Topical and Systemic Formulation Options for Cutaneous T Cell Lymphomas
Abstract
:1. Introduction
2. Topical Formulation Options for CTCLs
2.1. Topical Steroids
2.2. Topical Retinoids
2.3. Topical Nitrogen Mustard (Mechlorethamine Hydrochloride)
2.4. Topical Carmustine (Bis-Chloroethyl-Nitrosourea, BCNU)
2.5. Topical 5% Imiquimod (IQM)
2.6. Future Perspectives
3. Systemic Treatment Options for Advanced CTCLs
3.1. Surface Molecular-targeted Therapy for Advanced CTCLs
3.1.1. Mogamulizumab
3.1.2. Brentuximab Vedotin
3.1.3. Denileukin Diftitox
3.1.4. Pembrolizumab
3.1.5. Alemtuzumab
3.2. Immunomodulatory Reagents: Interferon (IFN), Bexarotene, Etoposide
3.2.1. Interferon
3.2.2. Bexarotene
3.3. HDAC Inhibitors (Vorinostat, Romidepsin, Quisinostat)
3.4. Anti-Metabolic Drugs: Pralatrexate, Methotrexate (MTX)
3.5. Miscellaneous Therapies Preferred Systemic Therapies: Gemcitabine, Pegylated Liposomal Doxorubicin, and Extracorporeal Photopheresis (ECP)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehta-Shah, N.; Horwitz, S.M.; Ansell, S.; Ai, W.Z.; Barnes, J.; Barta, S.K.; Clemens, M.W.; Dogan, A.; Fisher, K.; Goodman, A.M.; et al. NCCN Guidelines Insights: Primary Cutaneous Lymphomas, Version 2.2020. J. Natl. Compr. Cancer Netw. 2020, 18, 522–536. [Google Scholar] [CrossRef] [PubMed]
- Quaglino, P.; Maule, M.; Prince, H.M.; Porcu, P.; Horwitz, S.; Duvic, M.; Talpur, R.; Vermeer, M.; Bagot, M.; Guitart, J.; et al. Global patterns of care in advanced stage mycosis fungoides/Sezary syndrome: A multicenter retrospective follow-up study from the Cutaneous Lymphoma International Consortium. Ann. Oncol. 2017, 28, 2517–2525. [Google Scholar] [CrossRef] [PubMed]
- Larocca, C.; Kupper, T. Mycosis Fungoides and Sezary Syndrome: An Update. Hematol. Oncol. Clin. N. Am. 2019, 33, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Furudate, S.; Fujimura, T.; Kakizaki, A.; Kambayashi, Y.; Asano, M.; Watabe, A.; Aiba, S. The possible interaction between periostin expressed by cancer stroma and tumor-associated macrophages in developing mycosis fungoides. Exp. Dermatol. 2016, 25, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Okuyama, R.; Ito, Y.; Aiba, S. Profiles of Foxp3+ regulatory T cells in eczematous dermatitis, psoriasis vulgaris and mycosis fungoides. Br. J. Dermatol. 2008, 158, 1256–1263. [Google Scholar] [CrossRef]
- Fujii, K.; Kanekura, T. Next-Generation Sequencing Technologies for Early-Stage Cutaneous T-Cell Lymphoma. Front. Med. 2019, 6, 181. [Google Scholar] [CrossRef] [Green Version]
- Jawed, S.I.; Myskowski, P.L.; Horwitz, S.; Moskowitz, A.; Querfeld, C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): Part II. Prognosis, management, and future directions. J. Am. Acad. Dermatol. 2014, 70, 223.e1–223.e17. [Google Scholar] [CrossRef]
- Zackheim, H.S. Treatment of mycosis fungoides/Sezary syndrome: The University of California, San Francisco (UCSF) approach. Int. J. Dermatol. 2003, 42, 53–56. [Google Scholar] [CrossRef]
- Breneman, D.; Duvic, M.; Kuzel, T.; Yocum, R.; Truglia, J.; Stevens, V.J. Phase 1 and 2 Trial of Bexarotene Gel for Skin-Directed Treatment of Patients with Cutaneous T-Cell Lymphoma. Arch. Dermatol. 2002, 138, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Hazarika, P.; Ni, X.; Weidner, D.A.; Duvic, M. Induction of apoptosis by bexarotene in cutaneous T-cell lymphoma cells: Relevance to mechanism of therapeutic action. Clin. Cancer Res. 2002, 8, 1234–1240. [Google Scholar]
