Relevance of Liquid-Liquid Phase Separation of Supersaturated Solution in Oral Absorption of Albendazole from Amorphous Solid Dispersions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Physical Characterization
2.3. Solubility Measurement of ALZ
2.4. Preparation of ASDs of ALZ
2.5. LLPS Concentration and Particle Properties
2.6. µDISS Dissolution Study
2.7. Oral Administration Study in Rats
2.8. Oral Administration Study in Dogs
3. Results
3.1. Physicochemical Properties of Crystalline ALZ and ASDs
3.2. Dissolution and LLPS Properties of ALZ ASDs
3.3. Oral Administration Study
4. Discussion
4.1. Dissolution and LLPS Behaviors of ALZ and Its ASDs
4.2. Relationship between Dissolution Behavior and Oral Absorption
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brouwers, J.; Brewster, M.E.; Augustijns, P. Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability? J. Pharm. Sci. 2009, 98, 2549–2572. [Google Scholar] [CrossRef]
- Kawakami, K. Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Adv. Drug Deliv. Rev. 2012, 64, 480–495. [Google Scholar] [CrossRef]
- Paudel, A.; Worku, Z.A.; Meeus, J.; Guns, S.; Van den Mooter, G. Manufacturing of solid dispersions of poorly soluble drugs by spray drying: Formulation and process considerations. Int. J. Pharm. 2013, 453, 253–284. [Google Scholar] [CrossRef] [PubMed]
- Hens, B.; Kataoka, M.; Ueda, K.; Gao, P.; Tsume, Y.; Augustijns, P.; Kawakami, K.; Yamashita, S. Biopredictive in vitro testing methods to assess intestinal drug absorption from supersaturating dosage forms. J. Drug Deliv. Sci. Technol. 2020, 56, 101275. [Google Scholar] [CrossRef]
- Bevernage, J.; Brouwers, J.; Brewster, M.E.; Augustijns, P. Evaluation of gastrointestinal drug supersaturation and precipitation: Strategies and issues. Int. J. Pharm. 2013, 453, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Bevernage, J.; Brouwers, J.; Annaert, P.; Augustijns, P. Drug precipitation-permeation interplay: Supersaturation in an absorptive environment. Eur. J. Pharm. Biopharm. 2012, 82, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, K.; Suzuki, K.; Fukiage, M.; Matsuda, M.; Nishida, Y.; Oikawa, M.; Fujita, T. Impact of degree of supersaturation on the dissolution and oral absorption behaviors of griseofulvin amorphous solid dispersions. J. Drug Deliv. Sci. Technol. 2020, 56, 101172. [Google Scholar] [CrossRef]
- Kawakami, K.; Sato, K.; Fukushima, M.; Miyazaki, A.; Yamamura, Y.; Sakuma, S. Phase separation of supersaturated solution created from amorphous solid dispersions: Relevance to oral absorption. Eur. J. Pharm. Biopharm. 2018, 132, 146–156. [Google Scholar] [CrossRef]
- Raina, S.A.; Zhang, G.G.Z.; Alonzo, D.E.; Wu, J.; Zhu, D.; Catron, N.D.; Gao, Y.; Taylor, L.S. Impact of solubilizing additives on supersaturation and membrane transport of drugs. Pharm. Res. 2015, 32, 3350–3364. [Google Scholar] [CrossRef]
