Advances in Nanoliposomes Production for Ferrous Sulfate Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simil-Microfluidic Bench Scale Apparatus
2.1.1. Fabrication
2.1.2. Flow Regime Evaluation
2.1.3. Process Parameters Optimization
2.2. Ferrous Sulfate Loaded Nanoliposomes Production
2.2.1. Materials
2.2.2. Nanoliposomes Preparation through the Simil-Microfluidic Apparatus
2.2.3. Nanoliposomes Preparation through Two Classical Bench Scale Techniques
Ethanol Injection
Thin Film Hydration
2.3. Vesicles Characterization
2.3.1. Morphology
2.3.2. Size and Zeta Potential
2.3.3. Encapsulation Efficiency (E.E.)
2.4. Stability Test
2.4.1. Short-Term Stability
2.4.2. Long-Term Stability
2.5. In Vitro Bioavailability Studies
2.6. Scale-Up of the Ultrasound Assisted Homogenization Process
3. Results and Discussion
3.1. Simil-Microfluidic Apparatus
3.1.1. Fluid Dynamic and Phenomenological Aspects
3.1.2. Process Parameters Optimization
3.2. Ferrous Sulfate Loaded Nanoliposomes Production through the Simil-Microfluidic Apparatus
3.2.1. Loaded Liposomes Formulation
3.2.2. Vesicles Characterization
Morphology
Size and Zeta Potential
Encapsulation Efficiency (E.E.)
3.2.3. Stability Test
Long-Term Stability
3.2.4. In Vitro Bioavailability Studies
3.3. A Comparison between the Simil-Microfluidic Apparatus and Two Classical Bench Scale Techniques
3.4. Scale Up of the Ultrasound Assisted Homogenization Process
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Putheti, S. Application of nanotechnology in food nutraceuticals and Pharmaceuticals. J. Sci. Technol. 2015, 2, 17–23. [Google Scholar]
- Grumezescu, A. Nutraceuticals: Nanotechnology in the Food Industry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 4. [Google Scholar]
- Ankola, D.; Viswanad, B.; Bhardwaj, V.; Ramarao, P.; Kumar, M.R. Development of potent oral nanoparticulate formulation of coenzyme Q10 for treatment of hypertension: can the simple nutritional supplements be used as first line therapeutic agents for prophylaxis/therapy? Eur. J. Pharm. Biopharm. 2007, 67, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Jampilek, J.; Kos, J.; Kralova, K. Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes. Nanomaterials 2019, 9, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, R.F.; Martins, J.T.; Duarte, C.M.; Vicente, A.A.; Pinheiro, A.C. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends Food Sci. Technol. 2018, 2018, 270–291. [Google Scholar]
- Acosta, E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid Interface Sci. 2009, 14, 3–15. [Google Scholar] [CrossRef]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Catalan-Latorre, A.; Ravaghi, M.; Manca, M.L.; Caddeo, C.; Marongiu, F.; Ennas, G.; Escribano-Ferrer, E.; Peris, J.E.; Diez-Sales, O.; Fadda, A.M. Freeze-dried eudragit-hyaluronan multicompartment liposomes to improve the intestinal bioavailability of curcumin. Eur. J. Pharm. Biopharm. 2016, 107, 49–55. [Google Scholar] [CrossRef]
- Kosaraju, L.S.; Tran, C.; Lawrence, A. Liposomal delivery systems for encapsulation of ferrous sulfate: preparation and characterization. J. Liposome Res. 2006, 16, 347–358. [Google Scholar] [CrossRef]
- Vani, Ž.; Planinšek, O.; Škalko-Basnet, N.; Tho, I. Tablets of pre-liposomes govern in situ formation of liposomes: Concept and potential of the novel drug delivery system. Eur. J. Pharm. Biopharm. 2014, 88, 443–454. [Google Scholar] [CrossRef]
- Shukla, S.; Haldorai, Y.; Hwang, S.K.; Bajpai, V.K.; Huh, Y.S.; Han, Y.-K. Current demands for food-approved liposome nanoparticles in food and safety sector. Front. Microbiol. 2017, 8, 2398. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Zheng, Q.; Pan, M.-h.; Chiou, Y.-s.; Li, Z.; Li, L.; Chen, Y.; Hu, J.; Duan, S.; Wei, S. Liposomal vesicles-protein interaction: Influences of iron liposomes on emulsifying properties of whey protein. Food Hydrocoll. 2019, 89, 602–612. [Google Scholar] [CrossRef]