- Wang, L.; Demarco, S.S.; Chen, J.; Phillips, C.M.; Bridges, L.C. Retinoids Bias Integrin Expression and Function in Cutaneous T-Cell Lymphoma. J. Investig. Dermatol. 2015, 135, 2102–2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanita, K.; Fujimura, T.; Sato, Y.; Lyu, C.; Kambayashi, Y.; Ogata, D.; Fukushima, S.; Miyashita, A.; Nakajima, H.; Nakamura, M.; et al. Bexarotene Reduces Production of CCL22 From Tumor-Associated Macrophages in Cutaneous T-Cell Lymphoma. Front. Oncol. 2019, 9, 907. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.K.; Newton, S.B.; Bach, T.L.; Budgin, J.B.; Benoit, B.M.; Lin, J.H.; Yoon, J.S.; Wysocka, M.; Abrams, C.S.; Rook, A.H. Bexarotene blunts malignant T-cell chemotaxis in Sezary syndrome: Reduction of chemokine receptor 4-positive lymphocytes and decreased chemotaxis to thymus and activation-regulated chemokine. Am. J. Hematol. 2007, 82, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Apisarnthanarax, N.; Talpur, R.; Ward, S.; Ni, X.; Kim, H.-W.; Duvic, M.A. Tazarotene 0.1% gel for refractory mycosis fungoides lesions: An open-label pilot study. J. Am. Acad. Dermatol. 2004, 50, 600–607. [Google Scholar] [CrossRef]
- Lessin, S.R.; Duvic, M.; Guitart, J.; Pandya, A.G.; Strober, B.E.; Olsen, E.A.; Hull, C.M.; Knobler, E.H.; Rook, A.H.; Kim, E.J.; et al. Topical chemotherapy in cutaneous T-cell lymphoma: Positive results of a randomized, controlled, multicenter trial testing the efficacy and safety of a novel mechlorethamine, 0.02%, gel in mycosis fungoides. JAMA Dermatol. 2013, 149, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.J.; Geskin, L.; Guitart, J.; Querfeld, C.; Girardi, M.; Musiek, A.; Mink, D.R.; Williams, M.J.; Angello, J.T.; Bailey, W.L. Real-world experience with mechlorethamine gel in patients with mycosis fungoides-cutaneous lymphoma: Preliminary findings from a prospective observational study. J. Am. Acad. Dermatol. 2020, 83, 928–930. [Google Scholar] [CrossRef]
- Kim, Y.H.; Martinez, G.; Varghese, A.; Hoppe, R.T. Topical nitrogen mustard in the management of mycosis fungoides: Update of the Stanford experience. Arch. Dermatol. 2003, 139, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Zackheim, H.S. Topical carmustine (BCNU) in the treatment of mycosis fungoides. Dermatol. Ther. 2003, 16, 299–302. [Google Scholar] [CrossRef]
- Tarabadkar, E.S.; Shinohara, M.M. Skin Directed Therapy in Cutaneous T-Cell Lymphoma. Front. Oncol. 2019, 9, 260. [Google Scholar] [CrossRef]
- Kohn, K.W. Interstrand cross-linking of DNA by 1,3-bis(2-chloroethyl)-1-nitrosourea and other 1-(2-haloethyl)-1-nitrosoureas. Cancer Res. 1977, 37, 1450–1454. [Google Scholar]
- Drobits, B.; Holcmann, M.; Amberg, N.; Swiecki, M.; Grundtner, R.; Hammer, M.; Colonna, M.; Sibilia, M. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J. Clin. Investig. 2012, 122, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Furudate, S.; Fujimura, T.; Kambayashi, Y.; Kakizaki, A.; Hidaka, T.; Aiba, S. Immunomodulatory Effect of Imiquimod Through CCL22 Produced by Tumor-associated Macrophages in B16F10 Melanomas. Anticancer. Res. 2017, 37, 3461–3471. [Google Scholar] [CrossRef] [Green Version]
