Assembling Surfactants-Mucoadhesive Polymer Nanomicelles (ASMP-Nano) for Ocular Delivery of Cyclosporine-A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals
2.1.2. Cell Cultures and Animals
2.2. Methods
2.2.1. Preparation of Assembling Surfactants-Mucoadhesive Polymers Nanomicelles (ASMP-Nano)
Design of Experiment (DOE) Optimisation Study
2.2.2. Preparation of Assembling Surfactants-Labeled Mucoadhesive Polymers Nanomicelles (ASLMP-Nano)
2.2.3. Physicochemical Characterisation
Dynamic Light Scattering Analysis
Determination of Critical Micellar Concentration of ASMP-Nano Mixtures
Determination of the Amount of Solubilised CyA (CyA-In) in the different ASMP-Nano Mixtures
2.2.4. Characterisation of the Selected ASMP-Nano Formulation (Nano1HAB-CyA)
Nanomicelles Yield (ASMP-Y), CyA Entrapment (CyA-EE) and CyA Loading Efficiency (CyA-LE)
Determination of Thermal Stability and Regeneration Time (RT)
Chemical stability of CyA-loaded ASMP-Nano formulation
DSC and ATR-FTIR Analysis
In Vitro CyA Release Studies
Cytotoxicity Assay
In vitro Permeation Studies of CyA through Ocular Reconstituted Tissue
DSC analysis and ATR-FITR of HA-FITC Derivative
2.2.5. Ex Vivo Study on Isolated Cornea of Assembling Surfactants-Labeled Mucoadhesive Polymers Nanomicelles (ASLMP-Nano) Formulation
2.2.6. In Vivo Evaluation of Precorneal Residence Time of CyA
2.2.7. HPLC Analytical Method
3. Results
3.1. Optimisation of Assembling Surfactants-Mucoadhesive Polymers Nanomicelles (ASMP-Nano)
3.2. Physico-Chemical Characterisation of the Selected Nanomicellar Formulation (Nano1HAB–CyA)
3.2.1. Determination of the Cloud Point
3.2.2. Osmolality, pH, Yield, Entrapment and Loading Efficiency
3.2.3. Stability studies of CyA in Nano 1HAB-CyA Formulation
3.2.4. DSC and ATR-FTIR Analysis of Nano 1HAB-CyA
3.2.5. DSC and FTIR Analysis of HA-FITC
3.3. Cytotoxicity Assay
3.4. In Vitro Drug Release Studies
3.5. In vitro Permeation of CyA through Ocular Reconstituted Tissue
3.6. Ex Vivo Corneal Permeation Studies using the Fluorescent Nano1HABFITC-CyA Nanomicelles
3.7. In Vivo Studies: Tear Fluid Pharmacokinetic in Rabbits
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kels, B.D.; Grzybowski, A.; Grant-Kels, J.M. Human ocular anatomy. Clin. Dermatol. 2015, 33, 140–146. [Google Scholar] [CrossRef]
- Suri, R.; Beg, S.; Kohli, K. Target strategies for drug delivery bypassing ocular barriers. J. Drug Deliv. Sci. Technol. 2020, 55. [Google Scholar] [CrossRef]
- Lallemand, F.; Felt-Baeyens, O.; Kamel, B.; Behar-Cohen, F.; Gurny, R. Cyclosporine A delivery to the eye: A pharmaceutical challenge. Eur. J. Pharm. Bipharm. 2003, 56, 307–318. [Google Scholar] [CrossRef]
- Novack, G.D.; Robin, A.L. Ocular Pharmacology. J. Clin. Pharmacol. 2016, 56, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Rupenthal, I.D. Modern approaches to the ocular delivery of cyclosporine A. Drug Discov. Today 2016, 21, 977–988. [Google Scholar] [CrossRef] [PubMed]
