The Multifaceted Histidine-Based Carriers for Nucleic Acid Delivery: Advances and Challenges
Abstract
:1. Introduction
2. Histidine-Lysine Carriers of Nucleic Carriers
E. coli Genetically Engineered Carriers
3. Beyond H-K Peptides and Polymers
3.1. Sequence-Specific Histidine Carriers: Supplements and Alternatives to Lysines
3.2. Histidine/Imidazoles Added to Parent Polymers
3.2.1. Non-Biodegradable Polymers
3.2.2. Biodegradable Polymers
Polysaccharides
Alternative Biodegradable Carriers
3.3. Modification of Polyhistidines
4. Lipopeptides
Polymer | Nucleic Acid | In Vitro/ In Vivo | Comment | Reference |
---|---|---|---|---|
LIPOPEPTIDES | ||||
H6-20 (NickFect 70, a stearylated peptide) | siRNA | Y/Y | Several analogs tested that varied in amino acid sequence and fatty acid length; a histidine-rich stearylated peptide effectively silenced the target gene both in vitro and in vivo. | [81] |
Stearylated histidine-containing cationic peptide | siRNA | Y/N | Stearylated-HHHPKPKRKV 1 peptide in complex with siRNA was as effective as silencing its target in vitro as lipofectamine | [83] |
Chol-HHHHHHHAKRGARSTA | siRNA | Y/Y | NRP-1 targeted peptide hones micelle toward tumor. Micelle incorporated siPD-L1 and 1-methyl-DL- tryptophan, which provided dual blockade of checkpoints for breast cancer. | [84] |
POLYMER-LIPOSOME | ||||
Linear HK/liposome | pDNA | Y/Y | Co-polymer increased 100-fold transfection compared to liposome alone in serum in vitro. Also increased 15-fold the activity of luciferase expression in tumors in vivo. | [85] |
H2K4b/liposome | pDNA | Y/N | Branched histidine-lysine peptide and liposomes markedly increased luciferase expression compared to Linear HK-liposomes in malignant cells. | [86] |
hK-Liposome | pDNA | Y/Y | The hK peptide, K[K(H)KKK]5-K(H)KKC, was conjugated to cationic liposomes. Improved chemosensitivity in vitro. Targeted hK liposomes increased delivery in vivo by 3-fold compared to targeted non-hK liposomes | [87] |
PEGylated histidylated polylysine (PEG-HpK)/histidylated liposome (His-Lip) | mRNA | Y/Y | Carrier of MART1/MART1-LAMPI mRNA injected iv induced CD8+/CD4+ T cell response. Mice treated with optimal vaccine prophylactically had reduction in B16 tumor size | [88] |
PEG-HpK/Mannosylated (Man)- imidazole- histamine-Lip (Im-Hist-Lip) | mRNA | Y/Y | Mannosylated carrier injected iv expressed EGFP 4 times in DCs of spleen than sugar-free carrier. This improved delivery correlated with better inhibition with MART1 vaccine. | [89] |
PEG-HpK/Tri Man- Im-Hist-Lip | mRNA | Y/Y | Tri-mannosylated carrier LPR with E7 mRNA had potent antitumor activity with improved safety profile compared to lipoplex | [90] |
H-lPEI/Im-Hist-Lip | siRNA | Y/N | Potent carrier of siRNA with low cytotoxicity | [91] |
5. Lipopolyplexes/Lipoplexes
6. Pre-Formed Nanoparticles and Virus-Like Particles Modified with Imidazoles
7. Mechanistic Insights from Histidine-Enriched Carriers and Polyplexes
8. Challenges and Lingering Questions
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DEAE-dextran | diethylaminoethyl-dextran |
PAMAM | polyamidoamine |
PEI | polyethylenimine |
H5WYG | GLFHAIAHFIHGGWHGLIHGWYG (one letter amino acid code) |
pDNA | plasmid |
Y or N | yes or no for whether in vitro or in vivo studies were done |
DP | degree of polymerization |
ODN | oligodeoxynucleotide |
HMW | high molecular weight |
LMW | low molecular weight |
CHK6HC | HMW reducible peptide containing multiple CHKKKKKKHC repeats |
CH6K3H6C | HMW reducible peptide containing multiple CHHHHHHKKKHHHHHHC repeats |
GFP | green fluorescent protein |
cRGD | cyclic RGD ligand with oxidized cysteines that has the sequence, CRGDCF |
HK | Histidine-Lysine peptide |
PEG | polyethylene-glycol |
PEG-CH12K18 | PEGylatated copolymer made up of 12 histidines and 18 lysines |
PEG-CK30 | PEGylated polymer made up of 30 lysines |
shRNA | Plasmid expressing short hairpin RNAi targeting luciferase |
cRGD-hK | cyclic RGD conjugated to N-terminal of polylysine in which every 4th lysine modified by a histidine |
KGH6 | 6th generation lysine dendrimer with terminal ends modified by histidines |
H2K4b-T | a 4-branched peptide with a predominant sequence of -HHK- and a histidine-rich domain off the C-terminal end of the 3-lysine core (i.e., Tail) |
H3K8b | 8-branched peptide with a predominate sequence of -HHHK |
H2K4b, H2K | a 4-branched and linear HK peptide with a predominant sequence of -HHK- |
FGF-2 | fibroblast growth factor-2 |
dKH | diffuse distribution of KH sequences with 6 multiple repeats |
cKH | cluster KH—6 multiple repeats of clustered lysines and histidines |
LAH4 | peptide with sequence of KKALLALALHHLAHLALHLALALKKA |
O6H6 | blocked copolymer containing six ornithines and histidines |
K16 | peptide with 16 lysines |
DC | dendritic cells |
TAT | cell-penetrating peptide with sequence of RKKRRQRRRR |
C-H5-TAT-H5-C | reducible peptide with sequence of CHHHHHRKKRRQRRRRHHHHHC |
Gtt | glutaroyl-triethylene tetramine |
Stp | succinoyl tetraethylene pentamine |
Sph | succinoyl pentaethylene hexamine |
cMET | tyrosine kinase receptor |
siEG5-KLK | conjugate of siRNA targeting EG5 and apoptotic peptide, KLK |
PAMAM-His3-Arg | polyamidoamine dendrimer with terminal ends modified by -HHHR |
PAMAM-His2-Arg | polyamidoamine dendrimer with terminal ends modified by -HHR |
PAMAM-His3-Arg | polyamidoamine dendrimer with terminal ends modified by -HR |
