Development of an In Vitro System to Study the Interactions of Aerosolized Drugs with Pulmonary Mucus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coating of Transwell® Inserts with Porcine Tracheal Mucus
2.3. Permeation of Fluorescent Dyes across Mucus Layers
2.4. Optimization of the Aerosolization System
2.5. Permeation across Mucus Following Aerosol Deposition
2.6. Drug Sample Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Impact of Airway Mucus on the Permeation of Fluorescent Dyes
3.2. Optimization of the Aerosolization System
3.3. Interactions of Inhaled Bronchodilators with Airway Mucus
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moon, C.; Smyth, H.D.C.; Watts, A.B.; Williams, R.O., 3rd. Delivery technologies for orally inhaled products: An update. AAPS PharmSciTech. 2019, 20, 117. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Bonini, S.; Seeger, W.; Belvisi, M.G.; Ward, B.; Holmes, A. Barriers to new drug development in respiratory disease. Eur. Respir. J. 2015, 45, 1197–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigurdsson, H.H.; Kirch, J.; Lehr, C.M. Mucus as a barrier to lipophilic drugs. Int. J. Pharm. 2013, 453, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Murgia, X.; Loretz, B.; Hartwig, O.; Hittinger, M.; Lehr, C.M. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev. 2018, 15, 82–97. [Google Scholar] [CrossRef]
- Bokkasam, H.; Ernst, M.; Guenther, M.; Wagner, C.; Schaefer, U.F.; Lehr, C.M. Different macro- and micro-rheological properties of native porcine respiratory and intestinal mucus. Int. J. Pharm. 2016, 510, 164–167. [Google Scholar] [CrossRef]
- Shaw, L.R.; Irwin, W.J.; Grattan, T.J.; Conway, B.R. The influence of excipients on the diffusion of ibuprofen and paracetamol in gastric mucus. Int. J. Pharm. 2005, 290, 145–154. [Google Scholar] [CrossRef]
- Friedl, H.; Dünnhaupt, S.; Hintzen, F.; Waldner, C.; Parikh, S.; Pearson, J.P.; Wilcox, M.D.; Bernkop-Schnürch, A. Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery systems. J. Pharm. Sci. 2013, 102, 4406–4413. [Google Scholar] [CrossRef]
- Bhat, P.G.; Flanagan, D.R.; Donovan, M.D. Drug diffusion through cystic fibrotic mucus: Steady-state permeation, rheologic properties, and glycoprotein morphology. J. Pharm. Sci. 1996, 85, 624–630. [Google Scholar] [CrossRef]
- Russo, P.; Stigliani, M.; Prota, L.; Auriemma, G.; Crescenzi, C.; Porta, A.; Aquino, R.P. Gentamicin and leucine inhalable powder: What about antipseudomonal activity and permeation through cystic fibrosis mucus? Int. J. Pharm. 2013, 440, 250–255. [Google Scholar] [CrossRef]
- Stigliani, M.; Manniello, M.D.; Zegarra-Moran, O.; Galietta, L.; Minicucci, L.; Casciaro, R.; Garofalo, E.; Incarnato, L.; Aquino, R.P.; Del Gaudio, P.; et al. Rheological Properties of Cystic Fibrosis Bronchial Secretion and in Vitro Drug Permeation Study: The Effect of Sodium Bicarbonate. J. Aerosol. Med. Pulm. Drug Deliv. 2016, 29, 337–345. [Google Scholar] [CrossRef]
- Cingolani, E.; Alqahtani, S.; Sadler, R.C.; Prime, D.; Stolnik, S.; Bosquillon, C. In vitro investigation on the impact of airway mucus on drug dissolution and absorption at the air-epithelium interface in the lungs. Eur. J. Pharm. Biopharm. 2019, 141, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Deschl, U.; Vogel, J.; Aufderheide, M. Development of an in vitro exposure model for investigating the biological effects of therapeutic aerosols on human cells from the respiratory tract. Exp. Toxicol. Pathol. 2011, 63, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E.; Bonstingl, G.; Höfler, A.; Meindl, C.; Leitinger, G.; Pieber, T.R.; Roblegg, E. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol. In Vitro 2013, 27, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandenberger, C.; Mühlfeld, C.; Ali, Z.; Lenz, A.G.; Schmid, O.; Parak, W.J.; Gehr, P.; Rothen-Rutishauser, B. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 2010, 6, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Lenz, A.G.; Stoeger, T.; Cei, D.; Schmidmeir, M.; Semren, N.; Burgstaller, G.; Lentner, B.; Eickelberg, O.; Meiners, S.; Schmid, O. Efficient bioactive delivery of aerosolized drugs to human pulmonary epithelial cells cultured in air-liquid interface conditions. Am. J. Respir. Cell Mol. Biol. 2014, 51, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Blank, F.; Rothen-Rutishauser, B.M.; Schurch, S.; Gehr, P. An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J. Aerosol. Med. 2006, 19, 392–405. [Google Scholar] [CrossRef]
- Heuking, S.; Rothen-Rutishauser, B.; Raemy, D.O.; Gehr, P.; Borchard, G. Fate of TLR-1/TLR-2 agonist functionalised pDNA nanoparticles upon deposition at the human bronchial epithelium in vitro. J. Nanobiotechnol. 2013, 21, 29. [Google Scholar] [CrossRef] [Green Version]