- Mellican, R.I.; Li, J.; Mehansho, H.; Nielsen, S.S. The role of iron and the factors affecting off-color development of polyphenols. J. Agric. Food Chem. 2003, 51, 2304–2316. [Google Scholar] [CrossRef] [PubMed]
- Span, K.; Verhoef, J.J.; Hunt, H.; van Nostrum, C.F.; Brinks, V.; Schellekens, H.; Hennink, W.E. A novel oral iron-complex formulation: Encapsulation of hemin in polymeric micelles and its in vitro absorption. Eur. J. Pharm. Biopharm. 2016, 108, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Biniwale, P.; Pal, B.; Sundari, T.; Mandrupkar, G.; Datar, N.; Khurana, A.S.; Qamra, A.; Motlekar, S.; Jain, R. Liposomal Iron for Iron Deficiency Anemia in Women of Reproductive Age: Review of Current Evidence. Open J. Obstet. Gynecol. 2018, 8, 993. [Google Scholar] [CrossRef] [Green Version]
- Santiago, P. Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. Sci. World J. 2012, 2012, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Xu, S. Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res. Int. 2005, 38, 289–296. [Google Scholar] [CrossRef]
- Allen, L.H. Guidelines on Food Fortification with Micronutrients; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Ems, T.; Huecker, M.R. Biochemistry, Iron Absorption; StatPearls: Treasure Island, FL, USA, 2017. [Google Scholar]
- Hurrell, R. How to ensure adequate iron absorption from iron-fortified food. Nutr. Rev. 2002, 60, s7. [Google Scholar] [CrossRef] [Green Version]
- De Paoli, T.; Hager, A.A. Liposomes Containing Bioavailable Iron (II) and Process for Obtaining Them. U.S. Patent US5534268A, 9 July 1996. [Google Scholar]
- Kremer, J.; Van der Esker, M.; Pathmamanoharan, C.; Wiersema, P. Vesicles of variable diameter prepared by a modified injection method. Biochemistry 1977, 16, 3932–3935. [Google Scholar] [CrossRef]
- Bochicchio, S.; Dalmoro, A.; Barba, A.; d’Amore, M.; Lamberti, G. New Preparative Approaches for Micro and Nano Drug Delivery Carriers. Curr. Drug Deliv. 2017, 14, 203–215. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Li, X.; Zhang, T.; Song, Y.; She, Z.; Li, J.; Deng, Y. Progress involving new techniques for liposome preparation. Asian J. Pharm. Sci. 2014, 9, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Akhavan, S.; Assadpour, E.; Katouzian, I.; Jafari, S.M. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci. Technol. 2018, 74, 132–146. [Google Scholar] [CrossRef]
- Singh, H. Nanotechnology Applications in Functional Foods. Opportunities and Challenges. Prev. Nutr. Food Sci. 2016, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizvi, S.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 2018, 26, 64–70. [Google Scholar] [CrossRef]
- Yu, B.; Lee, R.J.; Lee, L.J. Microfluidic Methods for Production of Liposomes. Methods Enzymol. 2009, 465, 129–141. [Google Scholar]
- Carugo, D.; Bottaro, E.; Owen, J.; Stride, E.; Nastruzzi, C. Liposome production by microfluidics: potential and limiting factors. Sci. Rep. 2016, 6, 2587. [Google Scholar] [CrossRef] [Green Version]
- Jahn, A.; Stavis, S.M.; Hong, J.S.; Vreeland, W.N.; DeVoe, D.L.; Gaitan, M. Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 2010, 4, 2077–2087. [Google Scholar] [CrossRef]
- Pradhan, P.; Guan, J.; Lu, D.; Wang, P.G.; Lee, L.J.; Lee, R.J. A facile microfluidic method for production of liposomes. Anticancer Res. 2008, 28, 943–947. [Google Scholar]
- Stability Testing of New Drug Substances and Products Q1A (R2) Current Step 4 Version; ICH Expert Working Group: Geneva, Switzerland, 2003.
