Formulation and Characterization of Acetazolamide/Carvedilol Niosomal Gel for Glaucoma Treatment: In Vitro, and In Vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drugs, Chemicals, and Reagent Kits
2.2. Animals
2.3. Formulation of Acetazolamide and Carvedilol Niosomes
2.4. Evaluation of the Prepared Acetazolamide and Carvedilol Niosomes
2.4.1. Determination of Entrapment Efficiency (EE)
2.4.2. Measurements of Particle Size, Distribution, and Zeta Potential (x)
2.4.3. Fourier Transform Infrared (FT-IR) Spectroscopy
2.4.4. Differential Scanning Calorimetry (DSC) Analysis
2.4.5. Morphology and Transmission Electron Microscopy (TEM)
2.4.6. In Vitro Release Study of ACZ and CAR Loaded Nisosome
2.5. Formulation of Acetazolamide and Carvedilol Niosomes Gel
2.6. Evaluation of the Prepared Acetazolamide and Carvedilol Niosomes Gel
2.6.1. Visual Inspection
2.6.2. Determination of pH of the Prepared Acetazolamide and Carvedilol Niosomes Gels
2.6.3. Drug Content Studies
2.7. Evaluation of Rheological Properties of the Prepared Acetazolamide and Carvedilol Gels
2.8. Ex Vivo Corneal Permeation Study
2.9. In Vivo Evaluation of the Combination of Acetazolamide and Carvedilol Niosomes
2.9.1. Pharmacokinetic Study
2.9.2. Pharmacodynamic Study
2.9.3. Histological Examination
2.10. Statistical Analysis of Data
3. Results and Discussion
3.1. In Vitro Evaluation of Acetazolamide and Carvedilol Respectively
3.1.1. Determination of Entrapment Efficiency (EE)
3.1.2. Measurements of Particle Size, Distribution, and Zeta Potential (x)
3.1.3. Fourier Transforms Infrared (FT-IR) Spectroscopy Excipients
3.1.4. Differential Scanning Calorimetry (DSC) Analysis
3.1.5. Morphology and Transmission Electron Microscopy (TEM)
3.2. Evaluation of the Prepared ACZ and CAR Loaded Niosomes Gel Formulations
3.2.1. Visual Inspection
3.2.2. Determination of pH of ACZ and CAR Loaded Niosomes Gel Formulations Study
3.2.3. Drug Content of ACZ and CAR Loaded Niosomes Gel Formulations Study
3.2.4. Evaluation of Rheological Properties of the Prepared ACZ and CAR Loaded Niosomes Gel Formulations Study
3.3. Ex Vivo Corneal Permeation Study
3.4. In-Vivo Evaluation of the Combination of Acetazolamide and Carvedilol Niosomes
3.4.1. Pharmacokinetic Study
3.4.2. Pharmacodynamic Study
3.4.3. Histological Examination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarhan, A.; Rokne, J.; Alhajj, R. Glaucoma detection using image processing techniques: A literature review. Comput. Med. Imaging Graph. 2019, 78, 101657. [Google Scholar] [CrossRef]
- Clark, L.; Taubman, S.; Stahlman, S. Update: Incidence of glaucoma diagnoses, active component, U.S. Armed Forces, 2013–2017. MSMR 2019, 26, 15–19. [Google Scholar]
- Sihota, R.; Angmo, D.; Ramaswamy, D.; Dada, T. Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma. Indian J. Ophthalmol. 2018, 66, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Popovic, M.; Schlenker, B.M. Angle-closure glaucoma in a myopic patient precipitated by sexual excitation: A case report. J. Curr. Glaucoma Pract. 2018, 12, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Gao, Y.; Liu, A.; Zhai, G. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: Challenges analysis and recent advances. J. Drug Target. 2021, 1, 1–31. [Google Scholar]
