Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review
Abstract
:1. Introduction
2. Periodontitis
- Necrotizing periodontitis
- Necrotizing gingivitis
- Necrotizing periodontitis
- Necrotizing stomatitis
- Periodontitis as a manifestation of Systemic Disease
- Periodontitis.
Etiopathogenesis of Periodontitis
3. The Role of Herbs in the Treatment of Periodontitis
3.1. Sage Leaves (Salvia officinalis)
3.2. Oak Bark (Quercus spp.)
3.3. Peppermint Leaves (Mentha piperita)
3.4. Calamus Rhizome (Acorus calamus)
3.5. Baikal Skullcap Root (Scutellaria baicalensis)
3.6. Pomegranate (Punica granatum)
3.7. Tea Leaves (Camellia sinensis)
3.8. Aloe vera Gel
3.9. Chamomile Flowers (Matricaria chamomilla)
3.10. Magnolia Bark (Magnolia officinalis)
3.11. Blackberry Leaves and Fruits (Rubus fruticosus)
3.12. Cranberry Fruit (Vaccinum macrocarpon)
3.13. Lippia Sidoides
Plant Material | Pharmaceutical Dosage Form | Therapeutic Indications | References |
---|---|---|---|
Salvia officinalis L., folium |
|
| [36] |
Quercus robur L., Quercus petraea (Matt.) Liebl., Quercus pubescens Willd., cortex |
|
| [49] |
Mentha x piperita L., folium |
| No traditional use in the oral cavity. | [58] |
Camellia sinensis (L.) Kuntze, non fermentatum folium |
| No traditional use in the oral cavity | [109] |
Matricaria recutita L., flos |
|
| [120] |
Vaccinium macrocarpon Aiton, fructus |
| No traditional use in the oral cavity. | [147] |
4. Oromucosal Formulations in Periodontal Diseases
4.1. Oromucosal Route
4.2. Oromucosal Preparations and Formulations in Periodontitis
Marketed Product | Active Ingredient(s) | Manufacturer | Pharmaceutical Form | Registered Indications |
---|---|---|---|---|
Aperisan® 20% | Liquid extract of sage leaves (Salvia officinalis L.), | Dentinox® Gesellschaft für pharmazeutische Präparate Lenk and Schuppan KG, Berlin, Germany | oral gel (topical) | The symptomatic treatment of oral inflammation |
Argol Essenza Balsamica® | Menthol, melissa oil, cinnamon oil, clove oil (Syzygium aromaticum L.), lemon oil (Citrus limon L.), nutmeg oil (Myristica fragrans), thyme oil (Thymus spp.), coriander oil (Coriandrum sativum L.), peppermint oil (Mentha piperita L.), | Alba Thyment Sp. z o.o., Suchy Las, Poland | oral solution (topical) | For aphthous and inflamed gums |
Baikadent® | A complex of flavones isolated from the root of Baikal Scullcap (Scutellaria baicalensis) | Herbapol Wrocław S.A., Wrocław, Poland | oral gel (topical) | In the complementary treatment of superficial and deep periodontopathies; in the prophylaxis of periodontal diseases; in chronic inflammatory conditions of the oral cavity mucosa (also in case of injuries caused by dentures) |
Dentosept® | A complex liquid extract of camomile basket (Matricaria recutita L.), oak bark (Quercus spp.), sage leaf (Salvia officinalis L.), arnica herb (Arnica spp.), calamus rhizome (Acorus calamus L.), peppermint herb (Mentha piperita L.), thyme (Thymus spp.) | Phytopharm Klęka S.A., Klęka, Poland | oral solution (topical) | Anti-inflammatory, anti-bacterial, disinfectant and astringent, in inflammation of the oral and pharyngeal mucosa, gingivitis and stomatitis (including inflammation of the tongue); superficial periodontitis; bleeding gums; adjunctive in periodontosis |
Dentosept A® | A complex liquid extract of Chamomile basket (Matricaria recutita L.), oak bark (Quercus spp.), sage leaf (Salvia officinalis L.), arnica herb (Arnica spp.), calamus rhizome (Acorus calamus L.), peppermint herb (Mentha piperita L.), thyme herb (Thymus spp.) | Phytopharm Klęka S.A., Klęka, Poland | oral solution (topical) | In the inflammations of oral cavity and gums, aphthae, mouth sores (after dentures), as an aid in periodontosis |
Herbadent® | Benzocaine, Salicylic Acid, Herbal Liquid Extract for Herbadent | Herbai a.s., Prague, Czech Republic | oral topical solution | To massage the gums, especially in periodontitis, gingivitis and periodontitis |
Kamistad® Gel | Matricaria liquid extract (Matricaria recutita L.), lidocaine hydrochloridum monohydricum | STADA Arzneimittel AG, Berlin, Germany | oral topical gel | Traditionally used as a remedy for mild inflammation of the gums and oral mucosa |
Kamistad Senzitiv® | Matricaria Liquid Extract (Matricaria recutita L.) lidocaine hydrochloridum monohydricum | STADA Arzneimittel AG, Berlin, Germany | oral topical gel | Kamistad Sensitive is indicated for the treatment of minor infections of the gums and oral mucosa in adults and adolescents above 12 years old |
Kamillosan Konzentrat® | Chamomile flower extract (Matricaria recutita L.) | MEDA Pharma GmbH and Co. KG, Bad Homburg, Germany | oral topical solution | As an adjunctive treatment for moist compresses, rinses or washes for inflammatory skin and mucous membrane disorders, including the oral cavity and gums |
Kamillosan® Mund- und Rachenspray® | Chamomile flower extract (Matricaria recutita L.) | MEDA Pharma GmbH and Co. KG, Bad Homburg, Germany | oral spray | Kamillosan mouth and throat spray is used in inflammation of the throat (tonsillitis) in colds without fever, inflammation of the mucous membranes of the mouth and gums |
Mucosit® | Extract from chamomile (Matricaria recutita L.), calendula (Calendula officinalis L.) coltsfoot leaf (Tussilago farfara), oak bark (Quercus spp.), sage leaf (Salvia officinalis L.), thyme herb (Thymus spp.); essential oils (mint and chamomile), allantoin | Herbapol Poznań S.A., Poznań, Poland | oral topical gel | Topically as an astringent, anti-inflammatory and antimicrobial agent and as a local anaesthetic, accelerating granulation and wound healing. The drug for topical application on oral mucosa as a traditionally used supportive agent in the treatment of periodontal diseases and inflammatory conditions of the oral cavity |
Septosan fix® | Peppermint herb (Mentha piperita L.), thyme (Thymus spp.), sage leaf (Salvia officinalis L.), | Pharmaceutical Works POLPHARMA S.A., Starogard Gdański, Poland | herbs for infusion in sachets | Traditionally used as a disinfectant in acute and chronic inflammations of the oral and pharyngeal mucosa, and mouth, throat and gum inflammation |
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Beard, J.R.; Bloom, D.E. Towards a comprehensive public health response to population ageing. Lancet 2015, 385, 658–661. [Google Scholar] [CrossRef] [Green Version]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Petersen, P.E.; Yamamoto, T. Improving the oral health of older people: The approach of the WHO Global Oral Health Programme. Community Dent. Oral Epidemiol. 2005, 33, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Marcenes, W.; Kassebaum, N.J.; Bernabé, E.; Flaxman, A.; Naghavi, M.; Lopez, A.; Murray, C.J.L. Global burden of oral conditions in 1990–2010: A systematic analysis. J. Dent. Res. 2013, 92, 592–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Europe Disease Prevention—Data and Statistics. 2018. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/oral-health/data-and-statistics (accessed on 9 December 2020).