- Shipman, A.; Scarisbrick, J. New Treatment Options for Mycosis Fungoides. Indian J. Dermatol. 2016, 61, 119. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.J.; Byekova, Y.A.; Emge, D.A.; Duvic, M.A. Complete resolution of mycosis fungoides tumors with imiquimod 5% cream: A case series. J. Dermatol. Treat. 2017, 28, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Ohuchi, K.; Fujimura, T.; Lyu, C.; Amagai, R.; Muto, Y.; Aiba, S. Serum CCL22 levels decreased in parallel with disease activity in CCR4-positive mycosis fungoides treated with mogamulizumab. Dermatol. Ther. 2020, 33. in press. [Google Scholar] [CrossRef]
- Kim, Y.H.; Bagot, M.; Pinter-Brown, L.; Rook, A.H.; Porcu, P.; Horwitz, S.M.; Whittaker, S.; Tokura, Y.; Vermeer, M.; Zinzani, P.L.; et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): An international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2018, 19, 1192–1204. [Google Scholar] [CrossRef]
- Westergaard, S.A.; Lechowicz, M.J.; Harrington, M.; Elsey, J.; Arbiser, J.L.; Khan, M.K. Induction of remission in a patient with end-stage cutaneous T-cell lymphoma by concurrent use of radiation therapy, gentian violet, and mogamulizumab. JAAD Case Rep. 2020, 6, 761–765. [Google Scholar] [CrossRef]
- Ohuchi, K.; Fujimura, T.; Kambayashi, Y.; Amagai, R.; Lyu, C.; Tanita, K.; Sato, Y.; Aiba, S. Successful treatment of mogamulizumab-resistant mycosis fungoides with mogamulizumab plus etoposide combined therapy: Investigation of the immunomodulatory effects of etoposide on the tumor microenvironment. Dermatol. Ther. 2020, 33, e13487. [Google Scholar] [CrossRef]
- Fujimura, T.; Tanita, K.; Sato, Y.; Kambayashi, Y.; Furudate, S.; Tsukada, A.; Hashimoto, A.; Aiba, S. Successful Treatment of Erythrodermic Mycosis Fungoides with Mogamulizumab Followed by Etoposide Monotherapy. Case Rep. Oncol. 2018, 11, 29–32. [Google Scholar] [CrossRef]
- Fujimura, T.; Furudate, S.; Tanita, K.; Sato, Y.; Kambayashi, Y.; Hidaka, T.; Aiba, S. Successful treatment of relapsed folliculotropic mycosis fungoides with mogamulizumab followed by intensity-modulated radiotherapy. J. Dermatol. 2018, 45, e84–e85. [Google Scholar] [CrossRef]
- Enos, T.H.; Feigenbaum, L.S.; Wickless, H.W. Brentuximab vedotin in CD30(+) primary cutaneous T-cell lymphomas: A review and analysis of existing data. Int. J. Dermatol. 2017, 56, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Prince, H.M.; Kim, Y.H.; Horwitz, S.M.; Dummer, R.; Scarisbrick, J.; Quaglino, P.; Zinzani, P.L.; Wolter, P.; Sanches, J.A.; Ortiz-Romero, P.L.; et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): An international, open-label, randomised, phase 3, multicentre trial. Lancet 2017, 390, 555–566. [Google Scholar] [CrossRef]
- Mehra, T.; Ikenberg, K.; Moos, R.M.; Benz, R.; Nair, G.; Schanz, U.; Haralambieva, E.; Hoetzenecker, W.; Dummer, R.; French, L.E.; et al. Brentuximab as a Treatment for CD30+Mycosis Fungoides and Sézary Syndrome. JAMA Dermatol. 2015, 151, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Tavallaee, M.; Sundram, U.; Salva, K.A.; Wood, G.S.; Li, S.; Rozati, S.; Nagpal, S.; Krathen, M.; Reddy, S.; et al. Phase II Investigator-Initiated Study of Brentuximab Vedotin in Mycosis Fungoides and Sézary Syndrome With Variable CD30 Expression Level: A Multi-Institution Collaborative Project. J. Clin. Oncol. 2015, 33, 3750–3758. [Google Scholar] [CrossRef] [PubMed]