- Van Berkel, M.A.; Elefritz, J.L. Evaluating off-label uses of acetazolamide. Bull. Am. Soc. Hosp. Pharm. 2018, 75, 524–531. [Google Scholar] [CrossRef]
- Hayashi, K.; Yoshida, M.; Sato, T.; Manabe, S.; Yoshimura, K. Intraocular pressure elevation after cataract surgery and its prevention by oral acetazolamide in eyes with pseudoexfoliation syndrome. J. Cataract. Refract. Surg. 2018, 44, 175–181. [Google Scholar] [CrossRef]
- Ghadi, R.; Dand, N. BCS class IV drugs: Highly notorious candidates for formulation development. J. Control. Release 2017, 248, 71–95. [Google Scholar] [CrossRef] [PubMed]
- Beattie, k.; Phadke, G.; Novakovic, J. Carvedilol. Profiles. Drug. Subst. Excip. Relat. Methodol. 2013, 38, 113–157. [Google Scholar]
- Szumny, D.; Szeląg, A. The influence of new beta-adrenolytics nebivolol and carvedilol on intraocular pressure and iris blood flow in rabbits. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 917–923. [Google Scholar] [CrossRef] [Green Version]
- Stafylas, P.C.; Sarafidis, P.A. Carvedilol in hypertension treatment. Vasc. Health Risk Manag. 2008, 4, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamed, R.; Awadallah, A.; Sunoqrot, S.; Tarawneh, O.; Nazzal, S.; AlBaraghthi, T.; Al Sayyad, J.; Abbas, A. pH-dependent solubility and dissolution behavior of carvedilol-case example of a weakly basic BCS class II drug. AAPS PharmSciTech 2016, 17, 418–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, J.; Fazil, M.; Qumbar, M.; Khan, N.; Ali, A. Colloidal drug delivery system: Amplify the ocular delivery. Drug Deliv. 2016, 23, 710–726. [Google Scholar]
- Rahić, O.; Tucak, A.; Omerović, N.; Sirbubalo, M.; Hindija, L.; Hadžiabdić, J.; Vranić, E. Novel Drug Delivery Systems Fighting Glaucoma: Formulation Obstacles and Solutions. Pharmaceutics. 2020, 13, 28. [Google Scholar] [CrossRef]
- Souto, E.B.; Dias-Ferreira, J.; López-Machado, A.; Ettcheto, M.; Cano, A.; Camins Espuny, A.; Espina, M.; Garcia, M.L.; Sánchez-López, E. Advanced formulation approaches for ocular drug delivery: State-of-the-art and recent patents. Pharmaceutics 2019, 11, 460. [Google Scholar] [CrossRef] [Green Version]
- Qamar, Z.; Qizilbash, F.F.; Iqubal, M.K.; Ali, A.; Narang, J.K.; Ali, J.; Baboota, S. Nano-Based Drug Delivery System: Recent Strategies for the Treatment of Ocular Disease and Future Perspective. Recent Pat. Drug Deliv. Formul. 2019, 13, 246–254. [Google Scholar] [CrossRef]
- Moiseev, V.R.; Morrison, J.W.P.; Steele, F.; Khutoryanskiy, V.V. Penetration enhancers in ocular drug delivery. Pharmaceutics 2019, 11, 321. [Google Scholar] [CrossRef] [Green Version]
- Guinedi, A.S.; Mortada, N.D.; Mansour, S.; Hathout, R.M. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int. J. Pharm. 2005, 306, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Taymouri, S.; Varshosaz, J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv. Biomed. Res. 2016, 5, 48. [Google Scholar]