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasai Dixit, L.; Shakya, A.; Shrestha, M.; Shrestha, A. Dental caries prevalence, oral health knowledge and practice among indigenous Chepang school children of Nepal. BMC Oral Health 2013, 13, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R. The State of Oral Health in Europe-Report Commissioned by the Platform for Better Oral Health in Europe. 2012. Available online: http://www.oralhealthplatform.eu/our-work/the-state-of-oral-health-in-europe (accessed on 15 December 2020).
- Alves, A.C.; Cavalcanti, R.V.; Calderon, P.S.; Pernambuco, L.; Alchieri, J.C. Quality of life related to complete denture. Acta Odontol. Latinoam. 2018, 31, 91–96. [Google Scholar]
- Murthy, V.; Sethuraman, K.R.; Rajaram, S.; Choudhury, S. Predicting denture satisfaction and quality of life in completely edentulous: A mixed-mode study. J. Indian Prosthodont. Soc. 2021, 21, 88–98. [Google Scholar] [CrossRef]
- Gerritsen, A.E.; Allen, P.F.; Witter, D.J.; Bronkhorst, E.M.; Creugers, N.H.J. Tooth loss and oral health-related quality of life: A systematic review and meta-analysis. Health Qual. Life Outcomes 2010, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions—Introduction and key changes from the 1999 classification. J. Clin. Periodontol. 2018, 45, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Stawińska, N.; Ziętek, M.; Kochanowska, I. Molekularne procesy resorpcji kości i ich potencjał terapeutyczny w leczeniu chorób przyzębia i osteoporozy. Dent. Med. Probl. 2005, 42, 627–635. [Google Scholar]
- Lange, L.; Thiele, G.M.; McCracken, C.; Wang, G.; Ponder, L.A.; Angeles-Han, S.T.; Rouster-Stevens, K.A.; Hersh, A.O.; Vogler, L.B.; Bohnsack, J.F.; et al. Symptoms of periodontitis and antibody responses to Porphyromonas gingivalis in juvenile idiopathic arthritis. Pediatr. Rheumatol. 2016, 14, 8. [Google Scholar] [CrossRef] [Green Version]
- Page, R.C.; Engel, L.D.; Narayanan, A.S.; Clagett, J.A. Chronic Inflammatory Gingival and Periodontal Disease. J. Am. Med. Assoc. 1978, 240, 545–550. [Google Scholar] [CrossRef]
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef] [Green Version]
- Hajishengallis, G. The inflammophilic character of the periodontitis-associated microbiota. Mol. Oral Microbiol. 2014, 29, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Yoneda, M.; Hirofuji, T. Mixed Red-Complex Bacterial Infection in Periodontitis. Int. J. Dent. 2013, 2013, 587279. [Google Scholar] [CrossRef] [PubMed]
- Socransky, S.S.; Haffajee, A.D.; Smith, C.; Martin, L.; Haffajee, J.A.; Uzel, N.G.; Goodson, J.M. Use of checkerboard DNA-DNA hybridization to study complex microbial ecosystems. Oral Microbiol. Immunol. 2004, 19, 352–362. [Google Scholar] [CrossRef]
- Curtis, M.A.; Zenobia, C.; Darveau, R.P. The Relationship of the Oral Microbiotia to Periodontal Health and Disease. Cell Host Microbe 2011, 10, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Holt, S.C.; Ebersole, J.L. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: The “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol. 2000 2005, 38, 72–122. [Google Scholar] [CrossRef] [PubMed]
- Miricescu, D.; Totan, A.; Calenic, B.; Mocanu, B.; Didilescu, A.; Mohora, M.; Spinu, T.; Greabu, M. Salivary biomarkers: Relationship between oxidative stress and alveolar bone loss in chronic periodontitis. Acta Odontol. Scand. 2014, 72, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Çanakçi, C.F.; Çiçek, Y.; Çanakçi, V. Reactive oxygen species and human inflammatory periodontal diseases. Biochemistry 2005, 70, 619–628. [Google Scholar] [CrossRef]
- Scannapieco, F.A.; Gershovich, E. The prevention of periodontal disease—An overview. Periodontol. 2000 2020, 84, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Sabtu, N.; Enoch, D.A.; Brown, N.M. Antibiotic resistance: What, why, where, when and how? Br. Med. Bull. 2015, 116, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pemberton, M.N.; Gibson, J. Chlorhexidine and hypersensitivity reactions in dentistry. Br. Dent. J. 2012, 213, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Li, F.S.; Weng, J.K. Demystifying traditional herbal medicine with modern approach. Nat. Plants 2017, 3, 17109. [Google Scholar] [CrossRef]
- Cruz Martínez, C.; Diaz Gómez, M.; Oh, M.S. Use of traditional herbal medicine as an alternative in dental treatment in Mexican dentistry: A review. Pharm. Biol. 2017, 55, 1992–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graziani, F.; Karapetsa, D.; Alonso, B.; Herrera, D. Nonsurgical and surgical treatment of periodontitis: How many options for one disease? Periodontol. 2000 2017, 75, 152–188. [Google Scholar] [CrossRef]
- Teughels, W.; Dhondt, R.; Dekeyser, C.; Quirynen, M. Treatment of aggressive periodontitis. Periodontol. 2000 2014, 65, 107–133. [Google Scholar] [CrossRef]
- Całkosiński, I.; Dobrzyński, M.; Całkosińska, M.; Seweryn, E.; Bronowicka-Szydełko, A.; Dzierzba, K.; Ceremuga, I.; Gamian, A. Characterization of an inflammatory response. Postepy Hig. Med. Dosw. 2009, 63, 395–408. [Google Scholar]
- Machlin, L.J.; Bendich, A. Free radical tissue damage: Protective role of antioxidant nutrients 1. FASEB J. 1987, 1, 441–445. [Google Scholar] [CrossRef]
- Chen, B.; Wu, W.; Sun, W.; Zhang, Q.; Yan, F.; Xiao, Y. RANKL Expression in Periodontal Disease: Where Does RANKL Come from? BioMed Res. Int. 2014, 2014, 731039. [Google Scholar] [CrossRef]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Committee on Herbal Medicinal Products (HMPC). European Union Herbal Monograph on Salvia Officinalis L., Folium. 2016. Available online: https://www.ema.europa.eu/en/medicines/herbal/salviae-officinalis-folium (accessed on 2 December 2021).