- Kadin, M.E.; Vonderheid, E.C. Targeted therapies: Denileukin diftitox—A step towards a “magic bullet” for CTCL. Nat. Rev. Clin. Oncol. 2010, 7, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Prince, H.M.; Duvic, M.; Martin, A.; Sterry, W.; Assaf, C.; Sun, Y.; Straus, D.; Acosta, M.; Negro-Vilar, A. Phase III Placebo-Controlled Trial of Denileukin Diftitox for Patients with Cutaneous T-Cell Lymphoma. J. Clin. Oncol. 2010, 28, 1870–1877. [Google Scholar] [CrossRef] [PubMed]
- Duvic, M.; Martin, A.G.; Olsen, E.A.; Fivenson, D.P.; Prince, H.M. Efficacy and safety of denileukin diftitox retreatment in patients with relapsed cutaneous T-cell lymphoma. Leuk. Lymphoma 2013, 54, 514–519. [Google Scholar] [CrossRef]
- Kambayashi, Y.; Fujimura, T.; Hidaka, T.; Aiba, S. Biomarkers for Predicting Efficacies of Anti-PD1 Antibodies. Front. Med. 2019, 6, 174. [Google Scholar] [CrossRef] [Green Version]
- Armand, P.; Shipp, M.A.; Ribrag, V.; Michot, J.-M.; Zinzani, P.L.; Kuruvilla, J.; Snyder, E.S.; Ricart, A.D.; Balakumaran, A.; Rose, S.; et al. Programmed Death-1 Blockade with Pembrolizumab in Patients With Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure. J. Clin. Oncol. 2016, 34, 3733–3739. [Google Scholar] [CrossRef]
- Khodadoust, M.S.; Rook, A.H.; Porcu, P.; Foss, F.; Moskowitz, A.J.; Shustov, A.; Shanbhag, S.; Sokol, L.; Fling, S.P.; Ramchurren, N.; et al. Pembrolizumab in Relapsed and Refractory Mycosis Fungoides and Sézary Syndrome: A Multicenter Phase II Study. J. Clin. Oncol. 2020, 38, 20–28. [Google Scholar] [CrossRef]
- Wada, D.A.; Wilcox, R.A.; Harrington, S.M.; Kwon, E.D.; Ansell, S.M.; Comfere, N.I. Programmed death 1 is expressed in cutaneous infiltrates of mycosis fungoides and Sézary syndrome. Am. J. Hematol. 2011, 86, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Kambayashi, Y.; Ohuchi, K.; Muto, Y.; Aiba, S. Treatment of Advanced Melanoma: Past, Present and Future. Life 2020, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Kambayashi, Y.; Furudate, S.; Kakizaki, A.; Hidaka, T.; Haga, T.; Hashimoto, A.; Morimoto, R.; Aiba, S. Isolated ACTH deficiency possibly caused by nivolumab in a metastatic melanoma patient. J. Dermatol. 2017, 44, e13–e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Yuan, C.M.; Hubacheck, J.; Janik, J.E.; Wilson, W.; Morris, J.C.; Jasper, G.A.; Stetler-Stevenson, M. Variable CD52 expression in mature T cell and NK cell malignancies: Implications for alemtuzumab therapy. Br. J. Haematol. 2009, 145, 173–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Masson, A.; Guitera, P.; Brice, P.; Moulonguet, I.; Mouly, F.; Bouaziz, J.; Battistella, M.; Madelaine, I.; Roux, J.; Ram-Wolff, C.; et al. Long-term efficacy and safety of alemtuzumab in advanced primary cutaneous T-cell lymphomas. Br. J. Dermatol. 2014, 170, 720–724. [Google Scholar] [CrossRef]
- Querfeld, C.; Mehta, N.; Rosen, S.T.; Guitart, J.; Rademaker, A.; Gerami, P.; Kuzel, T.M. Alemtuzumab for relapsed and refractory erythrodermic cutaneous T-cell lymphoma: A single institution experience from the Robert H. Lurie Comprehensive Cancer Center. Leuk. Lymphoma 2009, 50, 1969–1976. [Google Scholar] [CrossRef]