- Elkhabaz, A.; Moseson, D.E.; Brouwers, J.; Augustijns, P.; Taylor, L.S. Interplay of supersaturation and solubilization: Lack of correlation between concentration-based supersaturation measurements and membrane transport rates in simulated and aspirated human fluids. Mol. Pharm. 2019, 16, 5042. [Google Scholar] [CrossRef]
- Kawakami, K. Supersaturation and crystallization: Non-equilibrium dynamics of amorphous solid dispersions for oral drug delivery. Exp. Opin. Drug Deliv. 2017, 14, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.S.; Zhang, G.G.Z. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv. Drug Deliv. Rev. 2016, 101, 122–142. [Google Scholar] [CrossRef] [PubMed]
- Indulkar, A.S.; Gao, Y.; Raina, S.A.; Zhang, G.G.Z.; Taylor, L.S. Exploiting the phenomenon of liquid-liquid phase separation for enhanced and sustained membrane transport of a poorly soluble drug. Mol. Pharm. 2016, 13, 2059–2069. [Google Scholar] [CrossRef]
- Indulkar, A.S.; Waters, J.E.; Mo, H.; Gao, Y.; Raina, S.A.; Zhang, G.G.Z.; Taylor, L.S. Origin of nanodroplet formation upon dissolution of an amorphous solid dispersion: A mechanistic isotope scrambling study. J. Pharm. Sci. 2017, 106, 1998–2008. [Google Scholar] [CrossRef]
- Stewart, A.M.; Grass, M.E.; Brodeur, T.J.; Goodwin, A.K.; Morgen, M.M.; Friesen, D.T.; Vodak, D.T. Impact of drug-rich colloids of itraconazole and hpmcas on membrane flux in vitro and oral bioavailability in rats. Mol. Pharma. 2017, 14, 2437–2449. [Google Scholar] [CrossRef] [Green Version]
- Daniel-Mwambete, K.; Torrado, S.; Cuesta-Bandera, C.; Ponde-Gordo, F.; Torrado, J.J. The effect of solubiliation on the oral bioavailability of three benzimidazole carbamate drugs. Int. J. Pharm. 2004, 272, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Escher, B.I.; Berger, C.; Bramaz, N.; Kwon, J.H.; Richter, M.; Tsinman, O.; Avdeef, A. Membrane-water partitioning, membrane permeability, and baseline toxicity of the parasiticides ivermectin, albendazole, and morantel. Environ. Toxicol. Chem. 2008, 27, 909–918. [Google Scholar] [CrossRef] [Green Version]
- Fagerberg, J.H.; Tsinman, O.; Sun, N.; Tsinman, K.; Avdeef, A.; Bergstrom, C.A.S. Dissolution rate and apparent solubility of poorly soluble drugs in biorelevant dissolution media. Mol. Pharm. 2010, 7, 1419–1430. [Google Scholar] [CrossRef]
- Kohri, N.; Yamayoshi, Y.; Xin, H.; Iseki, K.; Sato, N.; Todo, S.; Miyazaki, K. Improving the oral bioavailability of albendazole in rabbits by the solid dispersion technique. J. Pharm. Pharmacol. 1999, 51, 159–164. [Google Scholar] [CrossRef]
- Castro, S.G.; Sanchez Bruni, S.F.; Urbizu, L.P.; Confalonieri, A.; Ceballos, L.; Lanusse, C.E.; Allemandi, D.A.; Palma, S.D. Enhanced dissolution and systemic availability of albendazole formulated as solid dispersions. Pharm. Dev. Technol. 2013, 18, 434–442. [Google Scholar] [CrossRef]
- Keen, J.N.; LaFountaine, J.S.; Hughey, J.R.; Miller, D.A.; McGinity, J.W. Development of itraconazole tablets containing viscous kinetisol solid dispersions: In vitro and in vivo analysis in dogs. AAPS PharmSciTech 2018, 19, 1998–2008. [Google Scholar] [CrossRef] [PubMed]
