5.98 | |
0.38 | 0.50 | 8.00 | 10.00 | 25 | Uniform | 269.87 ± 5.03 | 0.26 ± 0.01 | 203.74 ± 5.94 | |
0.38 | 0.65 | 8.00 | 12.50 | 25 | ppt | - | - | - | |
0.38 | 0.80 | 8.00 | 15.00 | 25 | ppt | - | - | - | |
d—Minimum organic phase | 0.38 | 0.50 | 10.00 | 15.00 | 25 | Uniform | 128.60 ± 1.90 | 0.39 ± 0.06 | 2917.3 ± 310.30 |
0.38 | 0.50 | 15.00 | 20.00 | 25 | Uniform | 122.50 ± 2.50 | 0.46 ± 0.03 | 2858.5 ± 438.87 | |
0.38 | 0.50 | 30.00 | 40.00 | 25 | Uniform | 116.50 ± 2.50 | 0.38 ± 0.03 | 3403.85 ± 178.55 | |
0.38 | 0.50 | 60.00 | 80.00 | 25 | ppt | - | - | - | |
e—Temperature variables | 4.00 | 5.00 | 7.50 | 10.00 | 25 | ppt | - | - | - |
4.00 | 5.00 | 15.00 | 20.00 | 25 | ppt | - | - | - | |
4.00 | 5.00 | 30.00 | 40.00 | 25 | ppt | - | - | - | |
4.00 | 5.00 | 7.50 | 10.00 | 35 | ppt | - | - | - | |
4.00 | 5.00 | 15.00 | 20.00 | 35 | ppt | - | - | - | |
4.00 | 5.00 | 30.00 | 40.00 | 35 | ppt | - | - | - | |
4.00 | 5.00 | 7.50 | 10.00 | 45 | ppt | 262.53 ± 0.57 | 0.24 ± 0.06 | 188.35 ± 28.55 | |
4.00 | 5.00 | 15.00 | 20.00 | 45 | Uniform | 119.06 ± 1.74 | 0.42 ± 0.22 | 472.10 ± 19.9 | |
4.00 | 5.00 | 30.00 | 40.00 | 45 | Uniform | 157.42 ± 1.04 | 0.37 ± 0.07 | 786.85 ± 26.95 | |
4.00 | 5.00 | 7.50 | 10.00 | 55 | ppt | - | - | - | |
4.00 | 5.00 | 15.00 | 20.00 | 55 | Uniform | 150.27 ± 1.10 | 0.91 ± 0.24 | 220.15 ± 64.85 | |
4.00 | 5.00 | 30.00 | 40.00 | 55 | Uniform | 140.50 ± 0.19 | 1.17 ± 0.18 | 274.00 ± 81.80 |
Process problems | Rationale | Remedies and precautions |
---|---|---|
Solid depositions on the walls of the rotating flask. |
|
|
Encapsulation of thermolabile drugs. | Using high solids/solvent ratios, the methods are workable at ≤10 °C below the transition temperature of the lipid in use. |
|
Large values of Z-av and PDI. |
|
|
Aggregation/precipitation after storage. |
|
|
Aggregation of solids at the base in the CI method. |
|
|
HPCE/CHCl3 | 30.00 µmol/mL | 15.00 µmol/mL | 7.50 µmol/mL | ||||
---|---|---|---|---|---|---|---|
Sizing with 0.2 µm Filter | Unsized | Sized | Unsized | Sized | Unsized | Sized | |
Dynamic light scattering | Z-av in DW (d. nm) | 2441.50 ± 15.50 | 243.80 ± 2.10 | 1824.50 ± 39.50 | 272.65 ± 1.95 | 1566.00 ± 236.00 | 257.45 ± 4.15 |
PDI in DW | 0.61 ± 0.19 | 0.10 ± 0.00 | 0.40 ± 0.01 | 0.15 ± 0.01 | 0.68 ± 0.09 | 0.10 ± 0.03 | |
Z-av in NaCl 10 µM (d. nm) | 1466.50 ± 20.4 | 183.7 ± 1.90 | 928.05 ± 22.45 | 222.8 ± 2.10 | 1128.15 ± 95 | 214.7 ± 2.8 | |
PDI in NaCl 10 µM | 0.320 ± 0.00 | 0.20 ± 0.00 | 0.400 ± 0.00 | 0.10 ± 0.00 | 0.340 ± 0.02 | 0.12 ± 0.02 | |
ζ-potential (−mV) | 16.50 ± 0.3 | 17.10 ± 0.10 | 15.45 ± 0.35 | 16.60 ± 0.200 | 20.40 ± 0.6 | 18.15 ± 0.15 | |
Atomic Force microscopy | Diameter (nm) | 892.00 ± 98.06 | 152.00 ± 20.23 | 371.64 ± 87.18 | 149.25 ± 30.20 | 475.44 ± 165.36 | 179.17 ± 24.00 |
Height (nm) | 29.60 ± 8.85 | 24.57 ± 3.99 | 31.12 ± 4.64 | 30.58 ± 6.82 | 47.11 ± 20.48 | 23.83 ± 1.19 | |
Rigidity (h/d) | 0.02 ± 0.01 | 0.13 ± 0.02 | 0.03 ± 0,01 | 0.14 ± 0.03 | 0.04 ± 0.02 | 0.11 ± 0.01 | |
Volume ×106 (nm3) | 19.2 ± 8.57 | 0.45 ± 0.17 | 3.73 ± 2.38 | 0.57 ± 0.39 | 11.52 ± 12.70 | 0.60 ± 0.20 | |
Entrapped Volume (L/mol) | - | 22.95 ± 0.07 | - | 23.87 ± 0.18 | - | 20.09 ± 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khattak, M.I.K.; Ahmed, N.; Umer, M.F.; Riaz, A.; Ahmad, N.M.; Khan, G.M. Chloroform-Injection (CI) and Spontaneous-Phase-Transition (SPT) Are Novel Methods, Simplifying the Fabrication of Liposomes with Versatile Solution to Cholesterol Content and Size Distribution. Pharmaceutics 2020, 12, 1065. https://doi.org/10.3390/pharmaceutics12111065
Khattak MIK, Ahmed N, Umer MF, Riaz A, Ahmad NM, Khan GM. Chloroform-Injection (CI) and Spontaneous-Phase-Transition (SPT) Are Novel Methods, Simplifying the Fabrication of Liposomes with Versatile Solution to Cholesterol Content and Size Distribution. Pharmaceutics. 2020; 12(11):1065. https://doi.org/10.3390/pharmaceutics12111065
Chicago/Turabian StyleKhattak, Muhammad Ijaz Khan, Naveed Ahmed, Muhammad Farooq Umer, Amina Riaz, Nasir Mehmood Ahmad, and Gul Majid Khan. 2020. "Chloroform-Injection (CI) and Spontaneous-Phase-Transition (SPT) Are Novel Methods, Simplifying the Fabrication of Liposomes with Versatile Solution to Cholesterol Content and Size Distribution" Pharmaceutics 12, no. 11: 1065. https://doi.org/10.3390/pharmaceutics12111065
APA StyleKhattak, M. I. K., Ahmed, N., Umer, M. F., Riaz, A., Ahmad, N. M., & Khan, G. M. (2020). Chloroform-Injection (CI) and Spontaneous-Phase-Transition (SPT) Are Novel Methods, Simplifying the Fabrication of Liposomes with Versatile Solution to Cholesterol Content and Size Distribution. Pharmaceutics, 12(11), 1065. https://doi.org/10.3390/pharmaceutics12111065