- Mansourabadi, A.H.; Sadeghi, H.M.; Razavi, N.; Rezvani, E. Anti-inflammatory and analgesic properties of salvigenin, Salvia officinalis flavonoid extracted. Adv. Herb. Med. 2016, 2, 31–41. [Google Scholar]
- Baricevic, D.; Sosa, S.; Della Loggia, R.; Tubaro, A.; Simonovska, B.; Krasna, A.; Zupancic, A. Topical anti-inflammatory activity of Salvia officinalis L. leaves: The relevance of ursolic acid. J. Ethnopharmacol. 2001, 75, 125–132. [Google Scholar] [CrossRef]
- Rodrigues, M.R.A.; Kanazawa, L.K.S.; das Neves, T.L.M.; da Silva, C.F.; Horst, H.; Pizzolatti, M.G.; Santos, A.R.S.; Baggio, C.H.; de Paula Werner, M.F. Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. J. Ethnopharmacol. 2012, 139, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Tambur, Z.; Miljković-Selimović, B.; Opačić, D.; Vuković, B.; Malešević, A.; Ivančajić, L.; Aleksić, E. Inhibitory effects of propolis and essential oils on oral bacteria. J. Infect. Dev. Ctries. 2021, 15, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Beheshti-Rouy, M.; Azarsina, M.; Rezaie-Soufi, L.; Alikhani, M.Y.; Roshanaie, G.; Komaki, S. The antibacterial effect of sage extract (Salvia officinalis) mouthwash against Streptococcus mutans in dental plaque: A randomized clinical trial. Iran. J. Microbiol. 2015, 7, 173–177. [Google Scholar] [PubMed]
- Mendes, F.S.F.; Garcia, L.M.; da Silva Moraes, T.; Casemiro, L.A.; de Alcantara, C.B.; Ambrósio, S.R.; Veneziani, R.C.S.; Miranda, M.L.D.; Martins , C.H.G. Antibacterial activity of salvia officinalis L. against periodontopathogens: An in vitro study. Anaerobe 2020, 63, 102194. [Google Scholar] [CrossRef]
- Kostić, M.; Kitić, D.; Petrović, M.B.; Jevtović-Stoimenov, T.; Jović, M.; Petrović, A.; Živanović, S. Anti-inflammatory effect of the Salvia sclarea L. ethanolic extract on lipopolysaccharide-induced periodontitis in rats. J. Ethnopharmacol. 2017, 199, 52–59. [Google Scholar] [CrossRef]
- Jünger, H.; Jaun-Ventrice, A.; Guldener, K.; Ramseier, C.A.; Reissmann, D.R.; Schimmel, M. Anti-inflammatory potential of an essential oil-containing mouthwash in elderly subjects enrolled in supportive periodontal therapy: A 6-week randomised controlled clinical trial. Clin. Oral Investig. 2020, 24, 3203–3211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aljuboori, I.W.; Mahmood, M.S. The Effects of Salvia officinalis Gel as an Adjunct to Scaling and Root Planning in Patients with Periodontitis (Clinical and Immunological Study). Int. J. Drug Deliv. Technol. 2020, 10, 232–237. [Google Scholar] [CrossRef]
- Kharaeva, Z.F.; Mustafaev, M.S.; Khazhmetov, A.V.; Gazaev, I.H.; Blieva, L.Z.; Steiner, L.; Mayer, W.; De Luca, C.; Korkina, L.G. Anti-Bacterial and Anti-Inflammatory Effects of Toothpaste with Swiss Medicinal Herbs towards Patients Suffering from Gingivitis and Initial Stage of Periodontitis: From Clinical Efficacy to Mechanisms. Dent. J. 2020, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Mattar, M.A.; Al-Yafrasi, M.A.; El-Ansary, D.O.; Zin El-Abedin, T.K.; Yessoufou, K. Polyphenol Profile and Pharmaceutical Potential of Quercus spp. Bark Extracts. Plants 2019, 8, 486. [Google Scholar] [CrossRef] [Green Version]
- Council of Europe. European Pharmacopoeia, 6th ed.; Council of Europe: Strasbourg, France, 2008. [Google Scholar]
- Committee on Herbal Medicinal Products (HMPC). Community Herbal Monograph on Quercus Robur L., Quercus Petraea (Matt.) Liebl., Quercus Pubescens Willd., Cortex. Available online: https://www.ema.europa.eu/en/medicines/herbal/quercus-cortex (accessed on 2 December 2021).
- Bhatia, N.; Friedman, A.; Del Rosso, J. Applications of Topical Oak Bark Extract in Dermatology: Clinical Examples and Discussion. J. Drugs Dermatol. 2019, 18, 203–206. [Google Scholar]
- Deryabin, D.G.; Tolmacheva, A.A. Antibacterial and Anti-Quorum Sensing Molecular Composition Derived from Quercus cortex (Oak bark) Extract. Molecules 2015, 20, 17093. [Google Scholar] [CrossRef] [Green Version]
- Dróżdż, P.; Pyrzynska, K. Assessment of polyphenol content and antioxidant activity of oak bark extracts. Eur. J. Wood Wood Prod. 2018, 76, 793–795. [Google Scholar] [CrossRef] [Green Version]
- Tsubanova, N. Screening study for finding the optimal combination gel composition for the treatment of periodontal disease, which contains extracts of Aloe vera and oak bark. Asian J. Pharm. 2017, 11, S353–S357. [Google Scholar]
- Tsubanova, N.A.; Zhurenko, D.S. A pharmacodynamic study of a new gel containing an extract of Aloe vera and an extract of oak bark for potential treatment of periodontal diseases. Ceska Slov. Farm. 2020, 69, 143–148. [Google Scholar]
- Tsubanova, N.A.; Zhurenko, D.S.; Sakharova, T.S. The study of the effect of a new gel containing the extract of oak bark and aloe extract on the mucous membrane of the oral cavity under the conditions of the experimental stomatitis. Clin. Pharm. 2018, 3, 4–10. [Google Scholar] [CrossRef]
- Riachi, L.G.; De Maria, C.A.B. Peppermint antioxidants revisited. Food Chem. 2015, 176, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, F.; Khodir, M.; Mohamed, C.; Pierre, D.; Brahmi, F. Chemical Composition and Biological Activities of Mentha Species. Aromat. Med. Plants Back Nat. 2017, 10, 47–79. [Google Scholar] [CrossRef] [Green Version]
- Committee on Herbal Medicinal Products. European Union Herbal Monograph on Mentha x Piperita L., Folium. 2017. Available online: https://www.ema.europa.eu/en/medicines/herbal/menthae-piperitae-aetheroleum (accessed on 3 December 2021).