- Van Breemen, R.B.; Li, Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol. 2005, 1, 175–185. [Google Scholar] [CrossRef]
- Bochicchio, S.; Dalmoro, A.; Recupido, F.; Lamberti, G.; Barba, A.A. Nanoliposomes production by a protocol based on a simil-microfluidic approach. In Advances in Bionanomaterials; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–10. [Google Scholar]
- Bochicchio, S.; Lamberti, G.; Barba, A.A. Phenomenological and Formulation Aspects in Tailored Nanoliposome Production; Catala, A., Ed.; Intech: Rijeka, Croatia, 2017; pp. 29–48. [Google Scholar]
- Bochicchio, S.; Dalmoro, A.; Bertoncin, P.; Lamberti, G.; Moustafine, R.I.; Barba, A.A. Design and production of hybrid nanoparticles with polymeric-lipid shell–core structures: Conventional and next-generation approaches. RSC Adv. 2018, 8, 34614–34624. [Google Scholar] [CrossRef] [Green Version]
- Barba, A.; Bochicchio, S.; Lamberti, G.; Dalmoro, A. Ultrasonic energy in liposome production: Process modelling and size calculation. Soft Matter. 2014, 10, 2574–2581. [Google Scholar] [CrossRef] [PubMed]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Abbasi, S.; Azari, S. Efficiency of novel iron microencapsulation techniques: Fortification of milk. Int. J. Food Sci. Technol. 2011, 46, 1927–1933. [Google Scholar] [CrossRef]
- Sunthar, P.; Phapal, S.M. Rapid Spontaneous Assembly of Single Component Liposomes. arXiv 2015, arXiv:1501.00541. [Google Scholar]
- Garcia, M.N.; Flowers, C.; Cook, J.D. The Caco-2 cell culture system can be used as a model to study food iron availability. J. Nutr. 1996, 126, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Jovaní, M.; Barberá, R.; Farré, R.; Martín de Aguilera, E. Calcium, iron, and zinc uptake from digests of infant formulas by Caco-2 cells. J. Agric. Food Chem. 2001, 49, 3480–3485. [Google Scholar]
- Au, A.P.; Reddy, M.B. Caco-2 cells can be used to assess human iron bioavailability from a semipurified meal. J. Nutr. 2000, 130, 1329–1334. [Google Scholar] [CrossRef]
- Zariwala, M.G.; Elsaid, N.; Jackson, T.L.; López, F.C.; Farnaud, S.; Somavarapu, S.; Renshaw, D. A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles. Int. J. Pharm. 2013, 456, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Jahn, A.; Vreeland, W.N.; Gaitan, M.; Locascio, L.E. Controlled Vesicle Self-Assembly in Microfluidic Channels with Hydrodynamic Focusing. J. Am. Chem. Soc. 2004, 126, 2674–2675. [Google Scholar] [CrossRef]
- Dalmoro, A.; Bochicchio, S.; Nasibullin, S.F.; Bertoncin, P.; Lamberti, G.; Barba, A.A.; Moustafine, R.I. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems. Eur. J. Pharm. Sci. 2018, 121, 16–28. [Google Scholar] [CrossRef]
- Lasic, D.D.; Papahadjopoulos, D. Medical Applications of Liposomes; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Jahn, A.; Vreeland, W.N.; DeVoe, D.L.; Locascio, L.E.; Gaitan, M. Microfluidic directed formation of liposomes of controlled size. Langmuir 2007, 23, 6289–6293. [Google Scholar] [CrossRef] [PubMed]