- Obiedallah, M.M.; Abdel-Mageed, A.M.; Elfaham, T.H. Ocular administration of acetazolamide microsponges in situ gel formulations. Saudi. Pharm. J. 2018, 26, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Hassan, D.H.; Abdelmonem, R.; Abdellatif, M.M. Formulation and Characterization of Carvedilol Leciplex for Glaucoma Treatment: In-Vitro, Ex-Vivo, and In-Vivo Study. Pharmaceutics 2018, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Manchanda, S.; Sahoo, P.K. Topical delivery of acetazolamide by encapsulating in mucoadhesive nanoparticles. Asian. J. Pharm. Sci. 2017, 12, 550–557. [Google Scholar] [CrossRef]
- Janagam, D.R.; Wu, L.; Lowe, T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug. Deliv. Rev. 2017, 122, 31–64. [Google Scholar] [CrossRef]
- Berthomieu, C.; Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 2009, 101, 157–170. [Google Scholar] [CrossRef]
- Montenegro, L.; Castelli, F.; Sarpietro, M.G. Differential scanning calorimetry analyses of idebenone-loaded solid lipid nanoparticles interactions with a model of bio-membrane: A comparison with in vitro skin permeation data. Pharmaceuticals 2018, 11, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malatesta, M. Transmission electron microscopy for nanomedicine: Novel applications for long-established techniques. Eur. J. Histochem. 2016, 9, 2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eldeeb, E.A.; Salah, S.; Ghorab, M. Proniosomal gel-derived niosomes: An approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in-vitro characterization, and in-vivo pharmacodynamic study. Drug. Deliv. 2019, 26, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Badawi, A.A.; Nour, S.A.; Sakran, W.S.; El-Mancy, S.M.S. Preparation and evaluation of microemulsion systems containing salicylic acid. AAPS PharmSciTech 2009, 10, 1081–1084. [Google Scholar] [CrossRef] [Green Version]
- Tas, C.; Ozkan, Y.; Savaser, A.; Baykara, T. In vitro release studies of chlorpheniramine maleate from gels prepared by different cellulose derivatives. II. Farmaco. 2003, 58, 605–611. [Google Scholar] [CrossRef]
- Lee, C.H.; Moturi, V.; Lee, Y. Thixotropic property in pharmaceutical formulations. J. Control. Release 2009, 136, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chang, X.; Weng, T.; Zhao, X.; Gao, Z.; Yang, Y.; Xu, H.; Yang, X. A study of microemulsion systems for transdermal delivery of triptolide. J. Control. Release 2004, 98, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Steffe, J.F. Rheological Methods in Food Process Engineering; Freeman Press: New York, NY, USA, 1996. [Google Scholar]
- Nayakn, N.; Misra, M. A review on recent drug delivery systems for posterior segment of the eye. Biomed Pharm. 2018, 107, 1564–1582. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, J.D.S.; Turner, D.R. Theory and Practice of Histological Techniques, 7th ed.; Churchill Livingstone Elsevier: London, UK, 2013. [Google Scholar]