- Takano, R.; Maurer, R.; Jacob, L.; Stowasser, F.; Stillhart, C.; Page, S. Formulating Amorphous solid dispersions: Impact of inorganic salts on drug release from tablets containing itraconazole-HPMC extrudate. Mol. Pharm. 2020, 17, 2768–2778. [Google Scholar] [CrossRef] [PubMed]
Molecular Weight | pKa (Base), 25 °C | LogP, 25 °C | |||
265.3 | 4.2 | 3.1 | |||
Solubility, 37 °C (μg/mL) | |||||
pH 1.2 | FeSSIFblk (pH 5.0) | FeSSIF (pH 5.0) | FaSSIFblk (pH 6.5) | FaSSIF (pH 6.5) | pH 7.4 |
184 | 1.1 | 6.1 | 0.85 | 1.9 | 0.75 |
Polymers | No Polymer | Eudragit L100 | HPMCAS | PVPVA |
---|---|---|---|---|
Solubility, 25 °C (μg/mL) | <0.10 | 0.44 ± 0.02 | 0.47 ± 0.07 | <0.10 |
Solubility, 37 °C (μg/mL) | <0.10 | 0.32 ± 0.06 | 0.55 ± 0.09 | <0.10 |
LLPS, 25 °C (μg/mL) | 1.4 | 3.8 | 7.0 | 7.2 |
Particle size, 25 °C (μm) | >3 | 2.13 ± 0.23 | 0.22 ± 0.02 | 1.12 ± 0.06 |
Polydispersity Index (PDI) | − | 0.59 ± 0.10 | 0.14 ± 0.02 | 0.21 ± 0.04 |
Zeta potential, 25 °C (mV) | − | −32.8 ± 1.2 | −12.4 ± 1.1 | −0.2 ± 0.2 |
Formulations | Crystalline ALZ | Eudragit ASD | HPMCAS ASD | PVPVA ASD |
---|---|---|---|---|
Cmax (μg/mL) | 2.17 ± 0.54 | 6.30 ± 1.14 | 8.06 ± 0.81 | 8.82 ± 1.44 |
Tmax (h) | 3.3 ± 1.2 | 4.0 ± 0.0 | 2.0 ± 0.0 | 2.3 ± 1.5 |
AUC (μg·hr/mL) | 12.7 ± 3.5 | 37.4 ± 4.9 | 48.9 ± 5.4 | 52.4 ± 11.6 |
Formulations | Crystalline ALZ | Eudragit ASD | HPMCAS ASD | HPMCAS ASD Suspension | PVPVA ASD |
---|---|---|---|---|---|
Cmax (μg/mL) | 0.30 ± 0.21 | 0.44 ± 0.10 | 0.34 ± 0.09 | 0.57 ± 0.05 | 0.20 ± 0.07 |
Tmax (h) | 1.3 ± 0.6 | 1.7 ± 0.6 | 2.3 ± 1.5 | 1.3 ± 0.6 | 1.3 ± 0.6 |
AUC (μg·h/mL) | 1.93 ± 1.27 | 2.81 ± 0.47 | 2.14 ± 0.42 | 3.04 ± 0.13 | 1.04 ± 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, K.; Kawakami, K.; Fukiage, M.; Oikawa, M.; Nishida, Y.; Matsuda, M.; Fujita, T. Relevance of Liquid-Liquid Phase Separation of Supersaturated Solution in Oral Absorption of Albendazole from Amorphous Solid Dispersions. Pharmaceutics 2021, 13, 220. https://doi.org/10.3390/pharmaceutics13020220
Suzuki K, Kawakami K, Fukiage M, Oikawa M, Nishida Y, Matsuda M, Fujita T. Relevance of Liquid-Liquid Phase Separation of Supersaturated Solution in Oral Absorption of Albendazole from Amorphous Solid Dispersions. Pharmaceutics. 2021; 13(2):220. https://doi.org/10.3390/pharmaceutics13020220
Chicago/Turabian StyleSuzuki, Kyosuke, Kohsaku Kawakami, Masafumi Fukiage, Michinori Oikawa, Yohei Nishida, Maki Matsuda, and Takuya Fujita. 2021. "Relevance of Liquid-Liquid Phase Separation of Supersaturated Solution in Oral Absorption of Albendazole from Amorphous Solid Dispersions" Pharmaceutics 13, no. 2: 220. https://doi.org/10.3390/pharmaceutics13020220
APA StyleSuzuki, K., Kawakami, K., Fukiage, M., Oikawa, M., Nishida, Y., Matsuda, M., & Fujita, T. (2021). Relevance of Liquid-Liquid Phase Separation of Supersaturated Solution in Oral Absorption of Albendazole from Amorphous Solid Dispersions. Pharmaceutics, 13(2), 220. https://doi.org/10.3390/pharmaceutics13020220