PAMAM-Arg | polyamidoamine dendrimer with terminal ends modified by -R |
lPEI | Linear PEI |
H-lPEI | histidinylated linear PEI |
UA | Urocanic acid |
PTEN | Phosphatase and tensin homolog protein |
Cs | Chitosan |
R6H6-Cs | Chitosan modified with a blocked co-peptide of RRRRRRHHHHHH |
CDP | cyclodextrin |
imCDP | cyclodextrin modified with imidazoles |
DMAEA | 2-dimethylaminoethylamino |
PIDP | polyphosphazene polymer modified with imidazoles and DMAEA |
PDAP | polyphosphazene polymer modified with DMAEA |
PBAE | poly(β-amino esters |
PLH-Me | Polyhistidine containing methylhistidines, dimethylhistidine, and unmodified |
CM-PLH | carboxymethylated-polyhistidine histidines |
KALA | a cationic amphipathic peptide |
H6-20 | lipopeptide containing six histidines (also named NickFect70) |
siGADPH | siRNA targeting GADPH |
NRP-1 | neuropilin-1 |
Chol | cholesterol |
PD-1 | program cell death protein 1 |
LPD | ternary complex (lipopolyplex) made up liposomes, polymer, and DNA |
LPR | ternary complex (lipopolyplex) made up liposomes, polymer, and RNA |
hK-liposomes | hK peptide conjugated to liposomes |
His-Lip | Histidine-modified liposome |
MART-1 | Melanoma Antigen Recognized by T cells 1 |
LAMP1 | lysosomal-associated membrane protein 1 |
MART-1-LAMP1 | Fusion of the MART1 and LAMP1 proteins |
MAN-LPR | Mannosylated targeted RNA lipopolyplex |
Im-Hist-Lip | Imidazole-histamine modified liposomes |
PEG-HpK | PEG-histidylated-polylysine |
Tri-man | tri-antenna of α-D-mannopyranoside |
Tri-Man-Im-Hist-Lip | Tri-Man ligand coupled to Im-Hist-liposome |
DOTAP | 1,2-dioleoyl-3-trimethylammonium-propane |
IPEI | linear polyethylenimine containing 16% histidines |
MSN | mesoporous silica nanoparticles |
MSN-NH2 | mesoporous silica nanoparticles with aminopropyltriethoxysilane |
MSN-His | mesoporous silica nanoparticles with aminopropyltriethoxysilane and histidines |
SL-IDMSN | MSN modified by imidazoles |
ZIF-8 | zinc imidazole framework |
VLP | virus-like particles |
References
- Zhou, W.; Yin, Y.; Weinheimer, A.S.; Kaur, N.; Carpino, N.; French, J.B. Structural and Functional Characterization of the Histidine Phosphatase Domains of Human Sts-1 and Sts-2. Biochemistry 2017, 56, 4637–4645. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kini, A.G. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research. Mol. Cells 2017, 40, 533–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagatomo, S.; Okumura, M.; Saito, K.; Ogura, T.; Kitagawa, T.; Nagai, M. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the beta Subunit of Human Hemoglobin: The Alkaline Bohr Effect. Biochemistry 2017, 56, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, Z.; Naseem, M.; Sheikh, Z.; Najeeb, S.; Shahab, S.; Zafar, M.S. Oral antimicrobial peptides: Types and role in the oral cavity. Saudi Pharm. J. 2016, 24, 515–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, D.E.; Allerhand, A. Tautomeric states of the histidine residues of bovine pancreatic ribonuclease A. Application of carbon 13 nuclear magnetic resonance spectroscopy. J. Biol. Chem. 1980, 255, 6200–6204. [Google Scholar]
- Midoux, P.; Monsigny, M. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug. Chem. 1999, 10, 406–411. [Google Scholar] [CrossRef]
- Zhang, L.; Ambulos, N.; Mixson, A.J. DNA delivery to cells in culture using peptides. Methods Mol. Biol. 2004, 245, 33–52. [Google Scholar]
- Behr, J.P.; Demeneix, B.; Loeffler, J.P.; Perez-Mutul, J. Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc. Natl. Acad. Sci. USA 1989, 86, 6982–6986. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.R.; Zhang, L.; Luther, P.W.; Mixson, A.J. Optimal transfection with the HK polymer depends on its degree of branching and the pH of endocytic vesicles. Nucleic Acids Res. 2002, 30, 1338–1345. [Google Scholar] [CrossRef]
- Putnam, D.; Zelikin, A.N.; Izumrudov, V.A.; Langer, R. Polyhistidine-PEG:DNA nanocomposites for gene delivery. Biomaterials 2003, 24, 4425–4433. [Google Scholar] [CrossRef]
- Bechinger, B. Towards membrane protein design: pH-sensitive topology of histidine-containing polypeptides. J. Mol. Biol. 1996, 263, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.T.; Hom, K.; Zhang, D.; Leng, Q.; Tricoli, L.J.; Hustedt, J.M.; Lee, A.; Shapiro, M.J.; Seog, J.; Kahn, J.D.; et al. Enhanced silencing and stabilization of siRNA polyplexes by histidine-mediated hydrogen bonds. Biomaterials 2014, 35, 846–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgcomb, S.P.; Murphy, K.P. Variability in the pKa of histidine side-chains correlates with burial within proteins. Proteins 2002, 49, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pogostin, B.H.; Malmendal, A.; Londergan, C.H.; Akerfeldt, K.S. pKa Determination of a Histidine Residue in a Short Peptide Using Raman Spectroscopy. Molecules 2019, 24, 405. [Google Scholar] [CrossRef] [Green Version]
- Ju, L.; Cailin, F.; Wenlan, W.; Pinghua, Y.; Jiayu, G.; Junbo, L. Preparation and properties evaluation of a novel pH-sensitive liposomes based on imidazole-modified cholesterol derivatives. Int. J. Pharm. 2017, 518, 213–219. [Google Scholar] [CrossRef]
- Midoux, P.; Pichon, C.; Yaouanc, J.J.; Jaffres, P.A. Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol. 2009, 157, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Lachelt, U.; Wagner, E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem. Rev. 2015, 115, 11043–11078. [Google Scholar] [CrossRef]