- Abdelbary, G.; El-Gendy, N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech 2008, 9, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Wei, M.; He, S.; Yuan, W.E. Advances of non-ionic surfactant vesicles (Niosomes) and their application in drug delivery. Pharmaceutics 2019, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Farhood, Q.K. Cycloplegic refraction in children with cyclopentolate versus atropine. J. Clin. Exp. Ophthalmol. 2012, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Baba, K.; Tanaka, Y.; Kubota, A.; Kasai, H.; Yokokura, S.; Nakanishi, H.; Nishida, K. A method for enhancing the ocular penetration of eye drops using nanoparticles of hydrolyzable dye. J. Control. Release 2011, 153, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Seyfoddin, A.; Al-Kassas, R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug. Dev. Ind. Pharm. 2013, 39, 508–519. [Google Scholar] [CrossRef]
- Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World. J. Pharmacol. 2013, 2, 47–64. [Google Scholar] [CrossRef]
- Pandit, J.; Garg, M.; Jain, N.K. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J. Liposome. Res. 2014, 24, 163–169. [Google Scholar] [CrossRef]
- Khalil, R.M.; El-Bary, A.A.; Kassem, M.A.; Ghorab, M.M.; Basha, M. Influence of formulation parameters on the physicochemical properties of meloxicam-loaded solid lipid nanoparticles. Egypt. Pharm. J. 2013, 12, 63. [Google Scholar]
- Balakrishnana, P.; Shanmugama, S.; Lee, W.S.; Lee, W.M.; Kim, J.O.; Oh, D.H.; Kim, D.D.; Kim, J.S.; Yoo, B.K.; Choi, H.G.; et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int. J. Pharmceutics 2009, 377, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sambhakar, S.; Singh, B.; Paliwal, S.K.; Mishra, P.R. Niosomes as a potential carrier for controlled release of cefuroxime axetil. Asian. J. Biochem. Pharm. Res. 2011, 1, 126–136. [Google Scholar]
- Thomas, L.; Viswanad, V. Formulation, and optimization of clotrimazole-loaded proniosomal gel using 32 factorial design. Sci. Pharm. 2012, 80, 731–748. [Google Scholar] [CrossRef] [Green Version]
- Studart, A.R.; Amstad, E.; Gauckler, L.J. Colloidal stabilization of nanoparticles in concentrated suspensions. Langmuir 2007, 23, 1081–1090. [Google Scholar] [CrossRef]
- Mishra, V.; Jain, N.K. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int. J. Pharmaceutics 2014, 461, 380–390. [Google Scholar] [CrossRef]
- Krstić, M.; Radojević, M.; Stojanović, D.; Radojević, V.; Uskoković, P.; Ibrić, S. Formulation and characterization of nanofibers and films with carvedilol prepared by electrospinning and solution casting method. Eur. J. Pharm. Sci. 2017, 101, 160–166. [Google Scholar] [CrossRef]
- Nagy, Z.K.; Balogh, A.; Drávavölgyi, G.; Ferguson, J.; Pataki, H.; Vajna, B.; Marosi, G. Solvent-free melt electrospinning for preparation of fast-dissolving drug delivery system and comparison with solvent-based electrospun and melt extruded systems. J. Pharm. Sci. 2013, 102, 508–517. [Google Scholar] [CrossRef]
- Saini, R.; Singh, S.K.; Verma, P.R.P. Evaluation of carvedilol-loaded microsponges with nanometric pores using response surface methodology. J. Exp. Nanosci. 2014, 9, 831–850. [Google Scholar] [CrossRef]
