Polymeric Nanoparticles of Pistacia lentiscus var. chia Essential Oil for Cutaneous Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of EO Loaded NPs
2.2.2. Dynamic Light Scattering (DLS) and Electrophoretic Light Scattering (ELS) for Determination of Particle Size, PdI and ζ-Potential
2.2.3. Scanning Electron Microscopy (SEM) for Morphological Characterization of NPs
2.2.4. EO Analysis
2.2.5. Determination of %EE and %EOL
2.2.6. Stability Study
2.2.7. In Vitro Release Study
2.2.8. Evaluation of Antimicrobial Activity
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Preparation of NPs
3.1.1. Optimization of NPs Preparation Conditions
3.1.2. Effect of Surfactant Type on NPs Preparation
3.1.3. Lyophilization of NPs
3.2. Physicochemical Characterization
3.2.1. Particle Size and ζ-Potential
3.2.2. Morphology of NPs
3.2.3. Characterization E.O. Loading in NPs
Chemical Composition of EO
Characterization of %EE and %EOL
3.3. Stability of EO Loaded NPs
3.4. In Vitro Release of EO
3.4.1. In Vitro Release of EO from NPs Aqueous Dispersion
3.4.2. In Vitro Release of EO from NPs Dispersed Lipophilic Cream
3.4.3. Release Kinetics of EO from NPs
3.5. Study of Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dimas, K.S.; Pantazis, P.; Ramanujam, R. Review: Chios mastic gum: A plant-produced resin exhibiting numerous diverse pharmaceutical and biomedical properties. In Vivo 2012, 26, 777–785. [Google Scholar] [PubMed]
- Paraschos, S.; Mitakou, S.; Skaltsounis, A.L. Chios gum mastic: A review of its biological activities. Curr. Med. Chem. 2012, 19, 2292–2302. [Google Scholar] [CrossRef] [PubMed]
- Im, J.J.; Jeong, H.S.; Chung, Y.A.; Song, I.U. Beneficial Clinical Effects of Chios Mastic Gum: A Review. Austin Biol. 2017, 2, 1022. [Google Scholar]
- European Union herbal monograph on Pistacia lentiscus L. resin (mastix). EMA/HMPC/46758/2015. Available online: https://www.ema.europa.eu/en/documents/herbal-monograph/draft-european-union-herbal-monograph-pistacia-lentiscus-l-resin-mastix_en.pdf (accessed on 5 February 2019).
- Papageorgiou, V.P.; Melidis, A.S.; Argyriadou, N. The chemical composition of the essential oil of Mastic Gum. J. Essent. Oil Res. 1991, 3, 107–110. [Google Scholar] [CrossRef]
- Magiatis, P.; Melliou, E.; Skaltsounis, A.L.; Chinou, I.B.; Mitaku, S. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. Chia. Planta Med. 1999, 65, 749–752. [Google Scholar] [CrossRef]
- Gkogka, E.; Hazeleger, W.C.; Posthumus, M.A.; Beumer, R.R. The Antimicrobial Activity of the Essential Oil of Pistacia lentiscus var. Chia. J. Essent. Oil Bear. Plants 2013, 16, 714–729. [Google Scholar] [CrossRef]
- Tassou, C.C.; Nychas, G.J.E. Antimicrobial Activity of the Essential Oil of Mastic Gum (Pistacia lentiscus var. chia) on Gram Positive and Gram Negative Bacteria in Broth and in Model Food System. Int. Biodeterior. Biodegrad. 1995, 36, 411–420. [Google Scholar] [CrossRef]
- Kim, H.J.; Neophytou, C. Natural anti-inflammatory compounds for the management and adjuvant therapy of inflammatory bowel disease and its drug delivery system. Arch. Pharm. Res. 2009, 32, 997–1004. [Google Scholar] [CrossRef]
- Korrapati, P.S.; Karthikeyan, K.; Satish, A.; Krishnaswamy, V.R.; Venugopal, J.R.; Ramakrishna, S. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 67, 747–765. [Google Scholar] [CrossRef]