- Akpek, E.K.; Dart, J.K.; Watson, S.; Christen, W.; Dursun, D.; Yoo, S.; O’Brien, T.P.; Schein, O.D.; Gottsch, J.D. A randomized trial of topical cyclosporin 0.05% in topical steroid-resistant atopic keratoconjunctivitis. Ophthalmology 2004, 111, 476–482. [Google Scholar] [CrossRef]
- Rubin, M.; Rao, S.N. Efficacy of topical cyclosporin 0.05% in the treatment of posterior blepharitis. J. Ocul. Pharmacol. Ther. 2006, 22, 47–53. [Google Scholar] [CrossRef]
- Schechter, B.A.; Katz, R.S.; Friedman, L.S. Efficacy of topical cyclosporine for the treatment of ocular rosacea. Adv. Ther. 2009, 26, 651–659. [Google Scholar] [CrossRef]
- Donnenfeld, E.; Pflugfelder, S.C. Topical ophthalmic cyclosporine: Pharmacology and clinical uses. Surv. Ophthalmol. 2009, 54, 321–338. [Google Scholar] [CrossRef]
- Schultz, C. Safety and Efficacy of Cyclosporine in the Treatment of Chronic Dry Eye. Ophthalmol. Eye Dis. 2014, 6, 37–42. [Google Scholar] [CrossRef]
- Boboridis, K.G.; Konstas, A.G.P. Evaluating the novel application of cyclosporine 0.1% in ocular surface disease. Expert Opin. Pharmacother. 2018, 19, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Lallemand, F.; Perottet, P.; Felt-Baeyens, O.; Kloeti, W.; Philippoz, F.; Marfurt, J.; Besseghir, K.; Gurny, R. A water-soluble prodrug of cyclosporine A for ocular application: A stability study. J. Drug Deliv. 2005, 26, 124–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karn, P.R.; Cho, W.; Park, H.J.; Park, J.S.; Hwang, S.J. Characterization and stability studies of a novel liposomal cyclosporin A prepared using the supercritical fluid method: Comparison with the modified conventional Bangham method. Int. J. Nanomed. 2013, 8, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Hermans, K.; Van den Plas, D.; Everaert, A.; Weyenberg, W.; Ludwig, A. Full factorial design, physicochemical characterisation and biological assessment of cyclosporine A loaded cationic nanoparticles. Eur. J. Pharm. Biopharm. 2012, 82, 27–35. [Google Scholar] [CrossRef]
- Khan, W.; Aldouby, Y.H.; Avramoff, A.; Domb, A.J. Cyclosporine nanosphere formulation for ophthalmic administration. Int. J. Pharm. 2012, 437, 275–276. [Google Scholar] [CrossRef]
- Gokce, E.H.; Sandri, G.; Bonferroni, M.C.; Rossi, S.; Ferrari, F.; Güneri, T.; Caramella, C. Cyclosporine A loaded SLNs: Evaluation of cellular uptake and corneal cytotoxicity. Int. J. Pharm. 2008, 364, 76–86. [Google Scholar] [CrossRef]
- Yadavalli, T.; Ames, J.; Agelidis, A.; Suryawanshi, R.; Jaishankar, D.; Hopkins, J.; Thakkar, N.; Koujah, L.; Shukla, D. Drug-encapsulated carbon (DECON): A novel platform for enhanced drug delivery. Sci. Adv. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Wagh, V.D.; Apar, D.U. Cyclosporine A loaded PLGA nanoparticles for dry eye disease: In vitro characterization studies. J. Nanotechnol. 2014. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.C.; Chauhan, A. Extended cyclosporine delivery by silicone-hydrogel contact lenses. J. Control. Release 2011, 154, 267–274. [Google Scholar] [CrossRef]