- Garjani, A.; Barzegar-Jalali, M.; Osouli-Bostanabad, K.; Ranjbar, H.; Adibkia, K. Morphological and physicochemical evaluation of the propranolol HCl–Eudragit® RS100 electrosprayed nanoformulations. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 749–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payab, S.; Davaran, S.; Tanhaei, A.; Fayyazi, B.; Jahangiri, A.; Farzaneh, A.; Adibkia, K. Triamcinolone acetonide–Eudragit® RS100 nanofibers and nanobeads: Morphological and physicochemical characterization. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Maniruzzaman, M.; Islam, M.T.; Halsey, S.; Amin, D.; Douroumis, D. Novel controlled release polymer-lipid formulations processed by hot-melt extrusion. AAPS PharmSciTech 2016, 17, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Bunjes, H.; Unruh, T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv. Drug. Deliv. Rev. 2007, 59, 379–402. [Google Scholar] [CrossRef]
- Manosroi, A.; Chutoprapat, R.; Abe, M.; Manosroi, J. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. Int. J. Pharm. 2008, 352, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, R.S.; Chandasana, H.; Chhonker, Y.S.; Rathi, C.; Kumar, D.; Mitra, K.; Shukla, P. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: In vitro and pharmacokinetics studies. Int. J. Pharm. 2012, 432, 105–112. [Google Scholar] [CrossRef]
- Chandasana, H.; Prasad, Y.D.; Chhonker, Y.S.; Chaitanya, T.K.; Mishra, N.N.; Mitra, K.; Shukla, P.K.; Bhatta, R.S. Corneal targeted nanoparticles for sustained natamycin delivery and their PK/PD indices: An approach to reduce dose and dosing frequency. Int. J. Pharm. 2014, 477, 317–325. [Google Scholar] [CrossRef]
- El-Ridy, M.S.; Badawi, A.A.; Safar, M.M.; Mohsen, A.M. Niosomes as a novel pharmaceutical formulation encapsulating the hepatoprotective drug silymarin. Int. J. Pharm. Pharm. Sci. 2012, 4, 549–559. [Google Scholar]
- Ismail, A.; Nasr, M.; Sammour, O. Nanoemulsion as a feasible and biocompatible carrier for ocular delivery of travoprost: Improved pharmacokinetic/pharmacodynamic properties. Int. J. Pharm. 2020, 15, 119402. [Google Scholar] [CrossRef]
- Fialho, L.S.; Silva-Cunha, D.A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin. Exp. Ophthalmol. 2004, 32, 626–632. [Google Scholar] [CrossRef]
- Pharmacopeia, U.S. Monograph of Natamycin. In The National Formulary: USP30-NF25; Mack Printing Rockville: Rockville, MD, USA, 2007; p. 2716. [Google Scholar]
- Pharmacopeia, U.S. Monograph of Ketorolac Tromethamine. In The National Formulary: USP30-NF25; Mack Printing Rockville: Rockville, MD, USA, 2007; p. 2440. [Google Scholar]
- Baranowski, P.; Karolewicz, B.; Gajda, M.; Pluta, J. Ophthalmic drug dosage forms: Characterization and research methods. Scientific. World. J. 2014, 2014, 861904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schott, H. Rheology in Remington: The Science and Practice of Pharmacy; University of the Sciences in Philadelphia: Philadelphia, PA, USA, 2000. [Google Scholar]
- Jones, D.S.; Muldoon, B.C.; Woolfson, A.D.; Sanderson, F.D. An examination of the rheological and mucoadhesive properties of poly (acrylic acid) organogels designed as platforms for local drug delivery to the oral cavity. J. Pharm. Sci. 2007, 96, 2632–2646. [Google Scholar] [CrossRef]
- Wang, S.; Kislalioglu, M.S.; Breuer, M. The effect of rheological properties of experimental moisturizing creams/lotions on their efficacy and perceptual attributes. Int. J. Cosmet. Sci. 1999, 21, 167–188. [Google Scholar] [CrossRef]