- Stekel, A.; Olivares, M.; Pizarro, F.; Chadud, P.; Lopez, I.; Amar, M. Iron Absorption from Two Milk Formulas Fortified with Iron Sulfate Stabilized with Maltodextrin and Citric Acid. Am. J. Clin. Nutr. 1986, 43, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Stekel, A.; Monckeberg, F.; Beyda, V. Combating Iron Deficiency in Chile: A Case Study; International Life Sciences Institute-Nutrition Foundation: Washington, DC, USA, 1986. [Google Scholar]
- Lynch, S.R.; Stoltzfus, R.J. Iron and ascorbic acid: proposed fortification levels and recommended iron compounds. J. Nutr. 2003, 133, 2978S–2984S. [Google Scholar] [CrossRef] [PubMed]
- Mehansho, H. Iron fortification technology development: new approaches. J. Nutr. 2006, 136, 1059–1063. [Google Scholar] [CrossRef] [Green Version]
- Danino, D.; Livney, Y.D.; Ramon, O.; Portnoy, I.; Cogan, U. Beta-Casein Assemblies for Enrichment of Food and Beverages and Methods of Preparation Thereof. U.S. Patent WO2009101612A3, 20 August 2014. [Google Scholar]
- Desai, M.P.; Labhasetwar, V.; Amidon, G.L.; Levy, R.J. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 1996, 13, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Jaitley, V.; Florence, A.T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev. 2001, 50, 107–142. [Google Scholar] [CrossRef]
- Uchegbu, I.F.; Schätzlein, A.G.; Cheng, W.P.; Lalatsa, A. Fundamentals of Pharmaceutical Nanoscience; Springer: New York, NY, USA, 2013. [Google Scholar]
- Mohammadi, M.; Ghanbarzadeh, B.; Hamishehkar, H. Formulation of nanoliposomal vitamin D3 for potential application in beverage fortification. Adv. Pharm. Bull. 2014, 4, 569. [Google Scholar]
- Yadav, A.; Murthy, M.; Shete, A.; Sakhare, S. Stability aspects of liposomes. Indian J. Pharm. Educ. Res. 2011, 45, 402–413. [Google Scholar]
- FDA. Liposome Drug Products Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation; Draft Guid; FDA: Washington, DC, USA, 2002. [Google Scholar]
- Claessens, M.; Van Oort, B.; Leermakers, F.; Hoekstra, F.; Stuart, M.C. Charged lipid vesicles: Effects of salts on bending rigidity, stability, and size. Biophys. J. 2004, 87, 3882–3893. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Zhang, S.; Gu, K.; Zhang, N. Preparation of astaxanthin-loaded liposomes: characterization, storage stability and antioxidant activity. CYTA J. Food 2018, 16, 607–618. [Google Scholar] [CrossRef] [Green Version]
- Bangham, A.; Horne, R. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 1964, 8, 660. [Google Scholar] [CrossRef]
- Bochicchio, S.; Barba, A.A.; Grassi, G.; Lamberti, G. Vitamin delivery: Carriers based on nanoliposomes produced via ultrasonic irradiation. LWT Food Sci. Technol. 2016, 69, 9–16. [Google Scholar] [CrossRef]
- Piazza, O.; Russo, I.; Bochicchio, S.; Barba, A.; Lamberti, G.; Zeppa, P.; Di Crescenzo, V.; Carrizzo, A.; Vecchione, C.; Ciacci, C. Cyclin D1 Gene Silencing by siRNA in Ex Vivo Human Tissue Cultures. Curr. Drug Deliv. 2016, 14, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Bochicchio, S.; Dapas, B.; Russo, I.; Ciacci, C.; Piazza, O.; De Smedt, S.; Pottie, E.; Barba, A.A.; Grassi, G. In vitro and ex vivo delivery of tailored siRNA-nanoliposomes for E2F1 silencing as a potential therapy for colorectal cancer. Int. J. Pharm. 2017, 525, 377–387. [Google Scholar] [CrossRef] [PubMed]