- Hermans, K.; Van den Plas, D.; Kerimova, S.; Carleer, R.; Adriaensens, P.; Weyenberg, W.; Ludwig, A. Development and characterization of mucoadhesive chitosan films for ophthalmic delivery of cyclosporine A. Int. J. Pharm. 2014, 472, 10–19. [Google Scholar] [CrossRef]
- Al-Saedi, Z.H.F.; Alzhrani, R.M.; Boddu, S.H.S. Formulation and in vitro evaluation of cyclosporine—A inserts prepared using hydroxypropyl methylcellulose for treating dry eye disease. J. Ocul. Pharmacol. Therap. 2016, 32, 451–562. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, S.B.; Yavuz, B.; Calamak, S.; Ulubayram, K.; Kaffashi, A.; Vural, I.; Cakmak, H.S.; Durgun, M.E.; Denkbas, E.B.; Unlu, N. Preparation and In vitro/in vivo evaluation of cuclosporine A-loaded nanodecorated ocular implants for subconjunctival application. J. Pharm. Sci. 2015, 104, 1709–1720. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Ling, X.; Jiang, W.; Du, S.; Lu, Y.; Tu, J. Formulation and evaluation of cyclosporine A emulgel for ocular delivery. Drug Deliv. 2015, 22, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V.P. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release 2001, 73, 137–172. [Google Scholar] [CrossRef]
- Bachu, R.D.; Chowdhury, P.; Al-Saedi, Z.H.F.; Karla, P.K.; Boddu, S.H.S. Ocular Drug Delivery Barriers-Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases. Pharmaceutics 2018, 27, 28. [Google Scholar] [CrossRef] [Green Version]
- Di Tommaso, C.; Valamanesh, F.; Miller, F.; Furrer, P.; Rodriguez-Aller, M.; Behar-Cohen, F.; Gurny, R.; Moller, M. A novel cyclosporin a aqueous formulation for dry eye treatment: In vitro and in vivo evaluation. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2292–2299. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, Y.; Yang, Z.; Li, M.; Li, F.; Cui, F.; Liu, T.; Shi, W.; Wu, X. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: In vitro mechanism and in vivo permeation evaluation. Sci. Rep. 2015, 5, 12968. [Google Scholar] [CrossRef] [Green Version]
- Cholkar, K.; Gilger, B.C.; Mitra, A.K. Topical, aqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery. Transl. Vis. Sci. Technol. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Grimaudo, M.A.; Pescina, S.; Padula, C.; Santi, P.; Concheiro, A.; Alvarez-Lorenxo, C.; Nicoli, S. Poloxamer 407/TPGS mixed micelle as promising carrier for cyclosporine ocular delivery. Mol. Pharm. 2018, 15, 571–584. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, D.; Li, Y.; Yang, W.; Tu, J.; Shen, Y. Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: Formulation, in vitro and in vivo studies. Drug Deliv. 2018, 25, 888–899. [Google Scholar] [CrossRef] [Green Version]
- Mandal, A.; Gote, V.; Pal, D.; Ogundele, A.; Mitra, A.K. Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease. Pharm. Res. 2019, 36, 36. [Google Scholar] [CrossRef] [PubMed]