- Bonacucina, G.; Cespi, M.; Misici-Falzi, M.; Palmieri, F.G. Rheological evaluation of silicon/carbopol hydrophilic gel systems as a vehicle for delivery of water-insoluble drugs. AAPS J. 2008, 10, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Bonacucina, G.; Martelli, S.; Palmieri, G.F. Rheological, mucoadhesive and release properties of Carbopol gels in hydrophilic cosolvents. Int. J. Pharm. 2004, 282, 115–130. [Google Scholar] [CrossRef]
- Van Ooteghem, M. Préparations Ophtalmiques; Technique & Documentation: Paris, France, 1995. [Google Scholar]
- Kitagawa, S.; Fujiwara, M.; Okinaka, Y.; Yutani, R.; Teraoka, R. Effects of mixing procedure itself on the structure, viscosity, and spreadability of white petrolatum and salicylic acid ointment and the skin permeation of salicylic acid. Chem. Pharm. Bull. 2015, 63, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Shi, F.; Wang, L.; Yang, Y.; Khan, B.M.; Cheong, K.L.; Liu, Y. Preparation and evaluation of Bletilla striata polysaccharide/carboxymethyl chitosan/Carbomer 940 hydrogel for wound healing. Int. J. Biol. Macromol. 2019, 132, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, Y.; Li, J.; Qiao, H.; Di, L. Rheological and mucoadhesive properties of a polysaccharide from Bletilla striata with potential use in pharmaceutics as a bio-adhesive excipient. Int. J. Biol. Macromol. 2018, 120 Pt A, 529–536. [Google Scholar] [CrossRef]
- Baus, R.A.; Zahir-Jouzdani, F.; Dünnhaupt, S.; Atyabi, F.; Bernkop-Schnürch, A. Mucoadhesive hydrogels for buccal drug delivery: In vitro-in vivo correlation study. Eur. J. Pharm. Biopharm. 2019, 142, 498–505. [Google Scholar] [CrossRef] [PubMed]
- El-Mekawy, R.E.; Jassas, S.R. Recent trends in smart and flexible three-dimensional cross-linked polymers: Synthesis of chitosan-ZnO nanocomposite hydrogels for insulin drug delivery. Medchemcomm 2017, 28, 897–906. [Google Scholar] [CrossRef]
- Ban, J.; Zhang, Y.; Huang, X.; Deng, G.; Hou, D.; Chen, Y.; Lu, Z. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone. Int. J. Nanomed. 2017, 12, 1329–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Formula Acetazolamide (ACZ) | Molar Ratio | Formula Carvedilol (CAR) | ||||
---|---|---|---|---|---|---|
Non-Ionic Surfactant | Cholesterol | |||||
Span 20 | Span 60 | Tween 20 | Tween 60 | |||
A-S20-C6 | 7 | - | - | - | 6 | C-S20-C6 |
A-S20-C4 | 7 | - | - | - | 4 | C-S20-C4 |
A-S60-C6 | - | 7 | - | - | 6 | C-S60-C6 |
A-S60-C4 | - | 7 | - | - | 4 | C-S60-C4 |
A-T20-C6 | - | - | 7 | - | 6 | C-T20-C6 |
A-T20-C4 | - | - | 7 | - | 4 | C-T20-C4 |
A-T60-C6 | - | - | - | 7 | 6 | C-T60-C6 |
AT60-C4 | - | - | - | 7 | 4 | C-T60-C4 |
Formula Acetazolamide and Carvedilol | Molar Ratio | ||||
---|---|---|---|---|---|
Non-Ionic Surfactant | Cholesterol | ||||
Span 20 | Span 60 | Tween 20 | Tween 60 | ||
A+C-S20-C6 | 7 | - | - | - | 6 |
A+C-S20-C4 | 7 | - | - | - | 4 |
A+C-S60-C6 | - | 7 | - | - | 6 |
A+C-S60-C4 | - | 7 | - | - | 4 |
A+C-T20-C6 | - | - | 7 | - | 6 |
A+C-T20-C4 | - | - | 7 | - | 4 |
A+C-T60-C6 | - | - | - | 7 | 6 |
A+C-T60-C4 | - | - | - | 7 | 4 |