- Cotten, M.; Langle-Rouault, F.; Kirlappos, H.; Wagner, E.; Mechtler, K.; Zenke, M.; Beug, H.; Birnstiel, M.L. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: Stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels. Proc. Natl. Acad. Sci. USA 1990, 87, 4033–4037. [Google Scholar] [CrossRef] [Green Version]
- Haensler, J.; Szoka, F.C., Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 1993, 4, 372–379. [Google Scholar] [CrossRef]
- Boussif, O.; Lezoualc’h, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301. [Google Scholar] [CrossRef] [Green Version]
- Midoux, P.; Kichler, A.; Boutin, V.; Maurizot, J.C.; Monsigny, M. Membrane permeabilization and efficient gene transfer by a peptide containing several histidines. Bioconjug. Chem. 1998, 9, 260–267. [Google Scholar] [CrossRef]
- Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Durfee, P.N.; Buley, M.D.; Lino, C.A.; Padilla, D.P.; Phillips, B.; Carter, M.B.; Willman, C.L.; et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 2011, 5, 5729–5745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putnam, D.; Gentry, C.A.; Pack, D.W.; Langer, R. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. USA 2001, 98, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Pichon, C.; Roufai, M.B.; Monsigny, M.; Midoux, P. Histidylated oligolysines increase the transmembrane passage and the biological activity of antisense oligonucleotides. Nucleic Acids Res. 2000, 28, 504–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, M.; Ramos-Perez, V.; Singh, S.; Soliman, M.; Preece, J.A.; Briggs, S.S.; Read, M.L.; Seymour, L.W. Delivery of siRNA mediated by histidine-containing reducible polycations. J. Control. Release 2008, 130, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Read, M.L.; Singh, S.; Ahmed, Z.; Stevenson, M.; Briggs, S.S.; Oupicky, D.; Barrett, L.B.; Spice, R.; Kendall, M.; Berry, M.; et al. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 2005, 33, e86. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, D.L.; Smiley, E.; Kwok, K.Y.; Rice, K.G. Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug. Chem. 2000, 11, 901–909. [Google Scholar] [CrossRef]
- Pichon, C.; Guerin, B.; Refregiers, M.; Goncalves, C.; Vigny, P.; Midoux, P. Zinc improves gene transfer mediated by DNA/cationic polymer complexes. J. Gene Med. 2002, 4, 548–559. [Google Scholar] [CrossRef]
- Aoki, Y.; Hosaka, S.; Kawa, S.; Kiyosawa, K. Potential tumor-targeting peptide vector of histidylated oligolysine conjugated to a tumor-homing RGD motif. Cancer Gene Ther. 2001, 8, 783–787. [Google Scholar] [CrossRef] [Green Version]
- Okuda, T.; Sugiyama, A.; Niidome, T.; Aoyagi, H. Characters of dendritic poly(L-lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomaterials 2004, 25, 537–544. [Google Scholar] [CrossRef]
- Leng, Q.; Mixson, A.J. Modified branched peptides with a histidine-rich tail enhance in vitro gene transfection. Nucleic Acids Res. 2005, 33, e40. [Google Scholar] [CrossRef] [Green Version]
- Leng, Q.; Scaria, P.; Zhu, J.; Ambulos, N.; Campbell, P.; Mixson, A.J. Highly branched HK peptides are effective carriers of siRNA. J. Gene Med. 2005, 7, 977–986. [Google Scholar] [CrossRef]
- Boylan, N.J.; Kim, A.J.; Suk, J.S.; Adstamongkonkul, P.; Simons, B.W.; Lai, S.K.; Cooper, M.J.; Hanes, J. Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-L-lysine. Biomaterials 2012, 33, 2361–2371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.J.; Woodworth, G.F.; Boylan, N.J.; Suk, J.S.; Hanes, J. Highly compacted pH-responsive DNA nanoparticles mediate transgene silencing in experimental glioma. J. Mater. Chem. B Mater. Biol. Med. 2014, 2, 8165–8173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leng, Q.; Chou, S.T.; Scaria, P.V.; Woodle, M.C.; Mixson, A.J. Increased tumor distribution and expression of histidine-rich plasmid polyplexes. J. Gene Med. 2014, 16, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Leng, Q.; Mixson, A.J. The neuropilin-1 receptor mediates enhanced tumor delivery of H2K polyplexes. J. Gene Med. 2016, 18, 134–144. [Google Scholar] [CrossRef]
- Hatefi, A.; Megeed, Z.; Ghandehari, H. Recombinant polymer-protein fusion: A promising approach towards efficient and targeted gene delivery. J. Gene Med. 2006, 8, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Canine, B.F.; Wang, Y.; Hatefi, A. Evaluation of the effect of vector architecture on DNA condensation and gene transfer efficiency. J. Control. Release 2008, 129, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mixson, A.J. Histidine Copolymer and Methods for Using Same. U.S. Patent 7,163,695, 16 January 2007. [Google Scholar]
- Asayama, S.; Nishinohara, S.; Kawakami, H. Zinc-chelated poly(1-vinylimidazole) and a carbohydrate ligand polycation form DNA ternary complexes for gene delivery. Bioconjug. Chem. 2011, 22, 1864–1868. [Google Scholar] [CrossRef] [PubMed]
- Tanford, C.; Epstein, J. A Physical Chemistry of Insulin. II. Hydrogen Ion Titration Curve of Crystalline Zinc Insulin. The Nature of its Combination with Zinc. J. Am. Chem. Soc. 1953, 76, 2170–2176. [Google Scholar] [CrossRef]
- Teesalu, T.; Sugahara, K.N.; Ruoslahti, E. Tumor-penetrating peptides. Front. Oncol. 2013, 3, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kichler, A.; Leborgne, C.; Marz, J.; Danos, O.; Bechinger, B. Histidine-rich amphipathic peptide antibiotics promote efficient delivery of DNA into mammalian cells. Proc. Natl. Acad. Sci. USA 2003, 100, 1564–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langlet-Bertin, B.; Leborgne, C.; Scherman, D.; Bechinger, B.; Mason, A.J.; Kichler, A. Design and evaluation of histidine-rich amphipathic peptides for siRNA delivery. Pharm. Res. 2010, 27, 1426–1436. [Google Scholar] [CrossRef] [PubMed]