- Furudate, S.; Fujimura, T.; Kakizaki, A.; Hidaka, T.; Asano, M.; Aiba, S. Tumor-associated M2 macrophages in mycosis fungoides aquired immunomodulatory function by interferon alpha and interferon gamma. J. Dermatol. Sci. 2016, 83, 182–189. [Google Scholar] [CrossRef]
- Goteri, G.; Rupoli, S.; Campanati, A.; Zizzi, A.; Picardi, P.; Cardelli, M.; Giantomassi, F.; Canafoglia, L.; Marchegiani, F.; Mozzicafreddo, G.; et al. Serum and tissue CTACK/CCL27 chemokine levels in early mycosis fungoides may be correlated with disease-free survival following treatment with interferon alfa and psoralen plus ultraviolet A therapy. Br. J. Dermatol. 2012, 166, 948–952. [Google Scholar] [CrossRef]
- McGinnis, K.S.; Junkins-Hopkins, J.M.; Crawford, G.; Shapiro, M.; Rook, A.H.; Vittorio, C.C. Low-dose oral bexarotene in combination with low-dose interferon alfa in the treatment of cutaneous T-cell lymphoma: Clinical synergism and possible immunologic mechanisms. J. Am. Acad. Dermatol. 2004, 50, 375–379. [Google Scholar] [CrossRef]
- Chiarion-Sileni, V.; Bononi, A.; Fornasa, C.V.; Soraru, M.; Alaibac, M.; Ferrazzi, E.; Redelotti, R.; Peserico, A.; Monfardini, S.; Salvagno, L. Phase II trial of interferon-alpha-2a plus psolaren with ultraviolet light A in patients with cutaneous T-cell lymphoma. Cancer 2002, 95, 569–575. [Google Scholar] [CrossRef]
- Olisova, O.Y.; Megna, M.; Grekova, E.V.; Zaslavsky, D.; Gorenkova, L.G.; Sidikov, A.A.; Timoshchuk, E.A. PUVA and interferon α2b combined therapy for patients with mycosis fungoides at different stages of the disease: A seven-year retrospective study in Russia. J. Eur. Acad. Dermatol. Venereol. 2019, 33, e72–e74. [Google Scholar] [CrossRef] [PubMed]
- Avilés, A.; Neri, N.; Fernandez-Diez, J.; Silva, L.; Nambo, M.-J. Interferon and low doses of methotrexate versus interferon and retinoids in the treatment of refractory/relapsed cutaneous T-cell lymphoma. Hematology 2015, 20, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Morita, A.; Tateishi, C.; Muramatsu, S.; Kubo, R.; Yonezawa, E.; Kato, H.; Nishida, E.; Tsuruta, D. Efficacy and safety of bexarotene combined with photo(chemo)therapy for cutaneous T-cell lymphoma. J. Dermatol. 2020, 47, 443–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimura, T.; Sato, Y.; Tanita, K.; Amagai, R.; Shimauchi, T.; Ogata, D.; Fukushima, S.; Miyashita, A.; Fujisawa, Y.; Kambayashi, Y.; et al. Case series of cutaneous T-cell lymphomas treated with bexarotene-based therapy. J. Dermatol. 2020, 47, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Olsen, E.A. Interferon in the treatment of cutaneous T-cell lymphoma. Dermatol. Ther. 2003, 16, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.F.M.; Khot, A.; McCormack, C.; Lade, S.; Westerman, D.A.; Twigger, R.; Buelens, O.; Newland, K.; Tam, C.; Dickinson, M.J.; et al. Lack of durable disease control with chemotherapy for mycosis fungoides and Sézary syndrome: A comparative study of systemic therapy. Blood 2015, 125, 71–81. [Google Scholar] [CrossRef]
- Spaccarelli, N.; Rook, A.H. The Use of Interferons in the Treatment of Cutaneous T-Cell Lymphoma. Dermatol. Clin. 2015, 33, 731–745. [Google Scholar] [CrossRef] [Green Version]