- Vadlapudi, A.D.; Cholkar, K.; Vadlapatla, R.K.; Mitra, A.K. Aqueous nanomicellar formulation for topical delivery of biotinylated lipid prodrug of acyclovir: Formulation development and ocular biocompatibility. J. Ocul. Pharmacol. Ther. 2014, 30, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S.; Tullio, V.; Cuffini, A.M.; Muntoni, E.; Spagnolo, R.; Zara, G.P.; Cavalli, R. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm. 2016, 109, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Burgalassi, S.; Nicosia, N.; Monti, D.; Falcone, G.; Boldrini, E.; Fabiani, O.; Lenzi, C.; Pirone, A.; Chetoni, P. Arabinogalactan as active compound in the menagement of corneal wounds: In vitro toxicity and in vivo investigations on rabbits. Curr. Eye Res. 2011, 36, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Belder, A.N.; Granath, K. Preparation and properties of fluorescein-labelled dextrans. Carbohydr. Res. 1973, 30, 375–378. [Google Scholar] [CrossRef]
- Cholkar, K.; Hariharan, S.; Gunda, S.; Mitra, A.K. Optimization of dexamethasone mixed nanomicellar formulation. AAPS PharmSciTech 2014, 15, 1454–1467. [Google Scholar] [CrossRef] [Green Version]
- Hoque, M.d.A.; Mitu, A.; Patoary, M.O.F.; Islam, D.M.S. Physiochemical studies on effect of additives on clouding behavior and thermodynamics of polyoxyethylene (20) sorbitan monooleate. Indian J. Chem. 2016, 55, 793–802. [Google Scholar]
- Chetoni, P.; Monti, D.; Tampucci, S.; Matteoli, B.; Ceccherini-Nelli, L.; Subissi, A.; Burgalassi, S. Liposomes as a potential ocular delivery system of distamycin A. Int. J. Pharm. 2015, 492, 120–126. [Google Scholar] [CrossRef]
- Kaluzhny, Y.; Kinuthia, M.W.; Truong, T.; Lapointe, A.M.; Hayden, P.; Klausner, M. New human organotypic corneal tissue model for ophthalmic drug delivery studies. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2880–2898. [Google Scholar] [CrossRef] [Green Version]
- Tampucci, S.; Monti, D.; Burgalassi, S.; Terreni, E.; Zucchetti, E.; Baldacci, F.; Chetoni, P. Effect of 5-Oxo-2-Pyrrolidinecarboxylic Acid (PCA) as a New Topically Applied Agent for Dry Eye Syndrome Treatment. Pharmaceutics 2018, 10, 137. [Google Scholar] [CrossRef] [Green Version]
- Stella, B.; Arpicco, S.; Rocco, F.; Burgalassi, S.; Nicosia, N.; Tampucci, S.; Chetoni, P.; Cattel, L. Nonpolymeric nanoassemblies for ocular administration of acyclovir: Pharmacokinetic evaluation in rabbits. Eur. J. Pharm. Biopharm. 2012, 80, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-G.; Park, S.-R.; Kim, D.-D.; Chung, S.J.; Shim, C.K. A simple HPLC method for the determination of Cyclosporin A in human whole blood. J. Liquid Chromatogr. Relat. Technol. 2006, 29, 391–401. [Google Scholar] [CrossRef]
- Clint, J.H. Micellization of mixed nonionic surface active agents. J. Chem. Soc. Faraday Trans. 1 1975, 71, 1327–1334. [Google Scholar] [CrossRef]
- Bernabeu, E.; Gonzáles, L.; Legaspi, M.J.; Moretton, M.A.; Chiappetta, D.A. Paclitaxel-loaded TPGS-b-PCL nanoparticles: In vitro cytotoxicity and cellular uptake in MCF-7 and MDA-MB-231 cells versus mPEG-b-PCL nanoparticles and Abraxane®. J. Nanosci. Nanotechnol. 2016, 16, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Burgalassi, S.; Monti, D.; Nicosia, N.; Tampucci, S.; Terreni, E.; Vento, A.; Chetoni, P. Freeze-dried matrices for ocular administration of bevacizumab: A comparison between subconjunctival and intravitreal administration in rabbits. Drug Deliv. Trans. 