- Chamarthy, S.P.; Kovacs, J.R.; McClelland, E.; Gattens, D.; Meng, W.S. A cationic peptide consists of ornithine and histidine repeats augments gene transfer in dendritic cells. Mol. Immunol. 2003, 40, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, J.R.; Zheng, Y.; Shen, H.; Meng, W.S. Polymeric microspheres as stabilizing anchors for oligonucleotide delivery to dendritic cells. Biomaterials 2005, 26, 6754–6761. [Google Scholar] [CrossRef]
- Lo, S.L.; Wang, S. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials 2008, 29, 2408–2414. [Google Scholar] [CrossRef]
- Lachelt, U.; Kos, P.; Mickler, F.M.; Herrmann, A.; Salcher, E.E.; Rodl, W.; Badgujar, N.; Brauchle, C.; Wagner, E. Fine-tuning of proton sponges by precise diaminoethanes and histidines in pDNA polyplexes. Nanomedicine 2014, 10, 35–44. [Google Scholar] [CrossRef]
- Kos, P.; Lachelt, U.; Herrmann, A.; Mickler, F.M.; Doblinger, M.; He, D.; Krhac Levacic, A.; Morys, S.; Brauchle, C.; Wagner, E. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. Nanoscale 2015, 7, 5350–5362. [Google Scholar] [CrossRef] [Green Version]
- Moulay, G.; Leborgne, C.; Mason, A.J.; Aisenbrey, C.; Kichler, A.; Bechinger, B. Histidine-rich designer peptides of the LAH4 family promote cell delivery of a multitude of cargo. J. Pept. Sci. 2017, 23, 320–328. [Google Scholar] [CrossRef]
- Zhang, T.T.; Kang, T.H.; Ma, B.; Xu, Y.; Hung, C.F.; Wu, T.C. LAH4 enhances CD8+ T cell immunity of protein/peptide-based vaccines. Vaccine 2012, 30, 784–793. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Kovacs, J.R.; Zheng, Y.; Gawalt, E.S.; Shen, H.; Meng, W.S. Attenuated alloreactivity of dendritic cells engineered with surface-modified microspheres carrying a plasmid encoding interleukin-10. Biomaterials 2006, 27, 2076–2082. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Rodl, W.; He, D.; Doblinger, M.; Lachelt, U.; Wagner, E. Combination of sequence-defined oligoaminoamides with transferrin-polycation conjugates for receptor-targeted gene delivery. J. Gene Med. 2015, 17, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Höhn, M.; Reinhard, S.; Loy, D.M.; Klein, P.M.; Wagner, E. IL4-Receptor-Targeted Dual Antitumoral Apoptotic Peptide—siRNA Conjugate Lipoplexes. Adv. Funct. Mater. 2019, 29, 1900697. [Google Scholar] [CrossRef]
- Bertrand, E.; Goncalves, C.; Billiet, L.; Gomez, J.P.; Pichon, C.; Cheradame, H.; Midoux, P.; Guegan, P. Histidinylated linear PEI: A new efficient non-toxic polymer for gene transfer. Chem. Commun. (Camb.) 2011, 47, 12547–12549. [Google Scholar] [CrossRef]
- Gomez, J.P.; Tresset, G.; Pichon, C.; Midoux, P. Improved histidinylated lPEI polyplexes for skeletal muscle cells transfection. Int. J. Pharm. 2019, 559, 58–67. [Google Scholar] [CrossRef]
- Yu, G.S.; Bae, Y.M.; Choi, H.; Kong, B.; Choi, I.S.; Choi, J.S. Synthesis of PAMAM dendrimer derivatives with enhanced buffering capacity and remarkable gene transfection efficiency. Bioconjug. Chem. 2011, 22, 1046–1055. [Google Scholar] [CrossRef]
- Kim, T.H.; Ihm, J.E.; Choi, Y.J.; Nah, J.W.; Cho, C.S. Efficient gene delivery by urocanic acid-modified chitosan. J. Control. Release 2003, 93, 389–402. [Google Scholar] [CrossRef]
- Jin, H.; Xu, C.X.; Kim, H.W.; Chung, Y.S.; Shin, J.Y.; Chang, S.H.; Park, S.J.; Lee, E.S.; Hwang, S.K.; Kwon, J.T.; et al. Urocanic acid-modified chitosan-mediated PTEN delivery via aerosol suppressed lung tumorigenesis in K-ras(LA1) mice. Cancer Gene Ther. 2008, 15, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Huang, W.; Kang, L.; Jin, M.; Fan, B.; Jin, H.; Wang, Q.M.; Gao, Z. siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis. Int. J. Nanomed. 2017, 12, 3221–3234. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Tang, C.; Yin, C. Exploring advantages/disadvantages and improvements in overcoming gene delivery barriers of amino acid modified trimethylated chitosan. Pharm. Res. 2015, 32, 2038–2050. [Google Scholar] [CrossRef]
- Mishra, S.; Heidel, J.D.; Webster, P.; Davis, M.E. Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J. Control. Release 2006, 116, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Erdene-Ochir, T.; Ganbold, T.; Baigude, H. Design of curdlan-based pH-sensitive polymers with endosome buffering functionality for siRNA delivery. Int. J. Biol. Macromol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, Z.; Jiang, J.; Gao, Y.; Gu, W.; Chen, L.; Tang, X.; Li, Y. Poly(imidazole/DMAEA)phosphazene/DNA self-assembled nanoparticles for gene delivery: Synthesis and in vitro transfection. J. Control. Release 2008, 127, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Zugates, G.T.; Peng, W.; Zumbuehl, A.; Jhunjhunwala, S.; Huang, Y.H.; Langer, R.; Sawicki, J.A.; Anderson, D.G. Rapid Optimization of Gene Delivery by Parallel End-modification of Poly(beta-amino ester)s. Mol. Ther. 2007, 15, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Gao, X. A universal protein tag for delivery of SiRNA-aptamer chimeras. Sci. Rep. 2013, 3, 3129. [Google Scholar] [CrossRef] [Green Version]