- Kohn, E.C.; Steis, R.G.; Sausville, E.A.; Veach, S.R.; Stocker, J.L.; Phelps, R.; Franco, S.; Longo, D.L.; Bunn, P.A.; Ihde, D.C. Phase II trial of intermittent high-dose recombinant interferon alfa-2a in mycosis fungoides and the Sézary syndrome. J. Clin. Oncol. 1990, 8, 155–160. [Google Scholar] [CrossRef]
- Sugaya, M.; Tokura, Y.; Hamada, T.; Tsuboi, R.; Moroi, Y.; Nakahara, T.; Amano, M.; Ishida, S.; Watanabe, D.; Tani, M.; et al. Phase II study of i.v. interferon-gamma in Japanese patients with mycosis fungoides. J. Dermatol. 2014, 41, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Duvic, M.; Hymes, K.; Heald, P.; Breneman, D.; Martin, A.G.; Myskowski, P.; Crowley, C.; Yocum, R.C.; for Members of the Bexarotene Worldwide Study Group. Bexarotene Is Effective and Safe for Treatment of Refractory Advanced-Stage Cutaneous T-Cell Lymphoma: Multinational Phase II-III Trial Results. J. Clin. Oncol. 2001, 19, 2456–2471. [Google Scholar] [CrossRef]
- Scarisbrick, J.J.; Morris, S.; Azurdia, R.; Illidge, T.; Parry, E.; Graham-Brown, R.; Cowan, R.; Gallop-Evans, E.; Wachsmuth, R.; Eagle, M.; et al. U.K. consensus statement on safe clinical prescribing of bexarotene for patients with cutaneous T-cell lymphoma. Br. J. Dermatol. 2013, 168, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Tokura, Y.; Sugaya, M.; Ohtsuka, M.; Tsuboi, R.; Nagatani, T.; Kiyohara, E.; Tani, M.; Setoyama, M.; Matsushita, S.; et al. Phase I/II study of the oral retinoid X receptor agonist bexarotene in Japanese patients with cutaneous T-cell lymphomas. J. Dermatol. 2017, 44, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Tokura, Y.; Sugaya, M.; Ohtsuka, M.; Tsuboi, R.; Nagatani, T.; Kiyohara, E.; Tani, M.; Setoyama, M.; Matsushita, S.; et al. Long-term efficacy and safety of bexarotene for Japanese patients with cutaneous T-cell lymphoma: The results of a phase 2 study (B-1201). J. Dermatol. 2019, 46, 557–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, E.A.; Kim, Y.H.; Kuzel, T.M.; Pacheco, T.R.; Foss, F.M.; Parker, S.; Frankel, S.R.; Chen, C.; Ricker, J.L.; Arduino, J.M.; et al. Phase IIB Multicenter Trial of Vorinostat in Patients with Persistent, Progressive, or Treatment Refractory Cutaneous T-Cell Lymphoma. J. Clin. Oncol. 2007, 25, 3109–3115. [Google Scholar] [CrossRef] [Green Version]
- Piekarz, R.L.; Frye, R.; Turner, M.; Wright, J.J.; Allen, S.L.; Kirschbaum, M.H.; Zain, J.; Prince, H.M.; Leonard, J.P.; Geskin, L.J.; et al. Phase II Multi-Institutional Trial of the Histone Deacetylase Inhibitor Romidepsin As Monotherapy for Patients with Cutaneous T-Cell Lymphoma. J. Clin. Oncol. 2009, 27, 5410–5417. [Google Scholar] [CrossRef] [Green Version]
- Child, F.; Ortiz-Romero, P.; Geskin, L.; Pérez-Ferriols, A.; Hellemans, P.; Elsayed, Y.; Phelps, C.; Forslund, A.; Kamida, M.; Zinzani, P.; et al. Phase II multicentre trial of oral quisinostat, a histone deacetylase inhibitor, in patients with previously treated stage IB-IVA mycosis fungoides/Sézary syndrome. Br. J. Dermatol. 2016, 175, 80–88. [Google Scholar] [CrossRef]