- Meindl, C.; Stranzinger, S.; Dzidic, N.; Salar-Behzadi, S.; Mohr, S.; Zimmer, A.; Fröhlich, E. Permeation of Therapeutic Drugs in Different Formulations across the Airway Epithelium In Vitro. PLoS ONE 2015, 10, e0135690. [Google Scholar] [CrossRef] [Green Version]
- Groo, A.C.; Lagarce, F. Mucus models to evaluate nanomedicines for diffusion. Drug Discov. Today 2014, 19, 1097–1108. [Google Scholar] [CrossRef] [Green Version]
- Kararli, T.T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug. Dispos. 1995, 16, 351–380. [Google Scholar] [CrossRef]
- Murgia, X.; Pawelzyk, P.; Schaefer, U.F.; Wagner, C.; Willenbacher, N.; Lehr, C.M. Size-Limited Penetration of Nanoparticles into Porcine Respiratory Mucus after Aerosol Deposition. Biomacromolecules 2016, 17, 1536–1542. [Google Scholar] [CrossRef] [PubMed]
- Larhed, A.W.; Artursson, P.; Gråsjö, J.; Björk, E. Diffusion of drugs in native and purified gastrointestinal mucus. J. Pharm. Sci. 1997, 86, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Larhed, A.W.; Artursson, P.; Björk, E. The influence of intestinal mucus components on the diffusion of drugs. Pharm. Res. 1998, 15, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Slayter, H.S.; Lamblin, G.; Le Treut, A.; Galabert, C.; Houdret, N.; Degand, P.; Roussel, P. Complex structure of human bronchial mucus glycoprotein. Eur. J. Biochem. 1984, 142, 209–218. [Google Scholar] [CrossRef]
- Fröhlich, E. Biological Obstacles for Identifying In Vitro-In Vivo Correlations of Orally Inhaled Formulations. Pharmaceutics 2019, 11, 316. [Google Scholar] [CrossRef] [Green Version]
- Rohrschneider, M.; Bhagwat, S.; Krampe, R.; Michler, V.; Breitkreutz, J.; Hochhaus, G. Evaluation of the Transwell System for Characterization of Dissolution Behavior of Inhalation Drugs: Effects of Membrane and Surfactant. Mol. Pharm. 2015, 12, 2618–2624. [Google Scholar] [CrossRef]
- Jankowski, P.; Ogonczyk, D.; Kosinski, A.; Lisowski, W.; Garstecki, P. Hydrophobic modification of polycarbonate for reproducible and stable formation of biocompatible microparticles. Lab Chip 2011, 11, 748–752. [Google Scholar] [CrossRef]
- Jasmee, S.; Omar, G.; Masripan, N.A.B.; Kamarolzaman, A.A.; Ashikin, A.S.; Che Ani, F. Hydrophobicity performance of polyethylene terephthalate (PET) and thermoplastic polyurethane (TPU) with thermal effect. Mater. Res. Express 2018, 5, 096304. [Google Scholar] [CrossRef]
- Mukherjee, M.; Pritchard, D.I.; Bosquillon, C. Evaluation of air-interfaced Calu-3 cell layers for investigation of inhaled drug interactions with organic cation transporters in vitro. Int J Pharm 2012, 426, 7–14. [Google Scholar] [CrossRef]
- Mukherjee, M.; Cingolani, E.; Pritchard, D.I.; Bosquillon, C. Enhanced expression of Organic Cation Transporters in bronchial epithelial cell layers following insults associated with asthma—Impact on salbutamol transport. Eur. J. Pharm. Sci. 2017, 106, 62–70. [Google Scholar] [CrossRef]
- Panduga, V.; Stocks, M.J.; Bosquillon, C. Ipratropium is ‘luminally recycled’ by an inter-play between apical uptake and efflux transporters in Calu-3 bronchial epithelial cell layers. Int. J. Pharm. 2017, 532, 328–336. [Google Scholar] [CrossRef] [PubMed]
Compound | Chemical Class | LogP * | MW * | H-Bond (Donor/Acceptor) * | Dose Deposited (ng) | T50 a (min) | T50 b (min) |
---|---|---|---|---|---|---|---|
Ipratropium | Quaternary | −1.8 | 412 | 1/4 | 442 ± 76 | 7.0 ± 0.5 | <5 |
Glycopyronnium | Quaternary | −1.4 | 398 | 1/4 | 384 ± 92 | 5.4 ± 0.9 | ND |
Salbutamol | Base | 1.4 | 577 | 10/12 | 687 ± 116 | 19 ± 3 | 12.4 ± 0.8 |
Formoterol | Base | 2.2 | 344 | 4/5 | 216 ± 46 | 13 ± 3 | 7 ± 1 |
Indacaterol | Zwitterion | 4.05 | 509 | 6/8 | 232 ± 61 | 67 ± 11 | 20 ± 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, S.; Roberts, C.J.; Stolnik, S.; Bosquillon, C. Development of an In Vitro System to Study the Interactions of Aerosolized Drugs with Pulmonary Mucus. Pharmaceutics 2020, 12, 145. https://doi.org/10.3390/pharmaceutics12020145
Alqahtani S, Roberts CJ, Stolnik S, Bosquillon C. Development of an In Vitro System to Study the Interactions of Aerosolized Drugs with Pulmonary Mucus. Pharmaceutics. 2020; 12(2):145. https://doi.org/10.3390/pharmaceutics12020145
Chicago/Turabian StyleAlqahtani, Safar, Clive J. Roberts, Snjezana Stolnik, and Cynthia Bosquillon. 2020. "Development of an In Vitro System to Study the Interactions of Aerosolized Drugs with Pulmonary Mucus" Pharmaceutics 12, no. 2: 145. https://doi.org/10.3390/pharmaceutics12020145
APA StyleAlqahtani, S., Roberts, C. J., Stolnik, S., & Bosquillon, C. (2020). Development of an In Vitro System to Study the Interactions of Aerosolized Drugs with Pulmonary Mucus. Pharmaceutics, 12(2), 145. https://doi.org/10.3390/pharmaceutics12020145