2018, 8, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Ogawa, K.; Kojo, Y.; Suzuki, H.; Mizumoto, T.; Onoue, S. Physicochemical stability study on cyclosporine A loaded dry-emulsion formulation with enhanced solubility. Chem. Pharm. Bull. 2015, 63, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Gilli, R.; Kacuráková, M.; Mathlouthi, M.; Navarini, L.; Paoletti, S. FTIR studies of sodium hyaluronate and its oligomers in the amorphous solid phase and in aqueous solution. Carbohydr. Res. 1994, 263, 315–326. [Google Scholar] [CrossRef]
- Debbash, C.; De La Salle, S.B.; Brignole, F.; Rat, J.-M.; Warnet, P.; Baudouin, C. Cytoprotective effect of hyaluronic acid and carbomer 934P in ocular surface epithelial cells. Investig. Ophtalmol. Vis. Sci. 2002, 43, 3409–3415. [Google Scholar]
- Nishida, T.; Nakamura, M.; Mishima, H.; Otori, T. Hyaluronan stimulates corneal epithelial migration. Exp. Eye Res. 1991, 53, 753–758. [Google Scholar] [CrossRef]
- Gomes, J.A.P.; Amankwah, R.; Powell-Richards, A.; Dua, H.S. Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro. Br. J. Ophthalmol. 2004, 88, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Pauloin, T.; Dutot, M.; Liang, H.; Chavinier, E.; Warne, J.-M.; Rat, P. Corneal Protection with high-molecular-weight hyaluronan against in vitro and in vivo sodium lauryl sulfate-Induced Toxic Effects. Cornea 2009, 28, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, H.; Wang, C.; Wu, Y.; Xie, J.; Jin, X.; Jang, J.; Ye, J. Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells. Mol. Vis. 2011, 17, 3364–3370. [Google Scholar] [PubMed]
- Wu, Y.; Yao, J.; Zhou, J.; Dahmani, F.Z. Enhanced and sustained topical ocular delivery of cyclosporine A in thermosensitive hyaluronic acid-based in situ forming microgels. Int. J. Nanomed. 2013, 8, 3587–3601. [Google Scholar] [CrossRef] [Green Version]
- Goyal, R.; Macri, L.; Kohn, J. Formulation strategy for the delivery of cyclosporine A: Comparison of two polymeric nanospheres. Sci. Rep. 2015, 5, 13065. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, X.; Zhou, Y.; Wang, X.; Fan, Y.; Huang, Y.; Liu, Y. Preparation and evaluation of poly(ethylene glycol)-poly(lactide) micelles as nanocarriers for ocular delivery of cyclosporine A. Nanoscale Res. Lett. 2010, 5, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Weiss, S.L.; Kramer, W.G. Ocular distribution of cyclosporine following topical administration of OTX-101 in New Zealand white rabbits. J. Ocul. Pharmacol. Ther. 2019, 35, 395–402. [Google Scholar] [CrossRef]
- Xiaoyue, X.; Liping, S.; Li, Z.; Yanju, C.; Feng, C. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr. Polym. 2020, 227, 115365. [Google Scholar] [CrossRef]
N. | Formulations | Total surfactants (% w/w) | HA (%w/w) | Added CyA (% w/w) |
---|---|---|---|---|
1 | Nano1.5HAA-CyA | 1.50 | 0.001 | 0.15 |
2 | Nano1.5HAB-CyA | 1.50 | 0.01 | 0.15 |
3 | Nano1.5HAC-CyA | 1.50 | 0.10 | 0.15 |
4 | Nano1HAA-CyA | 1.00 | 0.001 | 0.15 |
5 | Nano1HAB-CyA | 1.00 | 0.01 | 0.15 |