- Snoussi, M.; Noumi, E.; Trabelsi, N.; Flamini, G.; Papetti, A.; De Feo, V. Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules 2015, 20, 14402–14424. [Google Scholar] [CrossRef]
- Camele, I.; Gruľová, D.; Elshafie, H.S. Chemical Composition and Antimicrobial Properties of Mentha× piperita cv.’Kristinka’Essential Oil. Plants 2021, 10, 1567. [Google Scholar] [CrossRef]
- Kizil, S.; Hasimi, N.; Tolan, V.; Kilinc, E.; Yuksel, U. Mineral content, essential oil components and biological activity of two mentha species (M. piperita L., M. spicata L.). Turkish J. Field Crop. 2010, 15, 148–153. [Google Scholar]
- İşcan, G.; Kïrïmer, N.; Kürkcüoǧlu, M.; Başer, H.C.; Demirci, F. Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food Chem. 2002, 50, 3943–3946. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, I.T.A.; Furlanetti, V.F.; Anibal, P.C.; Duarte, M.C.T.; Höfling, J.F. Potential pharmacological and toxicological basis of the essential oil from Mentha spp. Rev. Ciências Farm. Básica e Apl. 2009, 30, 235–239. [Google Scholar]
- Karicheri, R.; Antony, B. Antibacterial and antibiofilm activities of peppermint (Mentha piperita Linn) and menthol mint (Mentha arvensis Linn) essential oils on Aggregatibacter Actinomycetemcomitans isolated from orodental infections. Eur. J. Pharm. Med. Res. 2016, 3, 577–581. [Google Scholar]
- Sindi, A.M.; Hosny, K.M.; Alharbi, W.S. Lyophilized Composite Loaded with Meloxicam-Peppermint oil Nanoemulsion for Periodontal Pain. Polymers 2021, 13, 2317. [Google Scholar] [CrossRef]
- Phaechamud, T.; Mahadlek, J.; Tuntarawongsa, S. Peppermint oil/doxycycline hyclate-loaded Eudragit RS in situ forming gel for periodontitis treatment. J. Pharm. Investig. 2018, 48, 451–464. [Google Scholar] [CrossRef]
- Gupta, R. Survey record of medicinal and aromatic plants of Chamba forest division, Himachal Pradesh. Indian For. 1964, 90, 454–468. [Google Scholar]
- Marongiu, B.; Piras, A.; Porcedda, S.; Scorciapino, A. Chemical Composition of the Essential Oil and Supercritical CO 2 Extract of Commiphora myrrha (Nees) Engl. And of Acorus calamus L. J. Agric. Food Chem. 2005, 53, 7939–7943. [Google Scholar] [CrossRef] [PubMed]
- Raja, A.E.; Vijayalakshmi, M.; Devalarao, G. Acorus calamus Linn.: Chemistry and biology. Res. J. Pharm. Technol. 2009, 2, 256–261. [Google Scholar]
- Committee on Herbal Medicinal Products (HMPC). Public Statement on the Use of Herbal Medicinal Products Containing Asarone. 2005. Available online: https://www.ema.europa.eu/en/use-herbal-medicinal-products-containing-asarone (accessed on 3 December 2021).
- Rajput, S.B.; Tonge, M.B.; Karuppayil, S.M. An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (Sweet flag) and other Acorus species. Phytomedicine 2014, 21, 268–276. [Google Scholar] [CrossRef]
- Loying, R.; Gogoi, R.; Sarma, N.; Borah, A.; Munda, S.; Pandey, S.K.; Lal, M. Chemical Compositions, In-vitro Antioxidant, Anti-microbial, Anti-inflammatory and Cytotoxic Activities of Essential Oil of Acorus calamus L. Rhizome from North-East India. J. Essent. Oil-Bear. Plants 2019, 22, 1299–1312. [Google Scholar] [CrossRef]
- Nanda, B.L. Determination of phytochemicals and antioxidant activity of Acorus calamus rhizome. J. Drug Deliv. Ther. 2014, 4, 117–121. [Google Scholar] [CrossRef]
- Dinev, T.; Tzanova, M.; Velichkova, K.; Dermendzhieva, D.; Beev, G. Antifungal and Antioxidant Potential of Methanolic Extracts from Acorus calamus L., Chlorella vulgaris Beijerinck, Lemna minuta Kunth and Scenedesmus dimorphus (Turpin) Kützing. Appl. Sci. 2021, 11. [Google Scholar] [CrossRef]
- Khwairakpam, A.D.; Damayenti, Y.D.; Deka, A.; Monisha, J.; Roy, N.K.; Padmavathi, G.; Kunnumakkara, A.B. Acorus calamus: A bio-reserve of medicinal values. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.W.; Park, W.J.; Han, Y. Asarylaldehyde enhances osteogenic differentiation of human periodontal ligament stem cells through the ERK/p38 MAPK signaling pathway. Biochem. Biophys. Res. Commun. 2021, 545, 27–32. [Google Scholar] [CrossRef]
- Zhang, X.-W.; Li, W.-F.; Li, W.-W.; Ren, K.-H.; Fan, C.-M.; Chen, Y.-Y.; Shen, Y.-L. Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells. Pharm. Biol. 2011, 49, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Tsao, T.F.; Newman, M.G.; Kwok, Y.Y.; Horikoshi, A.K. Effect of Chinese and Western Antimicrobial Agents on Selected Oral Bacteria. J. Dent. Res. 1982, 61, 1103–1106. [Google Scholar] [CrossRef]
- Leung, K.; Seneviratne, C.; Li, X.; Leung, P.; Lau, C.; Wong, C.-H.; Pang, K.; Wong, C.; Wat, E.; Jin, L. Synergistic Antibacterial Effects of Nanoparticles Encapsulated with Scutellaria baicalensis and Pure Chlorhexidine on Oral Bacterial Biofilms. Nanomaterials 2016, 6, 61. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Feng, L.; Zhang, Z.H.; Jia, X. Bin The anti-inflammation effect of baicalin on experimental colitis through inhibiting TLR4/NF-κB pathway activation. Int. Immunopharmacol. 2014, 23, 294–303. [Google Scholar] [CrossRef]
- De Oliveira, J.S.; Pinto, M.e.S.C.; Santana, L.d.A.d.B.; Pinto, A.S.B.; di Lenardo, D.; Vasconcelos, D.F.P. Biological effects of medicinal plants on induced periodontitis: A systematic review. Int. J. Dent. 2016, 2016, 3719879. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Li, C.; Du, G.; Cao, Z. Protective effects of baicalin on ligature-induced periodontitis in rats. J. Periodontal Res. 2008, 43, 14–21. [Google Scholar] [CrossRef]
- Sun, J.Y.; Li, D.L.; Dong, Y.; Zhu, C.H.; Liu, J.; Zhou, T.; Gou, J.Z.; Li, A.; Zang, W.J. Baicalin inhibits toll-like receptor 2/4 expression and downstream signaling in rat experimental periodontitis. Int. Immunopharmacol. 2016, 36, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Lee, H.; Choi, Y.Y.; Lee, D.H.; Yang, W.M. Scutellaria baicalensis ameliorates the destruction of periodontal ligament via inhibition of inflammatory cytokine expression. J. Chin. Med. Assoc. 2018, 81, 141–146. [Google Scholar] [CrossRef]