V, mL/min | Re Number |
---|---|
Polar Phase | |
40.0 | 169.7 |
60.0 | 254.6 |
80.0 | 339.5 |
160 | 679.0 |
Organic Phase | |
4.00 | 34.9 |
Hydroalcholic Phase | |
44.0 | 311.4 |
64.0 | 452.6 |
84.0 | 594.5 |
164.0 | 1160 |
Unloaded Vesicles | 0.06 w/w | 0.035 w/w | 0.02 w/w | 0.01 w/w | |
---|---|---|---|---|---|
• Not sonicated samples number distribution size and PDI | |||||
Size (nm) ± SD | 71.810 ± 6.97 | 127.01 ± 36.6 | 154.08 ± 15.9 | 103.64 ± 29.1 | 135.33 ± 11.2 |
PDI ± SD | 0.41 ± 0.03 | 0.45 ± 0.04 | 0.76 ± 0.03 | 0.69 ± 0.08 | 0.40 ± 0.03 |
• Sonicated samples number distribution size and PDI | |||||
Size (nm) ± SD | 50.52 ± 19.7 | 47.80 ± 6.46 | 53.40 ± 19.2 | 65.16 ± 15.5 | 76.29 ± 16.4 |
PDI ± SD | 0.22 ± 0.01 | 0.38 ± 0.01 | 0.52 ± 0.00 | 0.63 ± 0.12 | 0.37 ± 0.03 |
• Samples zeta potential | |||||
Zeta Potential (mV) ± SD | −57.87 ± 1.13 | −41.05 ± 0.7 | −20 ±1.16 | −19±0.55 | −35.87 ± 2.05 |
Weight Ratio of Ferrous Sulfate to the Total Formulation Components | 0.06 w/w Fe/Total Components | 0.035 w/w Fe/Total Components | 0.02 w/w Fe/Total Components | 0.01 w/w Fe/Total Components |
---|---|---|---|---|
Theoretical load ± SD (%) | 4.23 | 3.41 | 2.30 | 0.980 |
Effective load ± SD (%) | 0.990 ± 0.03 | 1.28 ± 0.32 | 1.22 ± 0.20 | 0.930 ± 0.13 |
E.E. ± SD (%) | 22.33 ± 0.580 | 42.14 ± 6.74 | 52.20 ± 1.41 | 96.63 ± 2.70 |
Production Technique | Simil-Microfluidic Setup | Thin Film Hydration | Ethanol Injection |
---|---|---|---|
Number distribution size (nm) ± SD | 76.29 ± 16.4 | 49.85 ± 1.79 | 74.53 ± 9.81 |
PDI ± SD | 0.37 ± 0.03 | 0.30 ±0.02 | 0.52 ± 0.04 |
Zeta Potential (mV) ± SD | −35.87 ±2.05 | −30.20 ±1.27 | −37.27 ± 2.26 |
E.E. ± SD (%) | 96.63 ± 2.7 | 97.98 ± 2.2 | 100.0 ± 0.00 |
Production Technique | Simil-Microfluidic, SMF Setup | Thin Film Hydration, TFH | Ethanol Injection, EI |
---|---|---|---|
Maximum volume producible, mL | No limits | 3000 | 50 |
Yield for a batch, 1/(mL h) | 2 × 1012 | 8.98 × 109 | 5.42 × 1011 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bochicchio, S.; Dalmoro, A.; Lamberti, G.; Barba, A.A. Advances in Nanoliposomes Production for Ferrous Sulfate Delivery. Pharmaceutics 2020, 12, 445. https://doi.org/10.3390/pharmaceutics12050445
Bochicchio S, Dalmoro A, Lamberti G, Barba AA. Advances in Nanoliposomes Production for Ferrous Sulfate Delivery. Pharmaceutics. 2020; 12(5):445. https://doi.org/10.3390/pharmaceutics12050445
Chicago/Turabian StyleBochicchio, Sabrina, Annalisa Dalmoro, Gaetano Lamberti, and Anna Angela Barba. 2020. "Advances in Nanoliposomes Production for Ferrous Sulfate Delivery" Pharmaceutics 12, no. 5: 445. https://doi.org/10.3390/pharmaceutics12050445
APA StyleBochicchio, S., Dalmoro, A., Lamberti, G., & Barba, A. A. (2020). Advances in Nanoliposomes Production for Ferrous Sulfate Delivery. Pharmaceutics, 12(5), 445. https://doi.org/10.3390/pharmaceutics12050445