6 | Nano1HAC-CyA | 1.00 | 0.10 | 0.15 |
7 | Nano0.5HAA-CyA | 0.50 | 0.001 | 0.15 |
8 | Nano0.5HAB-CyA | 0.50 | 0.01 | 0.15 |
9 | Nano0.5HAC-CyA | 0.50 | 0.10 | 0.15 |
10 | Nano1-CyA (reference) | 1.00 | - | 0.15 |
11 | Nano1HAB (reference) | 1.00 | 0.01 | - |
Medium | r2 | LOQ1, μg/mL | LOD2, μg/mL |
---|---|---|---|
Acetonitrile | 0.9979 | 0.030 | 0.010 |
Water | 0.9992 | 0.560 | 0.170 |
Krebs Buffer Ringer | 0.9997 | 0.050 | 0.015 |
Formulations | CyA-In (mean ± S.E. n = 3, % w/w) | Dh (mean ± S.D., n = 3, nm) | CMC (mean ± S.E. n = 3, % w/w) |
---|---|---|---|
Nano1.5 HAA-CyA | 0.096 ± 0.002 | 14.15 ± 1.20 | 0.053 ± 0.007 |
Nano 1.5 HAB-CyA | 0.098 ± 0.001 | 12.58 ± 1.60 | 0.059 ± 0.001 |
Nano 1.5 HAC-CyA | 0.091 ± 0.003 | 13.75 ± 1.90 | 0.095 ± 0.005 |
Nano 1 HAA-CyA | 0.087 ± 0.004 | 14.00 ± 3.20 | 0.042 ± 0.002 |
Nano 1 HAB-CyA | 0.105 ± 0.003 | 14.41 ± 0.41 | 0.045 ± 0.003 |
Nano 1 HAC-CyA | 0.082 ± 0.005 | 22.95 ± 5.60 | 0.057 ± 0.005 |
Nano 0.5 HAA-CyA | 0.054 ± 0.002 | 13.07 ± 2.90 | 0.039 ± 0.005 |
Nano 0.5 HAB-CyA | 0.046 ± 0.001 | 16.70 ± 5.20 | 0.044 ± 0.001 |
Nano 0.5 HAC-CyA | 0.041 ± 0.002 | 12.25 ± 1.30 | 0.051 ± 0.004 |
Nano1HAB (n = 6, Mean ± SE) | Nano1HAB-CyA (n = 6, Mean ± SE) | |
---|---|---|
Osmolality (mOsm/kg) | 316 ± 0.33 | 316 ± 1.03 |
pH | 6.8 ± 0.04 | 6.8 ± 0.05 |
Dh | 12.27 ± 1.29 § | 14.41 ± 0.41§ |
CyA-In (% w/w) | - | 0.105 ± 0.003 |
ASMP-Y (% w/w) | - | 95.74 ± 0.23 |
CyA-EE (% w/w) | - | 77.66 ± 1.77 |
CyA-LD (% w/w) | - | 10.40 ± 0.49 |
Formulation | C1min (μg mL−1) | AUC (μg mL−1 min) | Ke (min−1) | t1/2 (min) |
---|---|---|---|---|
Nano1HAB-CyA | 508.99 ± 45.47 | 2142 ± 233.6* | 0.055± 0.009# | 15.29 ± 3.49# |
Nano1-CyA | 458.18 ± 115.87 | 1426 ± 92.99 | 0.119 ± 0.038 | 7.12 ± 1.42 |
Ikervis | 769.16 ± 43.50 | 1813 ± 354.1 | 0.205 ± 0.033 | 3.83 ± 0.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terreni, E.; Chetoni, P.; Tampucci, S.; Burgalassi, S.; Al-kinani, A.A.; Alany, R.G.; Monti, D. Assembling Surfactants-Mucoadhesive Polymer Nanomicelles (ASMP-Nano) for Ocular Delivery of Cyclosporine-A. Pharmaceutics 2020, 12, 253. https://doi.org/10.3390/pharmaceutics12030253
Terreni E, Chetoni P, Tampucci S, Burgalassi S, Al-kinani AA, Alany RG, Monti D. Assembling Surfactants-Mucoadhesive Polymer Nanomicelles (ASMP-Nano) for Ocular Delivery of Cyclosporine-A. Pharmaceutics. 2020; 12(3):253. https://doi.org/10.3390/pharmaceutics12030253
Chicago/Turabian StyleTerreni, Eleonora, Patrizia Chetoni, Silvia Tampucci, Susi Burgalassi, Ali Athab Al-kinani, Raid G. Alany, and Daniela Monti. 2020. "Assembling Surfactants-Mucoadhesive Polymer Nanomicelles (ASMP-Nano) for Ocular Delivery of Cyclosporine-A" Pharmaceutics 12, no. 3: 253. https://doi.org/10.3390/pharmaceutics12030253
APA StyleTerreni, E., Chetoni, P., Tampucci, S., Burgalassi, S., Al-kinani, A. A., Alany, R. G., & Monti, D. (2020). Assembling Surfactants-Mucoadhesive Polymer Nanomicelles (ASMP-Nano) for Ocular Delivery of Cyclosporine-A. Pharmaceutics, 12(3), 253. https://doi.org/10.3390/pharmaceutics12030253