- Ren, M.; Zhao, Y.; He, Z.; Lin, J.; Xu, C.; Liu, F.; Hu, R.; Deng, H.; Wang, Y. Baicalein inhibits inflammatory response and promotes osteogenic activity in periodontal ligament cells challenged with lipopolysaccharides. BMC Complement. Med. Ther. 2021, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.P.; Park, J.B.; Bae, K.H. Pharmacological effects of methanolic extract from the root of Scutellaria baicalensis and its flavonoids on human gingival fibroblast. Planta Med. 1995, 61, 150–153. [Google Scholar] [CrossRef]
- Cai, X.; Li, C.; Cao, Z.; Du, G.; Liu, L. Protective effect of baicalin on experimental periodontitis in rats and its possible mechanisms. Zhonghua Kou Qiang Yi Xue Za Zhi 2008, 43, 281–285. [Google Scholar]
- Zeng, H.; Li, F.; Wei, H.; Shi, J.; Rao, G.; Li, A.; Gou, J. Preliminary study of the dual release baicalin and rhBMP-2 system to improve periodontal tissue regeneration in minipigs. Shanghai Kou Qiang Yi Xue 2013, 22, 126–131. [Google Scholar] [PubMed]
- Arweiler, N.B.; Pergola, G.; Kuenz, J.; Hellwig, E.; Sculean, A.; Auschill, T.M. Clinical and antibacterial effect of an anti-inflammatory toothpaste formulation with Scutellaria baicalensis extract on experimental gingivitis. Clin. Oral Investig. 2011, 15, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Farhan, M.; Ariffin, M.; Fauzi, N.; Venkata, C.; Prakash, S.; Prakash, I. Bioactive Chemical Constituents from Pomegranate (Punica granatum) Juice, Seed and Peel-A Review. Int. J. Res. Chem. Environ. 2011, 1, 1–18. [Google Scholar]
- Rahmani, A.H.; Alsahli, M.A.; Almatroodi, S.A. Active constituents of pomegranates (Punica granatum) as potential candidates in the management of health through modulation of biological activities. Pharmacogn. J. 2017, 9, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Arun, N.; Singh, D.P. Punica granatum: A review on pharmogological and therapeutic properties. J. Pharm. Sci. Res. 2012, 3, 5. [Google Scholar]
- Jurenka, J. Therapeutic Applications of Pomegranate (Punica granatum L.): A Review. Altern. Med. Rev. 2008, 13, 128–144. [Google Scholar]
- Bhadbhade, S.J.; Acharya, A.B.; Rodrigues, S.V.; Thakur, S.L. The antiplaque efficacy of pomegranate mouthrinse. Quintessence Int. 2011, 42, 29–36. [Google Scholar]
- Aparecida Procópio Gomes, L.; Alves Figueiredo, L.M.; Luiza do Rosário Palma, A.; Corrêa Geraldo, B.M.; Isler Castro, K.C.; Ruano de Oliveira Fugisaki, L.; Cardoso Jorge, A.O.; Dias de Oliveira, L.; Junqueira, J.C. Punica granatum L. (Pomegranate) Extract: In Vivo Study of Antimicrobial Activity against Porphyromonas gingivalis in Galleria mellonella Model. Sci. World J. 2016, 2016, 8626987. [Google Scholar] [CrossRef] [Green Version]
- Kote, D.S.; Kote, D.S.; Nagesh, D.L. Effect of Pomegranate Juice on Dental Plaque Microorganisms (Streptococci and Lactobacilli). Anc. Sci. Life 2011, 31, 49–51. [Google Scholar]
- Somu, C.A.; Ravindra, S.; Ajith, S.; Ahamed, M.G. Efficacy of a herbal extract gel in the treatment of gingivitis: A clinical study. J. Ayurveda Integr. Med. 2012, 3, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, S.; Dodwad, V.; Kukreja, B.J.; Mehra, P.; Kukreltayeltaeja, P. A comparative evaluation of efficacy of Punica granatum and chlorhexidine on plaque and gingivitis. J. Int. Clin. Dent. Res. Organ. 2011, 3, 29–32. [Google Scholar] [CrossRef]
- Eltay, E.G.; Gismalla, B.G.; Mukhtar, M.M.; Awadelkarim, M. Punica granatum peel extract as adjunct irrigation to nonsurgical treatment of chronic gingivitis. Ther. Clin. Pract. 2021, 43, 101383. [Google Scholar] [CrossRef]
- Sakanaka, S.; Aizawa, M.; Kim, M.; Yamamoto, T. Inhibitory Effects of Green Tea Polyphenols on Growth and Cellular Adherence of an Oral Bacterium, Porphyromonas gingivalis. Biosci. Biotechnol. Biochem. 1996, 60, 745–749. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, T.; Tomofuji, T.; Endo, Y.; Irie, K.; Azuma, T.; Ekuni, D.; Tamaki, N.; Yamamoto, T.; Morita, M. Supplementation of green tea catechins in dentifrices suppresses gingival oxidative stress and periodontal inflammation. Arch. Oral Biol. 2011, 56, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, Y.; Ukai, T.; Nakatsu, S.; Kuramoto, A.; Nagano, F.; Yoshinaga, M.; Montenegro, J.L.; Shiraishi, C.; Hara, Y. Green tea extract inhibits the onset of periodontal destruction in rat experimental periodontitis. J. Periodontal Res. 2014, 49, 652–659. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, J.M.; Marques, B.M.; Novaes, V.C.N.; de Oliveira, F.L.P.; Matheus, H.R.; Fiorin, L.G.; Ervolino, E. Influence of adjuvant therapy with green tea extract in the treatment of experimental periodontitis. Arch. Oral Biol. 2019, 102, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Chava, V.K.; Vedula, B.D. Thermo-Reversible Green Tea Catechin Gel for Local Application in Chronic Periodontitis: A 4-Week Clinical Trial. J. Periodontol. 2013, 84, 1290–1296. [Google Scholar] [CrossRef]
- Hrishi, T.S.; Kundapur, P.P.; Naha, A.; Thomas, B.S.; Kamath, S.; Bhat, G.S. Effect of adjunctive use of green tea dentifrice in periodontitis patients—A Randomized Controlled Pilot Study. Int. J. Dent. Hyg. 2016, 14, 178–183. [Google Scholar] [CrossRef]
- Chopra, A.; Thomas, B.S.; Sivaraman, K.; Prasad, H.K.; Kamath, S.U. Green tea intake as an adjunct to mechanical periodontal therapy for the management of mild to moderate chronic periodontitis: A randomised controlled clinical trial. Oral Health Prev. Dent. 2016, 14, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Taleghani, F.; Rezvani, G.; Birjandi, M.; Valizadeh, M. Impact of green tea intake on clinical improvement in chronic periodontitis: A randomized clinical trial. J. Stomatol. Oral Maxillofac. Surg. 2018, 119, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Balappanavar, A.Y.; Sardana, V.; Singh, M. Comparison of the effectiveness of 0.5% tea, 2% neem and 0.2% chlorhexidine mouthwashes on oral health: A randomized control trial. Indian J. Dent. Res. 2013, 24, 26. [Google Scholar] [CrossRef] [PubMed]
- Committee on Herbal Medicinal Products (HMPC). Community Herbal Monograph on Camellia sinensis (L.) Kuntze, Non Fermentatum Folium. 2014. Available online: https://www.ema.europa.eu/en/medicines/herbal/camelliae-sinensis-non-fermentatum-folium (accessed on 5 June 2021).