- Salmasi, Z.; Shier, W.T.; Hashemi, M.; Mahdipour, E.; Parhiz, H.; Abnous, K.; Ramezani, M. Heterocyclic amine-modified polyethylenimine as gene carriers for transfection of mammalian cells. Eur. J. Pharm. Biopharm. 2015, 96, 76–88. [Google Scholar] [CrossRef]
- Toy, R.; Pradhan, P.; Ramesh, V.; Di Paolo, N.C.; Lash, B.; Liu, J.; Blanchard, E.L.; Pinelli, C.J.; Santangelo, P.J.; Shayakhmetov, D.M.; et al. Modification of primary amines to higher order amines reduces in vivo hematological and immunotoxicity of cationic nanocarriers through TLR4 and complement pathways. Biomaterials 2019, 225, 119512. [Google Scholar] [CrossRef]
- Jin, H.; Kim, T.H.; Hwang, S.K.; Chang, S.H.; Kim, H.W.; Anderson, H.K.; Lee, H.W.; Lee, K.H.; Colburn, N.H.; Yang, H.S.; et al. Aerosol delivery of urocanic acid-modified chitosan/programmed cell death 4 complex regulated apoptosis, cell cycle, and angiogenesis in lungs of K-ras null mice. Mol. Cancer Ther. 2006, 5, 1041–1049. [Google Scholar] [CrossRef] [Green Version]
- Patchornik, A.; Berger, A.; Katchalski, E. Poly-L-histidine. J. Am. Chem. Soc. 1957, 79, 5227–5236. [Google Scholar] [CrossRef]
- Pack, D.W.; Putnam, D.; Langer, R. Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol. Bioeng. 2000, 67, 217–223. [Google Scholar] [CrossRef]
- Asayama, S.; Sekine, T.; Hamaya, A.; Kawakami, H.; Nagaoka, S. Poly(L-histidine) with several aminoethyl groups for a new pH-sensitive DNA carrier. Polym. Adv. Technol. 2005, 16, 567–570. [Google Scholar] [CrossRef]
- Asayama, S.; Kumagai, T.; Kawakami, H. Synthesis and characterization of methylated poly(L-histidine) to control the stability of its siRNA polyion complexes for RNAi. Bioconjug. Chem. 2012, 23, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Asayama, S.; Kumagai, T.; Kawakami, H. Screening for Methylated Poly(l-histidine) with Various Dimethylimidazolium/Methylimidazole/Imidazole Contents as DNA Carrier. Pharmaceutics 2015, 7, 224–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asayama, S.; Sudo, M.; Nagaoka, S.; Kawakami, H. Carboxymethyl poly(L-histidine) as a new pH-sensitive polypeptide to enhance polyplex gene delivery. Mol. Pharm. 2008, 5, 898–901. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, X.; Jiang, X.; Chen, Y.; Chen, L.; Fang, X.; Sha, X. Self-assembled carboxymethyl poly (L-histidine) coated poly (beta-amino ester)/DNA complexes for gene transfection. Biomaterials 2012, 33, 644–658. [Google Scholar] [CrossRef] [PubMed]
- Krhac Levacic, A.; Morys, S.; Wagner, E. Solid-phase supported design of carriers for therapeutic nucleic acid delivery. Biosci. Rep. 2017, 37, BSR20160617. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Ishii, T.; Zheng, M.; Watanabe, S.; Toh, K.; Matsumoto, Y.; Nishiyama, N.; Miyata, K.; Kataoka, K. Multifunctional polyion complex micelle featuring enhanced stability, targetability, and endosome escapability for systemic siRNA delivery to subcutaneous model of lung cancer. Drug Deliv. Transl. Res. 2014, 4, 50–60. [Google Scholar] [CrossRef]
- Kim, H.J.; Oba, M.; Pittella, F.; Nomoto, T.; Cabral, H.; Matsumoto, Y.; Miyata, K.; Nishiyama, N.; Kataoka, K. PEG-detachable cationic polyaspartamide derivatives bearing stearoyl moieties for systemic siRNA delivery toward subcutaneous BxPC3 pancreatic tumor. J. Drug Target. 2012, 20, 33–42. [Google Scholar] [CrossRef]
- Miyata, K. Smart polymeric nanocarriers for small nucleic acid delivery. Drug Discov. Ther. 2016, 10, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Porosk, L.; Arukuusk, P.; Pohako, K.; Kurrikoff, K.; Kiisholts, K.; Padari, K.; Pooga, M.; Langel, U. Enhancement of siRNA transfection by the optimization of fatty acid length and histidine content in the CPP. Biomater. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Parnaste, L.; Arukuusk, P.; Langel, K.; Tenson, T.; Langel, U. The Formation of Nanoparticles between Small Interfering RNA and Amphipathic Cell-Penetrating Peptides. Mol. Ther. Nucleic Acids 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Pan, R.; Askhatova, D.; Chen, P. Effective small interfering RNA delivery in vitro via a new stearylated cationic peptide. Int. J. Nanomed. 2015, 10, 3303–3314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Gao, Y.; Gong, C.; Han, Z.; Qiang, L.; Tai, Z.; Tian, J.; Gao, S. Dual-Blockade Immune Checkpoint for Breast Cancer Treatment Based on a Tumor-Penetrating Peptide Assembling Nanoparticle. ACS Appl. Mater. Interfaces 2019, 11, 39513–39524. [Google Scholar] [CrossRef]
- Chen, Q.R.; Zhang, L.; Stass, S.A.; Mixson, A.J. Co-polymer of histidine and lysine markedly enhances transfection efficiency of liposomes. Gene Ther. 2000, 7, 1698–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.R.; Zhang, L.; Stass, S.A.; Mixson, A.J. Branched co-polymers of histidine and lysine are efficient carriers of plasmids. Nucleic Acids Res. 2001, 29, 1334–1340. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Pirollo, K.F.; Yu, B.; Rait, A.; Xiang, L.; Huang, W.; Zhou, Q.; Ertem, G.; Chang, E.H. Enhanced transfection efficiency of a systemically delivered tumor-targeting immunolipoplex by inclusion of a pH-sensitive histidylated oligolysine peptide. Nucleic Acids Res. 2004, 32, e48. [Google Scholar] [CrossRef] [Green Version]
- Mockey, M.; Bourseau, E.; Chandrashekhar, V.; Chaudhuri, A.; Lafosse, S.; Le Cam, E.; Quesniaux, V.F.; Ryffel, B.; Pichon, C.; Midoux, P. mRNA-based cancer vaccine: Prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther. 2007, 14, 802–814. [Google Scholar] [CrossRef] [Green Version]