- Desai, P.R.; Marepally, S.; Patel, A.R.; Voshavar, C.; Chaudhuri, A.; Singh, M. Topical delivery of anti-TNFalpha siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J. Control. Release 2013, 170, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Krausz, A.E.; Adler, B.L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R.A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A.; et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 2015, 11, 195–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach. Evid Based Complement Alternat Med. Med. 2014, 2014, 651593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Aït Addi, E.H.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Ghayempour, S.; Montazer, M. Micro/nanoencapsulation of essential oils and fragrances: Focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. J. Microencapsul. 2016, 33, 497–510. [Google Scholar] [CrossRef]
- Rai, M.; Paralikar, P.; Jogee, P.; Agarkar, G.; Ingle, A.P.; Derita, M.; Zacchino, S. Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives. Int. J. Pharm. 2017, 519, 67–78. [Google Scholar] [CrossRef]
- Athanasiou, K.A.; Niederauer, G.G.; Agrawal, C.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996, 17, 93–102. [Google Scholar] [CrossRef]
- Brannigan, R.P.; Dove, A.P. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater. Sci. 2017, 5, 9–21. [Google Scholar] [CrossRef]
- Dixit, S.G.; Mahadeshwar, A.R.; Haram, S.K. Some aspects of the role of surfactants in the formation of nanoparticles. Colloid Surf. A Physicochem. Eng. Asp. 1998, 133, 69–75. [Google Scholar] [CrossRef]
- Morsy, S.M.I. Role of Surfactants in Nanotechnology and Their Applications. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 237–260. [Google Scholar]
- Vanderhoff, J.W.; El Aasser, M.S.; Ugelstad, J. Polymer Emulsification Process. U.S. Patent 4,177,177, 4 December 1979. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured publishing corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- National Institute of Standards and Technology, NIST Chemistry WebBook Official Webpag. Available online: https://webbook.nist.gov/chemistry (accessed on 5 February 2019).
- Chidambaram, N.; Burgess, D.J. A novel in vitro release method for submicron-sized dispersed systems. AAPS PharmSci 1999, 1, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.M.; Buri, P.; Peppas, N.A. Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Fang, M.; Chen, J.-H.; Xu, X.-L.; Yang, P.-H.; Hildebrand, H.F. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents 2006, 27, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, P.; Jozala, A.; Novaes, L.; Moriel, P.; Penna, T. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Braz. J. Pharm. Sci. 2009, 45, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Amornpitoksuk, P.; Suwanboon, S.; Sangkanu, S.; Sukhoom, A.; Muensit, N.; Baltrusaitis, J. Synthesis, characterization, photocatalytic and antibacterial activities of Ag-doped ZnO powders modified with a diblock copolymer. Powder Technol. 2012, 219, 158–164. [Google Scholar] [CrossRef]
- Dave, V.; Yadav, R.B.; Kushwaha, K.; Yadav, S.; Sharma, S.; Agrawal, U. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system. Bioact. Mater. 2017, 2, 269–280. [Google Scholar]
- Gonzalez, D.J.; Haste, N.M.; Hollands, A.; Fleming, T.C.; Hamby, M.; Pogliano, K.; Nizet, V.; Dorrestein, P.C. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology 2011, 157, 2485–2492. [Google Scholar] [CrossRef] [Green Version]
NP Preparations | NPs-1 | NPs-2 | NPs-3 | NPs-4 | NPs-5 | NPs-6 |
---|---|---|---|---|---|---|
PLA (mg) | 50 | 50 | 50 | 50 | 50 | 50 |
PVA (% w/w) | 0.26 | 0.5 | 1.0 | 0.26 | 0.26 | 0.26 |
EO (μL) | 5 | 5 | 5 | 5 | 2 | 7 |
Sonication settings a | 40%, 35 s | 40%, 35 s | 40%, 35 s | 60%, 20 s | 40%, 35 s | 40%, 35 s |