- Radha, M.H.; Laxmipriya, N.P. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. J. Tradit. Complement. Med. 2015, 5, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzysztof Gołąb, J.G.M.W. Acemannan—Properties and medical utility. Postępy Fitoter. 2016, 1, 268–273. [Google Scholar]
- Jain, S.; Rathod, N.; Nagi, R.; Sur, J.; Laheji, A.; Gupta, N.; Agrawal, P.; Prasad, S. Antibacterial Effect of Aloe Vera Gel against Oral Pathogens: An In-vitro Study. J. Clin. Diagn. Res. 2016, 10, ZC41. [Google Scholar] [CrossRef] [PubMed]
- Bhat, G.; Kudva, P.; Dodwad, V. Aloe vera: Nature’s soothing healer to periodontal disease. J. Indian Soc. Periodontol. 2011, 15, 205. [Google Scholar] [CrossRef]
- Moghaddam, A.A.; Radafshar, G.; Jahandideh, Y.; Kakaei, N. Clinical Evaluation of Effects of Local Application of Aloe vera Gel as an Adjunct to Scaling and Root Planning in Patients with Chronic Periodontitis. J. Dent. 2017, 18, 165–172. [Google Scholar]
- Penmetsa, G.S.; Subbareddy, B.; Mopidevi, A.; Arunbhupathi, P.; Baipalli, V.; Pitta, S. Comparing the Effect of Combination of 1% Ornidazole and 0.25% Chlorhexidine Gluconate (Ornigreat™) Gel and Aloe vera Gel in the Treatment of Chronic Periodontitis: A Randomized, Single-Blind, Split-Mouth Study. Contemp. Clin. Dent. 2019, 10, 226. [Google Scholar] [CrossRef]
- Sayar, F.; Farahmand, A.H.; Rezazadeh, M. Clinical Efficacy of Aloe Vera Toothpaste on Periodontal Parameters of Patients with Gingivitis-A Randomized, Controlled, Single-masked Clinical Trial. J. Contemp. Dent. Pract. 2021, 22, 242–247. [Google Scholar]
- Vangipuram, S.; Jha, A.; Bhashyam, M. Comparative efficacy of aloe vera mouthwash and chlorhexidine on periodontal health: A randomized controlled trial. J. Clin. Exp. Dent. 2016, 8, e442–e447. [Google Scholar] [CrossRef]
- Chhina, S.; Singh, A.; Menon, I.; Singh, R.; Sharma, A.; Aggarwal, V. A randomized clinical study for comparative evaluation of Aloe Vera and 0.2% chlorhexidine gluconate mouthwash efficacy on de-novo plaque formation. J. Int. Soc. Prev. Community Dent. 2016, 6, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Pradeep, A.R.; Garg, V.; Raju, A.; Singh, P. Adjunctive Local Delivery of Aloe Vera Gel in Patients With Type 2 Diabetes and Chronic Periodontitis: A Randomized, Controlled Clinical Trial. J. Periodontol. 2016, 87, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Committee on Herbal Medicinal Products (HPMC). European Union Herbal Monograph on Matricaria Recutita L., Flos. 2015. Available online: https://www.ema.europa.eu/en/committees/committee-herbal-medicinal-products-hmpc (accessed on 2 December 2021).
- Murti, K.; Panchal, M.A.; Gajera, V.; Solanki, J. Pharmacological properties of Matricaria recutita: A review. Pharmacologia 2012, 3, 348–351. [Google Scholar] [CrossRef]
- Hans, V.M.; Grover, H.S.; Deswal, H.; Agarwal, P. Antimicrobial efficacy of various essential oils at varying concentrations against periopathogen Porphyromonas gingivalis. J. Clin. Diagnostic Res. 2016, 10, ZC16. [Google Scholar] [CrossRef] [PubMed]
- Saderi, H.; Owlia, P.; Hosseini, A.; Semiyari, H. Antimicrobial effects of chamomile extract and essential oil on clinically isolated Porphyromonas gingivalis from periodontitis. Acta Hortic. 2003, 680, 145–146. [Google Scholar] [CrossRef]
- Guimarães, M.V.; Melo, I.M.; Adriano Araújo, V.M.; Tenazoa Wong, D.V.; Roriz Fonteles, C.S.; Moreira Leal, L.K.; Ribeiro, R.A.; Lima, V. Dry Extract of Matricaria recutita L. (Chamomile) Prevents Ligature-Induced Alveolar Bone Resorption in Rats via Inhibition of Tumor Necrosis Factor-α and Interleukin-1β. J. Periodontol. 2016, 87, 706–715. [Google Scholar] [CrossRef]
- Batista, A.L.A.; Diógenes Alves UchÔa Lins, R.; de Souza Coelho, R.; do Nascimento Barbosa, D.; Moura Belém, N.; Alves Celestino, F.J. Clinical efficacy analysis of the mouth rinsing with pomegranate and chamomile plant extracts in the gingival bleeding reduction. Complement. Ther. Clin. Pract. 2014, 20, 93–98. [Google Scholar] [CrossRef]
- Agarwal, A.; Chaudhary, B. Clinical and microbiological effects of 1% Matricaria chamomilla mouth rinse on chronic periodontitis: A double-blind randomized placebo controlled trial. J. Indian Soc. Periodontol. 2020, 24, 354–361. [Google Scholar] [CrossRef]
- Shen, J.L.; Man, K.M.; Huang, P.H.; Chen, W.C.; Chen, D.C.; Cheng, Y.W.; Liu, P.L.; Chou, M.C.; Chen, Y.H. Honokiol and magnolol as multifunctional antioxidative molecules for dermatologic disorders. Molecules 2010, 15, 6452–6465. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.Y.; Tsai, C.C.; Chen, C.P.; Huang, J.S.; Lin, C.C. Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phyther. Res. 2001, 15, 139–141. [Google Scholar] [CrossRef]
- Sakaue, Y.; Domon, H.; Oda, M.; Takenaka, S.; Kubo, M.; Fukuyama, Y.; Okiji, T.; Terao, Y. Anti-biofilm and bactericidal effects of magnolia bark-derived magnolol and honokiol on Streptococcus mutans. Microbiol. Immunol. 2016, 60, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.M.; Maitra, A.; Walker, J.; Ehrnhoefer-Ressler, M.M.; Inui, T.; Somoza, V. Identification of magnolia officinalis L. Bark extract as the most potent anti-inflammatory of four plant extracts. Am. J. Chin. Med. 2013, 41, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, K.H.; Kwag, E.H.; Seol, Y.J.; Lee, Y.M.; Ku, Y.; Rhyu, I.C. Magnoliae Cortex and maize modulate Porphyromonas gingivalis-induced inflammatory reactions. J. Periodontal Implant Sci. 2018, 48, 70–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Lee, J.; Jung, E.; Park, Y.; Kim, K.; Park, B.; Jung, K.; Park, E.; Kim, J.; Park, D. In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur. J. Pharmacol. 2004, 496, 189–195. [Google Scholar] [CrossRef]