- Perche, F.; Benvegnu, T.; Berchel, M.; Lebegue, L.; Pichon, C.; Jaffres, P.A.; Midoux, P. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 2011, 7, 445–453. [Google Scholar] [CrossRef]
- Van der Jeught, K.; De Koker, S.; Bialkowski, L.; Heirman, C.; Tjok Joe, P.; Perche, F.; Maenhout, S.; Bevers, S.; Broos, K.; Deswarte, K.; et al. Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety. ACS Nano 2018, 12, 9815–9829. [Google Scholar] [CrossRef]
- Goncalves, C.; Berchel, M.; Gosselin, M.P.; Malard, V.; Cheradame, H.; Jaffres, P.A.; Guegan, P.; Pichon, C.; Midoux, P. Lipopolyplexes comprising imidazole/imidazolium lipophosphoramidate, histidinylated polyethyleneimine and siRNA as efficient formulation for siRNA transfection. Int. J. Pharm. 2014, 460, 264–272. [Google Scholar] [CrossRef]
- Sorgi, F.L.; Bhattacharya, S.; Huang, L. Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther. 1997, 4, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Perche, F.; Gosset, D.; Mevel, M.; Miramon, M.L.; Yaouanc, J.J.; Pichon, C.; Benvegnu, T.; Jaffres, P.A.; Midoux, P. Selective gene delivery in dendritic cells with mannosylated and histidylated lipopolyplexes. J. Drug Target. 2011, 19, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Pichon, C.; Midoux, P. Mannosylated and histidylated LPR technology for vaccination with tumor antigen mRNA. Methods Mol. Biol. 2013, 969, 247–274. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Goncalves, C.; Gallego, T.; Francois-Heude, M.; Malard, V.; Mateo, V.; Lemoine, F.; Cendret, V.; Djedaini-Pilard, F.; Moreau, V.; et al. Comparative binding and uptake of liposomes decorated with mannose oligosaccharides by cells expressing the mannose receptor or DC-SIGN. Carbohydr. Res. 2020, 487, 107877. [Google Scholar] [CrossRef]
- Le Moignic, A.; Malard, V.; Benvegnu, T.; Lemiegre, L.; Berchel, M.; Jaffres, P.A.; Baillou, C.; Delost, M.; Macedo, R.; Rochefort, J.; et al. Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells. J. Control. Release 2018, 278, 110–121. [Google Scholar] [CrossRef]
- Gujrati, M.; Vaidya, A.; Lu, Z.R. Multifunctional pH-Sensitive Amino Lipids for siRNA Delivery. Bioconjug. Chem. 2016, 27, 19–35. [Google Scholar] [CrossRef]
- Brevet, D.; Hocine, O.; Delalande, A.; Raehm, L.; Charnay, C.; Midoux, P.; Durand, J.O.; Pichon, C. Improved gene transfer with histidine-functionalized mesoporous silica nanoparticles. Int. J. Pharm. 2014, 471, 197–205. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, L.; Tang, C.; Yin, C. Co-Delivery of Doxorubicin and Survivin shRNA-Expressing Plasmid Via Microenvironment-Responsive Dendritic Mesoporous Silica Nanoparticles for Synergistic Cancer Therapy. Pharm. Res. 2017, 34, 2829–2841. [Google Scholar] [CrossRef]
- Pan, Q.S.; Chen, T.T.; Nie, C.P.; Yi, J.T.; Liu, C.; Hu, Y.L.; Chu, X. In Situ Synthesis of Ultrathin ZIF-8 Film-Coated MSNs for Codelivering Bcl 2 siRNA and Doxorubicin to Enhance Chemotherapeutic Efficacy in Drug-Resistant Cancer Cells. ACS Appl. Mater. Interfaces 2018, 10, 33070–33077. [Google Scholar] [CrossRef]
- Burckhardt, G.; Zimmer, C.; Luck, G. Conformation and reactivity of DNA in the complex with proteins. III. Helix-coil transition and conformational studies of model complexes of DNA’s with poly-L-histidine. Nucleic Acids Res. 1976, 3, 537–559. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, L.M.P.; De Smedt, S.C.; Remaut, K.; Braeckmans, K. The proton sponge hypothesis: Fable or fact? Eur. J. Pharm. Biopharm. 2018, 129, 184–190. [Google Scholar] [CrossRef]
- Ripoll, M.; Neuberg, P.; Kichler, A.; Tounsi, N.; Wagner, A.; Remy, J.S. pH-Responsive Nanometric Polydiacetylenic Micelles Allow for Efficient Intracellular siRNA Delivery. ACS Appl. Mater. Interfaces 2016, 8, 30665–30670. [Google Scholar] [CrossRef]
- Zuckerman, J.E.; Choi, C.H.; Han, H.; Davis, M.E. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl. Acad. Sci. USA 2012, 109, 3137–3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leng, Q.; Chou, S.T.; Scaria, P.V.; Woodle, M.C.; Mixson, A.J. Buffering capacity and size of siRNA polyplexes influence cytokine levels. Mol. Ther. 2012, 20, 2282–2290. [Google Scholar] [CrossRef] [Green Version]
- Fleri, W.; Paul, S.; Dhanda, S.K.; Mahajan, S.; Xu, X.; Peters, B.; Sette, A. The Immune Epitope Database and Analysis Resource in Epitope Discovery and Synthetic Vaccine Design. Front. Immunol. 2017, 8, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinks, V.; Jiskoot, W.; Schellekens, H. Immunogenicity of therapeutic proteins: The use of animal models. Pharm. Res. 2011, 28, 2379–2385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antila, H.S.; Harkonen, M.; Sammalkorpi, M. Chemistry specificity of DNA-polycation complex salt response: A simulation study of DNA, polylysine and polyethyleneimine. Phys. Chem. Chem. Phys. 2015, 17, 5279–5289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketola, T.M.; Hanzlikova, M.; Leppanen, L.; Ravina, M.; Bishop, C.J.; Green, J.J.; Urtti, A.; Lemmetyinen, H.; Yliperttula, M.; Vuorimaa-Laukkanen, E. Independent versus cooperative binding in polyethylenimine-DNA and Poly(L-lysine)-DNA polyplexes. J. Phys. Chem. B 2013, 117, 10405–10413. [Google Scholar] [CrossRef] [PubMed]
- Vasiliu, T.; Cojocaru, C.; Rotaru, A.; Pricope, G.; Pinteala, M.; Clima, L. Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(L-Lysine): Experimental Study and Modeling Approach. Int. J. Mol. Sci. 2017, 18, 1291. [Google Scholar] [CrossRef]