- Horwitz, S.M.; Kim, Y.H.; Foss, F.; Zain, J.M.; Myskowski, P.L.; Lechowicz, M.J.; Fisher, D.C.; Shustov, A.R.; Bartlett, N.L.; Delioukina, M.L.; et al. Identification of an active, well-tolerated dose of pralatrexate in patients with relapsed or refractory cutaneous T-cell lymphoma. Blood 2012, 119, 4115–4122. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.S.; O’Connor, O.; She, Y.; Zelenetz, A.D.; Sirotnak, F.M.; Moore, M.A. Activity of a Novel Anti-folate (PDX, 10-propargyl 10-deazaaminopterin) against Human Lymphoma is Superior to Methotrexate and Correlates with Tumor RFC-1 Gene Expression. Leuk. Lymphoma 2003, 44, 1027–1035. [Google Scholar] [CrossRef]
- Duvic, M.A.; Kim, Y.H.; Zinzani, P.L.; Horwitz, S.M. Results from a Phase I/II Open-Label, Dose-Finding Study of Pralatrexate and Oral Bexarotene in Patients with Relapsed/Refractory Cutaneous T-cell Lymphoma. Clin. Cancer Res. 2017, 23, 3552–3556. [Google Scholar] [CrossRef] [Green Version]
- Olek-Hrab, K.; Maj, J.; Chmielowska, E.; Jankowska-Konsur, A.; Olszewska, B.; Kręcisz, B.; Iwankowski, P.; Mackiewicz-Wysocka, M.; Adamski, Z.; Nowicki, R.; et al. Methotrexate in the treatment of mycosis fungoides—A multicenter observational study in 79 patients. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3586–3594. [Google Scholar]
- Zackheim, H.S.; Kashani-Sabet, M.; McMillan, A. Low-dose methotrexate to treat mycosis fungoides: A retrospective study in 69 patients. J. Am. Acad. Dermatol. 2003, 49, 873–878. [Google Scholar] [CrossRef]
- Marchi, E.; Alinari, L.; Tani, M.; Stefoni, V.; Pimpinelli, N.; Berti, E.; Pagano, L.; Bernengo, M.G.; Zaja, F.; Rupoli, S.; et al. Gemcitabine as frontline treatment for cutaneous T-cell lymphoma: Phase II study of 32 patients. Cancer 2005, 104, 2437–2441. [Google Scholar] [CrossRef] [PubMed]
- Duvic, M.; Talpur, R.; Wen, S.; Kurzrock, R.; David, C.L.; Apisarnthanarax, N. Phase II Evaluation of Gemcitabine Monotherapy for Cutaneous T-Cell Lymphoma. Clin. Lymphoma Myeloma 2006, 7, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Quereux, G.; Marques, S.; Nguyen, J.-M.; Bedane, C.; D’Incan, M.; Dereure, O.; Puzenat, E.; Claudy, A.; Martin, L.; Joly, P.; et al. Prospective Multicenter Study of Pegylated Liposomal Doxorubicin Treatment in Patients with Advanced or Refractory Mycosis Fungoides or Sézary Syndrome. Arch. Dermatol. 2008, 144, 727–733. [Google Scholar] [CrossRef] [Green Version]
- Tirelli, U.; Errante, D.; van Glabbeke, M.; Teodorovic, I.; Kluin-Nelemans, J.C.; Thomas, J.; Bron, D.; Rosti, G.; Somers, R.; Zagonel, V.; et al. CHOP is the standard regimen in patients > or = 70 years of age with intermediate-grade and high-grade non-Hodgkin’s lymphoma: Results of a randomized study of the European Organization for Research and Treatment of Cancer Lymphoma Cooperative Study Group. J. Clin. Oncol. 1998, 16, 27–34. [Google Scholar] [CrossRef]
- Shea, L.; Mehta-Shah, N. Brentuximab Vedotin in the Treatment of Peripheral T Cell Lymphoma and Cutaneous T Cell Lymphoma. Curr. Hematol. Malign Rep. 2020, 15, 9–19. [Google Scholar] [CrossRef]
- Cho, A.; Jantschitsch, C.; Knobler, R. Extracorporeal Photopheresis—An Overview. Front. Med. 2018, 5, 236. [Google Scholar] [CrossRef]
- Edelson, R.; Berger, C.; Gasparro, F.; Jegasothy, B.; Heald, P.; Wintroub, B.; Vonderheid, E.; Knobler, R.; Wolff, K.; Plewig, G.; et al. Treatment of Cutaneous T-Cell Lymphoma by Extracorporeal Photochemotherapy. Preliminary results. N. Engl. J. Med. 1987, 316, 297–303. [Google Scholar] [CrossRef]