- Lee, J.; Jung, E.; Park, J.; Jung, K.; Lee, S.; Hong, S.; Park, J.; Park, E.; Kim, J.; Park, S.; et al. Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-κB activation signaling. Planta Med. 2005, 71, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-H.; Huang, R.-Y.; Chou, T.-C. Magnolol Ameliorates Ligature-Induced Periodontitis in Rats and Osteoclastogenesis: In Vivo and In Vitro Study. Evidence-Based Complement. Altern. Med. 2013, 2013, 634095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellström, M.K.; Ramberg, P. The effect of a dentifrice containing Magnolia extract on established plaque and gingivitis in man: A six-month clinical study. Int. J. Dent. Hyg. 2014, 12, 96–102. [Google Scholar] [CrossRef]
- Hamedi, S.; Sadeghpour, O.; Shamsardekani, M.R.; Amin, G.; Hajighasemali, D.; Feyzabadi, Z. The Most Common Herbs to Cure the Most Common Oral Disease: Stomatitis Recurrent Aphthous Ulcer (RAU). Iran. Red Crescent Med. J. 2016, 18, 21694. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Gangrade, T.; Punasiya, R.; Ghulaxe, C. Rubus fruticosus (blackberry) use as an herbal medicine. Pharmacogn. Rev. 2014, 8, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Leonti, M.; Casu, L.; Sanna, F.; Bonsignore, L. A comparison of medicinal plant use in Sardinia and Sicily-De Materia Medica revisited? J. Ethnopharmacol. 2009, 121, 255–267. [Google Scholar] [CrossRef]
- Wang, H.; Cao, Z.-R. Anti-inflammatory Effects of (-)-Epicatechin in Lipopolysaccharide-Stimulated Raw 264.7 Macrophages. Trop. J. Pharm. Res. 2014, 13, 1415–1419. [Google Scholar] [CrossRef] [Green Version]
- El-Shitany, N.A.; El-Bastawissy, E.A.; El-Desoky, K. Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B, inducible cyclooxygenase and proinflammatory cytokines and enhancement of interleukin-10 via an antioxidant mechanism. Int. Immunopharmacol. 2014, 19, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Ku, S.K.; Zhou, W.; Lee, W.; Han, M.S.; Na, M.K.; Bae, J.S. Anti-Inflammatory Effects of Hyperoside in Human Endothelial Cells and in Mice. Inflammation 2015, 38, 784–799. [Google Scholar] [CrossRef] [PubMed]
- Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal. 2010, 23, 554–560. [Google Scholar] [CrossRef]
- Dai, J.; Gupte, A.; Gates, L.; Mumper, R.J. A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: Extraction methods, stability, anticancer properties and mechanisms. Food Chem. Toxicol. 2009, 47, 837–847. [Google Scholar] [CrossRef]
- Danaher, R.J.; Wang, C.; Dai, J.; Mumper, R.J.; Miller, C.S. Antiviral effects of blackberry extract against herpes simplex virus type 1. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, e31–e35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, O.A.; Escamilla, C.; Danaher, R.J.; Dai, J.; Ebersole, J.L.; Mumper, R.J.; Miller, C.S. Antibacterial effects of blackberry extract target periodontopathogens. J. Periodontal Res. 2013, 48, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Committee on Herbal Medicinal Products (HMPC). European Union Herbal Monograph on Vaccinium Macrocarpon Aiton, Fructus. 2021. Available online: https://www.ema.europa.eu/en/medicines/herbal/vaccinii-macrocarpi-fructus (accessed on 5 June 2021).
- Labrecque, J.; Bodet, C.; Chandad, F.; Grenier, D. Effects of a high-molecular-weight cranberry fraction on growth, biofilm formation and adherence of Porphyromonas gingivalis. J. Antimicrob. Chemother. 2006, 58, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Bodet, C.C.; Piché, M.; Chandad, F.; Grenier, D. Inhibition of periodontopathogen-derived proteolytic enzymes by a high-molecular-weight fraction isolated from cranberry. J. Antimicrob. Chemother. 2006, 57, 685–690. [Google Scholar] [CrossRef]
- Tipton, D.A.; Babu, J.P.; Dabbous, M. Effects of cranberry components on human aggressive periodontitis gingival fibroblasts. J. Periodontal Res. 2013, 48, 433–442. [Google Scholar] [CrossRef]
- Tanabe, S.; Santos, J.; La, V.D.; Howell, A.B.; Grenier, D. A-type cranberry proanthocyanidins inhibit the RANKL-dependent differentiation and function of human osteoclasts. Molecules 2011, 16, 2365–2374. [Google Scholar] [CrossRef] [Green Version]
- Woźniewicz, M.; Nowaczyk, P.M.; Kurhańska-Flisykowska, A.; Wyganowska-Świątkowska, M.; Lasik-Kurdyś, M.; Walkowiak, J.; Bajerska, J. Consumption of cranberry functional beverage reduces gingival index and plaque index in patients with gingivitis. Nutr. Res. 2018, 58, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Fontenelle, R.O.S.; Morais, S.M.; Brito, E.H.S.; Kerntopf, M.R.; Brilhante, R.S.N.; Cordeiro, R.A.; Tomé, A.R.; Queiroz, M.G.R.; Nascimento, N.R.F.; Sidrim, J.J.C.; et al. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J. Antimicrob. Chemother. 2007, 59, 934–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botelho, M.A.; Nogueira, N.A.; Bastos, G.M.; Fonseca, S.G.; Lemos, T.L.; Matos, F.J.; Montenegro, D.; Heukelbach, J.; Rao, V.S.; Brito, G.A. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas Biol. 2007, 40, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Botelho, M.A.; dos Santos, R.A.; Martins, J.G.; Carvalho, C.O.; Paz, M.C.; Azenha, C.; Ruela, R.S.; Queiroz, D.B.; Ruela, W.S.; Marinho, G.; et al. Comparative effect of an essential oil mouthrinse on plaque, gingivitis and salivary Streptococcus mutans levels: A double blind randomized study. Phytother. Res. 2009, 23, 1214–1219. [Google Scholar] [CrossRef]
- da Silva, P.S.L.; Machado, P.Y.C.; Catunda, B.T.; Barbosa, A.P.N. Clinical effect of a gel containing Lippia sidoides on plaque and gingivitis control. Eur. J. Dent. 2013, 7, 28–34. [Google Scholar]
- Rodrigues, I.S.; Tavares, V.N.; Pereira, S.L.; Costa, F.N. Antiplaque and antigingivitis effect of Lippia Sidoides: A double-blind clinical study in humans. J. Appl. Oral Sci. 2009, 17, 404–407. [Google Scholar] [CrossRef] [Green Version]
- Botelho, M.A.; Rao, V.S.; Carvalho, C.B.; Bezerra-Filho, J.G.; Fonseca, S.G.; Vale, M.L.; Montenegro, D.; Cunha, F.; Ribeiro, R.A.; Brito, G.A. Lippia sidoides and Myracrodruon urundeuva gel prevents alveolar bone resorption in experimental periodontitis in rats. J. Ethnopharmacol. 2007, 113, 471–478. [Google Scholar] [CrossRef]