- Perche, F.; Lambert, O.; Berchel, M.; Jaffres, P.A.; Pichon, C.; Midoux, P. Gene transfer by histidylated lipopolyplexes: A dehydration method allowing preservation of their physicochemical parameters and transfection efficiency. Int. J. Pharm. 2012, 423, 144–150. [Google Scholar] [CrossRef]
- Blakney, A.K.; Yilmaz, G.; McKay, P.F.; Becer, C.R.; Shattock, R.J. One Size Does Not Fit All: The Effect of Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA Polyplexes. Biomacromolecules 2018, 19, 2870–2879. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther. 2019, 27, 710–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitag, F.; Wagner, E. Optimizing synthetic nucleic acid and protein nanocarriers: The chemical evolution approach. Adv. Drug Deliv. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Dahlman, J.E.; Kauffman, K.J.; Xing, Y.; Shaw, T.E.; Mir, F.F.; Dlott, C.C.; Langer, R.; Anderson, D.G.; Wang, E.T. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl. Acad. Sci. USA 2017, 114, 2060–2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Polymers | Nucleic Acid | In Vitro /In Vivo | Comments | References |
---|---|---|---|---|
Histidylated polylysine | pDNA 1 | Y/N | Presence of serum (20%) had little effect on transfection; Increased DNA transfection more than 4-logs compared to polylysine (DP-190) | [6] |
Imidazole-containing polylysine | pDNA | Y/N | Polylysine in which 86.5% of ε amines were modified by imidazoles had similar transfection efficiency as PEI but less toxicity | [23] |
Histidylated oligolysine | ODN | Y/N | Low MW carrier (DP-19) more effective than HMW (DP-190); 80% reduction of ICAM-1 expression with peptide-ODN compared to peptide-scrambled ODN polyplexes in vitro | [24] |
CH6K3H6C | pDNA/ siRNA | Y/N | Varying MW of reducible polymer were made; size dependent efficacy for carrier of siRNA and pDNA; addition of targeting malaria ligand increased efficacy to hepatocytes in vitro | [25] |
CH6K3H6C | pDNA/ mRNA | Y/N | HMW reducible polycation carrier was effective for mRNA and plasmids in vitro | [26] |
CHK6HC | pDNA | Y/N | Histidine-containing peptide enhanced gene expression by up to 7-fold compared to CK8C peptides; N- and C-terminal cysteines oxidized to form stable cross-linked polyplexes. | [27] |
Histidylated polylysine | pDNA | Y/N | Zinc chloride added to polymer (DP-190) increased transfection efficiency significantly | [28] |
cRGD-hK | pDNA | Y/Y | cRGD-hK (CRGDCF-(K[H-]KKK)6) polyplexes injected iv enhanced DNA transfection efficiency in tumor xenografts compared to normal tissues | [29] |
KGH6 | pDNA | Y/Y | KGH6, a 6th generation dendrimer, in which the terminal amino acids were histidines, showed a 3-logs higher transfection efficiency in cells when polyplex formed at pH 5.0 than 7.4 | [30] |
H2K4b-T | pDNA | Y/N | H2K4b-T enhanced plasmid transfection efficiency compared to H2K4b | [31] |
H3K8b | siRNA | Y/N | An effective eight-branched carrier for siRNA with low toxicity | [32] |
PEG-CH12K18 | pDNA | Y/Y | An effective triblock carrier for plasmids expressing luciferase in vitro and in vivo in lung models; worm-like structure of polyplex | [33] |
PEG-CH12K18 | pDNA | Y/Y | Enhanced silencing of luciferase with intratumoral injection in a neuroblastoma model. | [34] |
H2K | pDNA | Y/Y | In contrast to the H2K4b, the linear H2K carrier had a low transfection in vitro, but a high transfection of tumors in vivo. Transcytosis was mediated by NRP-1 receptor | [35,36] |
(KHKHKHKHKK)6-FGF2 | pDNA | Y/N | High transfection efficiency of FGF-2 targeted polyplex but not in the presence of serum | [37] |
(KKKHHHHKKK)6-FGF | pDNA | Y/N | Clustered lysines and histidines improved stability and transfection compared to non-clustering of carrier, particularly in serum | [38] |
Polymer | Nucleic Acid | In Vitro/ In Vivo | Comment | Reference |
---|---|---|---|---|
LAH4 | pDNA 1 | Y/N | LAH4 and PEI polymers have comparable transfection efficiency in several cell lines; number and positions of histidines in peptide were important | [43] |
siRNA | Y/N | LAH4 and derivatives have improved siRNA transfection compared to cationic liposomes and PEI in a retinoblast cell line. | [44] | |
O10H6 | pDNA | Y/Y | O10H6, a 16-mer, has a higher DNA transfection efficiency in dendritic cells than K10H6 with lower toxicity; O10H6 polyplexes elicited antigen-specific INFγ in vivo | [45] |
ODN | Y/ N | Microspheres coated with O10H6 polyplexes markedly increased accumulation of ODN in dendritic cells than O10H6 polyplexes alone. | [46] | |
C-H5-TAT-H5-C (CH5RK2R2QR4H5C) | pDNA | Y/Y | Of modified TAT peptides, the C-H5-TAT-H5-C carrier improved gene transfection the most in vitro. PEI-25kD and the modified TAT carriers gave similar gene expression after intrathecal injection. | [47] |
Oligo(ethana-mino) amide branched polymers (Gtt, Stp, Sph) | pDNA | Y/Y | Enhanced pDNA transfection efficiency both in vitro and in vivo. Gtt, Stp, and Sph have buffering properties and positive charges (replacing lysines). Multimers of Gtt-Histidine, Stp-Histidine, and Sph-histidines were incorporated in linear and branched polymers. | [48] |
pDNA | Y/Y | Ligand targeted Polyplexes toward cMet enhanced receptor-specific gene transfer with intratumoral and intravenous injections. PEGylated targeted and non-PEGylated polymers were mixed together with pDNA to form an effective and stable polyplex for studies in vivo. | [49] |