Characteristics | ||||||
Mean diameter (nm) | 239.9 | 243.2 | 268.4 | 256.5 | 264.9 | 251.9 |
PdI | 0,081 | 0.070 | 0.073 | 0.081 | 0.104 | 0.133 |
%EE | 37.45 | 36.59 | 39.36 | 28.09 | 51.31 | 27.98 |
%EOL | 2.51 | 2.35 | 2.53 | 1.90 | 1.40 | 2.48 |
Surfactant Used for NPs Preparation | HLB | Type of Surfactant | Size (nm) | PdI | ζ-Potential (mV) |
---|---|---|---|---|---|
ArlacelTM LC | 5.5 | non-ionic | 664.7 (± 313.1) | 0.252 (± 0.029) | −31.4 (± 10.8) |
EmulmetikTM 900 | 8 | amphiphilic | 286.1 (± 6.1) | 0.167 (± 0.019) | −34.5 (± 3.7) |
PEG-40 hydrogenated castor oil | 14 | non-ionic | 320.5 (± 56.9) | 0.314 (± 0.201) | −19.5 (± 7.4) |
Polyvinyl Alcohol | 18 | non-ionic | 239.9 (± 4.3) | 0.081 (± 0.007) | −29.1 (± 2.8) |
Lutrol® F127 | 22 | non-ionic | 486.6 (± 197.6) | 0.543 (± 0.236) | −20.2 (± 11.5) |
Betadet® HR | 35 | amphiphilic | 333.2 (± 138.7) | 0.320 (± 0.133) | −34.0 (± 10.7) |
NP | Addition of Cryoprotectant | Freeze-Drying | Size (± SD) (nm) | PdI (± SD) | ζ-Potential (± SD) (mV) |
---|---|---|---|---|---|
PLA/PVA-NPs | before | before | 239.9 (± 4.3) | 0.081 (± 0.007) | −29.1 (± 2.8) |
after | 235.3 (± 5.7) | 0.089 (± 0.005) | −13.9 (± 0.2) | ||
after | 238.1 (± 0.6) | 0.073 (± 0.004) | −16.5 (± 0.3) | ||
PLA/LEC-NPs | before | before | 286.2 (± 7.0) | 0.163 (± 0.045) | −38.7 (± 0.2) |
after | 286.1 (± 6.1) | 0.167 (± 0.019) | −32.8 (± 0.5) | ||
after | 355.4(± 13.2) | 0.205 (± 0.034) | −33.1 (± 0.7) |
Sample | Size (± SD) (nm) | PdI (± SD) | ζ-Potential (± SD) (mV) | %EE | %EOL |
---|---|---|---|---|---|
PLA/PVA-NPs | 238.1 (± 0.6) | 0.073 (± 0.036) | −16.5 (± 0.3) | 37.45 (± 1.32) | 2.51 (± 0.06) |
PLA/LEC-NPs | 355.4 (± 13.2) | 0.205 (± 0.034) | −33.1 (± 0.7) | 9.15 (± 0.93) | 0.59 (± 0.06) |
Type of NPs | k | n | R2 |
---|---|---|---|
PLA/PVA (in PBS) | 19.921 | 0.308 | 0.9640 |
PLA/LEC (in PBS) | 31.400 | 0.306 | 0.9600 |
PLA/PVA (in oil medium) | 17.636 | 0.338 | 0.9673 |
Tested Sample | Highest Concentration Tested | Minimum Inhibitory Concentration (mg/mL) | |
---|---|---|---|
E. coli | B. subtilis | ||
Gentamicin (reference) | 2.50 μg/mL | 0.25 ± 0.08 μg/mL | 0.05 ± 0.02 μg/mL |
EO in ethanol 15.0% | 5.00 mg/mL | 5.00 ± 0.00 mg/mL | 2.00 ± 0.00 mg/mL |
EO in DMSO 12.0% | 5.00 mg/mL | 5.00 ± 0.00 mg/mL | 1.25 ± 0.00 mg/mL |
PLA/PVA-NPs | 3.40 mg/mL | > 3.40 mg/mL | > 3.40 mg/mL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrouvaki, I.; Koutra, E.; Kornaros, M.; Avgoustakis, K.; Lamari, F.N.; Hatziantoniou, S. Polymeric Nanoparticles of Pistacia lentiscus var. chia Essential Oil for Cutaneous Applications. Pharmaceutics 2020, 12, 353. https://doi.org/10.3390/pharmaceutics12040353
Vrouvaki I, Koutra E, Kornaros M, Avgoustakis K, Lamari FN, Hatziantoniou S. Polymeric Nanoparticles of Pistacia lentiscus var. chia Essential Oil for Cutaneous Applications. Pharmaceutics. 2020; 12(4):353. https://doi.org/10.3390/pharmaceutics12040353
Chicago/Turabian StyleVrouvaki, Ilianna, Eleni Koutra, Michael Kornaros, Konstantinos Avgoustakis, Fotini N. Lamari, and Sophia Hatziantoniou. 2020. "Polymeric Nanoparticles of Pistacia lentiscus var. chia Essential Oil for Cutaneous Applications" Pharmaceutics 12, no. 4: 353. https://doi.org/10.3390/pharmaceutics12040353
APA StyleVrouvaki, I., Koutra, E., Kornaros, M., Avgoustakis, K., Lamari, F. N., & Hatziantoniou, S. (2020). Polymeric Nanoparticles of Pistacia lentiscus var. chia Essential Oil for Cutaneous Applications. Pharmaceutics, 12(4), 353. https://doi.org/10.3390/pharmaceutics12040353