- Botelho, M.A.; Barros, G.; Queiroz, D.B.; Carvalho, C.F.; Gouvea, J.; Patrus, L.; Bannet, M.; Patrus, D.; Rego, A.; Silva, I.; et al. Nanotechnology in Phytotherapy: Antiinflammatory Effect of a Nanostructured Thymol Gel from Lippia sidoides in Acute Periodontitis in Rats. Phyther. Res. 2016, 30, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, M.; Senel, S.; Pather, I. Oral Mucosal Drug Delivery and Therapy; Springer: Boston, MA, USA, 2015; pp. 1–3. ISBN 978-1-4899-7557-7. [Google Scholar]
- Harris, D.; Robinson, J.R. Drug delivery via the mucous membranes of the oral cavity. J. Pharm. Sci. 1992, 81, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019. [Google Scholar]
- Liang, J.; Peng, X.; Zhou, X.; Zou, J.; Cheng, L. Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules 2020, 25, 516. [Google Scholar] [CrossRef] [Green Version]
- Zięba, M.; Chaber, P.; Duale, K.; Martinka Maksymiak, M.; Basczok, M.; Kowalczuk, M.; Adamus, G. Polymeric Carriers for Delivery Systems in the Treatment of Chronic Periodontal Disease. Polymers 2020, 12, 1574. [Google Scholar] [CrossRef] [PubMed]
- Sholapurkar, A.; Sharma, D.; Glass, B.; Miller, C.; Nimmo, A.; Jennings, E. Professionally delivered local antimicrobials in the treatment of patients with periodontitis-a narrative review. Dent. J. 2021, 9, 2. [Google Scholar] [CrossRef]
- Yadav, R.; Kanwar, I.L.; Haider, T.; Pandey, V.; Gour, V.; Soni, V. In situ gel drug delivery system for periodontitis: An insight review. Futur. J. Pharm. Sci. 2020, 6, 33. [Google Scholar] [CrossRef]
- Abruzzo, A.; Cerchiara, T.; Bigucci, F.; Gallucci, M.C.; Luppi, B. Mucoadhesive buccal tablets based on chitosan/gelatin microparticles for delivery of propranolol hydrochloride. J. Pharm. Sci. 2015, 104, 4365–4372. [Google Scholar] [CrossRef]
- Shaikh, R.; Singh, T.R.R.; Garland, M.J.; Woolfson, A.D.; Donnelly, R.F. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci. 2011, 3, 89–100. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Dvořák, J.; Rosiak, N.; Tykarska, E.; Szymańska, E.; Winnicka, K.; Ruchała, M.A.; Cielecka-Piontek, J. Buccal Resveratrol Delivery System as a Potential New Concept for the Periodontitis Treatment. Pharmaceutics 2021, 13, 417. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Szymańska, E.; Winnicka, K.; Szwajgier, D.; Baranowska-Wójcik, E.; Ruchała, M.A.; Simon, M.; Cielecka-Piontek, J. Cyclodextrin as functional carrier in development of mucoadhesive tablets containing Polygoni cuspidati extract with potential for dental applications. Pharmaceutics 2021, 13, 1916. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). 2021 National Registers of Authorised Medicines. 2021. Available online: https://www.ema.europa.eu/en/medicines/national-registers-authorised-medicines (accessed on 23 October 2021).
- Llambés, F. Relationship between diabetes and periodontal infection. World J. Diabetes 2015, 6, 927. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Carra, M.C.; Boutouyrie, P.; Bouchard, P. Periodontitis and arterial stiffness: A systematic review and meta-analysis. J. Clin. Periodontol. 2015, 42, 977–987. [Google Scholar] [CrossRef]
- Sen, S.; Giamberardino, L.D.; Moss, K.; Morelli, T.; Rosamond, W.D.; Gottesman, R.F.; Beck, J.; Offenbacher, S. Periodontal Disease, Regular Dental Care Use, and Incident Ischemic Stroke. Stroke 2018, 49, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Peña, E.A.; Mendoza-Rodríguez, M.; Velázquez-González, C.; Medina-Solis, C.E.; Pontigo-Loyola, A.P.; Márquez-Corona, M.; Rodríguez-Hernández, A.P.; Ximénez-Fyvie, L.A. Antibacterial properties in-vitro of Mexican serviceberry extracts against dental biofilm species. J. Berry Res. 2021, 11, 431–446. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Chen, X.; Su, J.; Huang, C. Enhanced efficacy of baicalin-loaded TPGS polymeric micelles against periodontitis. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019, 101, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Mercado, N.; Bhatt, P.; Sutariya, V.; Florez, F.L.E.; Pathak, Y.V. Application of Nanoparticles in Treating Periodontitis: Preclinical and Clinical Overview. In Surface Modification of Nanoparticles for Targeted Drug Delivery; Springer: Berlin/Heidelberg, Germany, 2019; pp. 467–480. [Google Scholar] [CrossRef]
- Wang, B.; Booij-Vrieling, H.E.; Bronkhorst, E.M.; Shao, J.; Kouwer, P.H.J.; Jansen, J.A.; Walboomers, X.F.; Yang, F. Antimicrobial and anti-inflammatory thermo-reversible hydrogel for periodontal delivery. Acta Biomater. 2020, 116, 259–267. [Google Scholar] [CrossRef]
- Ji, Q.X.; Deng, J.; Xing, X.M.; Yuan, C.Q.; Yu, X.B.; Xu, Q.C.; Yue, J. Biocompatibility of a chitosan-based injectable thermosensitive hydrogel and its effects on dog periodontal tissue regeneration. Carbohydr. Polym. 2010, 82, 1153–1160. [Google Scholar] [CrossRef]
- Ji, Q.X.; Zhao, Q.S.; Deng, J.; Lü, R. A novel injectable chlorhexidine thermosensitive hydrogel for periodontal application: Preparation, antibacterial activity and toxicity evaluation. J. Mater. Sci. Mater. Med. 2010, 21, 2435–2442. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gościniak, A.; Paczkowska-Walendowska, M.; Skotnicka, A.; Ruchała, M.A.; Cielecka-Piontek, J. Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review. Pharmaceutics 2021, 13, 2185. https://doi.org/10.3390/pharmaceutics13122185
Gościniak A, Paczkowska-Walendowska M, Skotnicka A, Ruchała MA, Cielecka-Piontek J. Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review. Pharmaceutics. 2021; 13(12):2185. https://doi.org/10.3390/pharmaceutics13122185
Chicago/Turabian StyleGościniak, Anna, Magdalena Paczkowska-Walendowska, Agnieszka Skotnicka, Marek A. Ruchała, and Judyta Cielecka-Piontek. 2021. "Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review" Pharmaceutics 13, no. 12: 2185. https://doi.org/10.3390/pharmaceutics13122185
APA StyleGościniak, A., Paczkowska-Walendowska, M., Skotnicka, A., Ruchała, M. A., & Cielecka-Piontek, J. (2021). Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review. Pharmaceutics, 13(12), 2185. https://doi.org/10.3390/pharmaceutics13122185