Polymer | Nucleic Acid | In Vitro /In Vivo | Comment | Reference |
---|---|---|---|---|
NON-BIODEGRADABLE | ||||
Histidinylated linear PEI (H-lPEI) | pDNA | Y/N | High transfection efficiency with lower toxicity than linear PEI (IPEI) in vitro | [55] |
H-lPEI/IPEI | pDNA | Y/N | H-lPEI/IPEI with 57 and 67% lPE had similar transfection but lower toxicity than IPEI. | [56] |
PAMAM-G4-H3-R | pDNA | Y/N | Histidine-arginine peptide conjugated to polyamidoamine dendrimer had higher transfection and lower toxicity than PEI in various cell lines | [57] |
BIODEGRADABLE | ||||
Urocanic acid (UA)-modified chitosan | pDNA | Y/N | DNA transfection efficiency in 293T cells was enhanced with the addition of UA to chitosan. | [58] |
pDNA | N/Y | UA chitosan in complex with plasmid expressing PTEN via aerosol reduced number of lung tumors in a K-ras mouse model | [59] | |
H6R6-modified chitosan (CS) | siRNA | Y/Y | Modified CS has higher transfection efficiency and improved endosomal escape. Modified CS carrier of survivin siRNA reduced breast cancer growth in vivo. | [60] |
Histidine-cysteine modified trimethyl CS | pDNA | Y/Y | Histidine-modified CS polyplexes modestly increased transfection compared to unmodified CS polyplexes but histidine-polyplexes had lower transfection than arginine-modified CS polyplexes. | [61] |
Imidazole-modified cyclodextrin (imCDP) | pDNA | Y/N | imCDP confers increased binding to DNA, enhanced released in acidic environments, increased buffering capacity and transfection efficiency in vitro. | [62] |
Imidazole modified-curdlan | pDNA/ siRNA | Y/N | Enhanced endosomal escape and efficiently delivered plasmid and siRNA into cancer cells | [63] |
Poly(imidazole-DMAEA) phosphazene (PIDP) | pDNA | Y/N | DNA transfection in 293T, COS-7 and Hela cells was higher with PIDP than the polymer control and PEI-25 kD, and had lower cytotoxicity. | [64] |
End-Capping of modified PBAE | pDNA | Y/Y | End-capping of the PBAE polymer, C32, with histidine showed reduced transfection compared to end-capping with primary and tertiary amines. | [65] |
siRNA-aptamer chimeras with polyhistidine | siRNA | Y/N | A platform for siRNA with a targeting aptamer, a dsRNA binding domain and polyhistidine for endosomal escape. Polyhistidine domain with 18 histidines more effective than 6 histidines. | [66] |
Polymer | Nucleic Acid | In Vitro /In Vivo | Comment | References |
---|---|---|---|---|
PEG 1-polyhistidine | pDNA | Y/N | Both linear and comb-shaped PEG-polyhistidines conjugates were synthesized. Some of the formulations were relatively stable in size for 7 days at neutral pH. | [10] |
Glycosylated-polyhisti- dine/transferrin-targeted polylysine | pDNA | Y/N | Ternary polyplex significantly more effective than the binary transferrin-polylysine polyplex | [71] |
Aminated polyhistidine | pDNA | Y/N | Enhanced membrane disruptive ability at lower pH and modest increase in transfection compared to polylysine | [72] |
Methylated Polyhistidine | siRNA | Y/N | Low percentage of methylation (25% vs. 68%, 87%) of PLH-Me was most efficient for gene silencing and gene expression | [73,74] |
Carboxymethyl polyhistidine/PEI | pDNA | Y/N | The ternary polyplex (CM-PLH, PEI, plasmid) enhanced DNA transfection efficiency 300 times higher than the PEI binary polyplex | [75] |
CM-PLH/ poly (β-amino ester) | pDNA | Y/Y | Ternary polyplex (CM-PLH, PBAE, plasmid) had 4-fold higher gene expression than non-coated PBAE polyplex in tumors in vivo | [76] |
Carrier | Nucleic Acid | In Vitro /In Vivo | Comment | Reference |
---|---|---|---|---|
Fusogenic H5WYG peptide conjugated to virus-like particles | siRNA | Y/N | About seventy-five “H5WYG” peptides per particle. Without fusogenic peptide, the particles containing siRNA were significantly less effective targeting cyclins in Hep3B cells | [22] |
Mesoporous silica nanoparticles with L-histidine (MSN-His 1) | pDNA | Y/Y | Improved pDNA transfection efficiency both in vitro and in Achilles tendons in vivo compared to unmodified MS | [98] |
Imidazole linked to dendritic mesoporous silica nanoparticle | pDNA/Doxoru-bicin | Y/Y | Carrier exhibited high drug loading capacity, pH-sensitive targeting and drug release; marked tumor inhibition with doxorubicin and shSurvivin in vivo | [99] |
Imidazole framework film covering MSN | siRNA/Doxoru-bicin | Y/N | Ultrathin zinc-imidazole film (or ZIF-8) on MSN adsorbed siRNAs with high efficiency and released siRNA and small drugs readily inside the cells | [100] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Xu, S.; Mixson, A.J. The Multifaceted Histidine-Based Carriers for Nucleic Acid Delivery: Advances and Challenges. Pharmaceutics 2020, 12, 774. https://doi.org/10.3390/pharmaceutics12080774
He J, Xu S, Mixson AJ. The Multifaceted Histidine-Based Carriers for Nucleic Acid Delivery: Advances and Challenges. Pharmaceutics. 2020; 12(8):774. https://doi.org/10.3390/pharmaceutics12080774
Chicago/Turabian StyleHe, Jiaxi, Songhui Xu, and A. James Mixson. 2020. "The Multifaceted Histidine-Based Carriers for Nucleic Acid Delivery: Advances and Challenges" Pharmaceutics 12, no. 8: 774. https://doi.org/10.3390/pharmaceutics12080774
APA StyleHe, J., Xu, S., & Mixson, A. J. (2020). The Multifaceted Histidine-Based Carriers for Nucleic Acid Delivery: Advances and Challenges. Pharmaceutics, 12(8), 774. https://doi.org/10.3390/pharmaceutics12080774