- Alfred, A.; Taylor, P.C.; Dignan, F.; El-Ghariani, K.; Griffin, J.; Gennery, A.R.; Bonney, D.; Das-Gupta, E.; Lawson, S.; Malladi, R.K.; et al. The role of extracorporeal photopheresis in the management of cutaneous T-cell lymphoma, graft-versus-host disease and organ transplant rejection: A consensus statement update from the UK Photopheresis Society. Br. J. Haematol. 2017, 177, 287–310. [Google Scholar] [CrossRef] [Green Version]
- Marshall, L.A.; Marubayashi, S.; Jorapur, A.; Jacobson, S.; Zibinsky, M.; Robles, O.; Hu, D.X.; Jackson, J.J.; Pookot, D.; Sanchez, J.; et al. Tumors establish resistance to immunotherapy by regulating T(reg) recruitment via CCR4. J. Immunother. Cancer 2020, 8, e000764. [Google Scholar] [CrossRef]
Drugs | Stage of Enrolled Patients | ORR (%) | CR (%) | PR (%) | Most Common AEs |
---|---|---|---|---|---|
Topical bexarotene gel | 63 | 21 | 42 | irritation | |
Mechlorethamine hydrochloride gel | stage IA/B | 46 | |||
Topical carmustine | stage IA | 98 | 86 | 12 | irritation |
Topical carmustine | stage IB | 84 | 47 | 37 | irritation |
Topical 5% imiquimod | stage IA-IIB | 80 | 45 | 35 | irritation |
Protocol | ORR (%) | CR (%) | PR (%) | PFS | Most Common AEs (%) | Most Common SAEs (%) |
---|---|---|---|---|---|---|
Mogamulizumab | 28 | 7.7 months | infusion reaction (32%) | pyrexia (4%) | ||
Brentuximab vedotin | 56.3 | neuropathy (50%) | neuropathy (5%) | |||
Denileukin diftitox | 44 | 10 | 34 | >2 years | fatigue (12%) | capillary leak syndrome (2%) |
Pembrolizumab | 37.5 | 8.3 | 29.2 | |||
Alemtuzumab | 51.1 | 17.9 | 33.3 | 3.4 months | severe infectious AEs (62%) | |
High-dose IFN-a2a | 29 | 4 | 25 | |||
IFN-a2a plus PUVA | 80.6 | 74.6 | 6 | 32 months | ||
IFN-a2b with PUVA | 93 | 73 | 20 | >2 years | ||
IFN-g | 60 | >170 days | flu-like illness (100%) | |||
Bexarotene | 45 | hypertriglyceridemia | hyperlipidemia | |||
Vorinostat | 29.5 | 9.8 months | diarrhea (49%) | thrombocytopenia (5%) | ||
Romidepsin | 33.8 | 5.6 | 28.2 | 13.7 months | nausea (73.2%) | |
Quisinostat | 24 | 2.8–6.9 months | nausea, diarrhea (23%) | hypertension (11.5%) | ||
Pralatrexate | 44.8 | 3.4 | 41.4 | mucositis (48%) | mucositis (17%) | |
Gemcitabine | 75 | 21.8 | 53.1 | 10 months | ||
Pegylated liposomal doxorubicin | 56 | 20 | 36 | 5 months |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujimura, T.; Amagai, R.; Kambayashi, Y.; Aiba, S. Topical and Systemic Formulation Options for Cutaneous T Cell Lymphomas. Pharmaceutics 2021, 13, 200. https://doi.org/10.3390/pharmaceutics13020200
Fujimura T, Amagai R, Kambayashi Y, Aiba S. Topical and Systemic Formulation Options for Cutaneous T Cell Lymphomas. Pharmaceutics. 2021; 13(2):200. https://doi.org/10.3390/pharmaceutics13020200
Chicago/Turabian StyleFujimura, Taku, Ryo Amagai, Yumi Kambayashi, and Setsuya Aiba. 2021. "Topical and Systemic Formulation Options for Cutaneous T Cell Lymphomas" Pharmaceutics 13, no. 2: 200. https://doi.org/10.3390/pharmaceutics13020200
APA StyleFujimura, T., Amagai, R., Kambayashi, Y., & Aiba, S. (2021). Topical and Systemic Formulation Options for Cutaneous T Cell Lymphomas. Pharmaceutics, 13(2), 200. https://doi.org/10.3390/pharmaceutics13020200