Formula | A: Surfactant Type | B: Surfactant to CHO | Entrapment Efficiency (%EE) | Particle Size (nm) | Zeta Potential |
---|---|---|---|---|---|
A-S20-C6 | Span 20 | 7:6 | 93.53 ± 0.15 | 628.95 ± 0.64 | 34.17 ± 0.58 |
C-S20-C6 | 7:6 | 92.55 ± 0.25 | 682.25 ± 0.34 | 33.22 ± 0.09 | |
A-S20-C4 | 7:4 | 92.99 ± 0.77 | 467.85 ± 0.92 | 33.66 ± 0.58 | |
C-S20-C4 | 7:4 | 92.43 ± 0.24 | 481.75 ± 0.64 | 39.33 ± 0.32 | |
A-S60-C6 | Span 60 | 7:6 | 97.75 ± 0.10 | 419.85 ± 0.63 | 69.39 ± 0.77 |
C-S60-C6 | 7:6 | 95.95 ± 0.13 | 416.40 ± 0.48 | 61.12 ± 0.36 | |
A-S60-C4 | 7:4 | 96.82 ± 0.18 | 543.70 ± 0.98 | 50.94 ± 0.16 | |
C-S60-C4 | 7:4 | 95.64 ± 0.27 | 477.25 ± 0.27 | 54.12 ± 0.80 | |
A-T20-C6 | Tween 20 | 7:6 | 91.03 ± 0.07 | 749.55 ± 0.33 | 28.54 ± 0.59 |
C-T20-C6 | 7:6 | 91.49 ± 0.32 | 633.80 ± 0.84 | 33.51 ± 0.65 | |
A-T20-C4 | 7:4 | 93.59 ± 0.53 | 877.40 ± 0.11 | 33.16 ± 0.88 | |
C-T20-C4 | 7:4 | 93.14 ± 0.54 | 815.55 ± 0.75 | 23.49 ± 0.38 | |
A-T60-C6 | Tween 60 | 7:6 | 90.54 ± 0.22 | 767.90 ± 0.85 | 31.15 ± 0.88 |
C-T60-C6 | 7:6 | 90.23 ± 0.06 | 732.60 ± 0.39 | 22.04 ± 0.33 | |
A-T60-C4 | 7:4 | 91.00 ± 0.23 | 882.05 ± 0.34 | 19.86 ± 0.54 | |
C-T60-C4 | 7:4 | 91.57 ± 0.35 | 840.65 ± 0.75 | 37.92 ± 0.61 | |
A+C-S20-C6 | Span 20 | 7:6 | 94.25 ± 0.33 | 459.59 ± 0.42 | 57.83 ± 0.34 |
A+C-S20-C4 | 7:4 | 94.53 ± 0.33 | 453.90 ± 0.35 | 58.73 ± 0.50 | |
A+C-S60-C6 | Span 60 | 7:6 | 97.91 ± 0.53 | 414.30 ± 0.23 | 72.04 ± 0.43 |
A+C-S60-C4 | 7:4 | 94.94 ± 0.06 | 434.21 ± 0.19 | 61.12 ± 0.70 | |
A+C-T20-C6 | Tween 20 | 7:6 | 92.51 ± 0.22 | 720.10 ± 0.53 | 43.31 ± 0.55 |
A+C-T20-C4 | 7:4 | 92.61 ± 0.37 | 757.30 ± 0.12 | 43.26 ± 0.32 | |
A+C-T60-C6 | Tween 60 | 7:6 | 91.90 ± 0.35 | 882.05 ± 0.34 | 39.26 ± 0.70 |
A+C-T60-C4 | 7:4 | 92.71 ± 0.45 | 840.65 ± 0.75 | 39.98 ± 0.55 |
Niosomes | Mucoadhesive Polymer | Cumulative Amount Permeated/Area at 24 h (µg/cm2) mean ± SD | Flux (Jss) (µg/cm2/h) | Permeability Coefficient (Kp) (cm/h) | Lag Time (tlag) (min.) |
---|---|---|---|---|---|
A-S60-C6 | - | 607.96 ± 30.33 | 53.28 ± 0.04 | 0.01 ± 0.45 | 4.23 ± 0.31 |
C-S60-C6 | - | 523.04 ± 34.03 | 54.43 ± 8.21 | 0.02 ± 0.25 | 4.76 ± 0.82 |
A+C-S60-C6 | - | 706.17 ± 30.33 | 72.96 ± 1.01 | 0.01 ± 0.43 | 3.53 ± 0.39 |
H-LV A+C-S60-C6 | HPMC-LV | 1370.75 ± 85.12 | 145.02 ± 4.05 | 0.02 ± 0.29 | 2.53 ± 0.11 |
Combination ACZ and CAR Solution | - | 393.07 ± 04.03 | 44.43 ± 4.21 | 0.02 ± 0.31 | 4.96 ± 0.92 |
Mucoadhesive Polymer | Formula | Appearance Consistency | Colour | Homogeneity | Precipitation | PH (mean ± SD) | Average % ACZ & CAR Conc. (mean ± SD) |
---|---|---|---|---|---|---|---|
Carpobol-HV | C-HV A+C-S60-C6 | Gel | White | Heterogeneous | Obvious | 5.80 ± 0.77 | 99.10 ± 1.61 98.80 ± 1.28 |
Carpobol-LV | C-LV A+C-S60-C6 | Gel | White | Homogenous | Nil | 5.83 ± 0.06 | 97.04 ± 1.76 98.12 ± 1.52 |
HPMC-HV | H-HV A+C-S60-C6 | Gel | White | Homogenous | Nil | 5.83 ± 0.29 | 99.41 ± 1.46 99.02 ± 1.28 |
HPMC-LV | H-LV A+C-S60-C6 | Gel | White | Homogenous | Nil | 5.92 ± 0.12 | 100.75 ± 1.17 100.70 ± 2.05 |
Formula | Gelling Agent | % Conc. | Farrow’s Constant (N) | Flow Index (n) | Consistency Index (ƞ) | Flow Behavior | ƞ Max. at (Min. Shear Rate) | ƞ Min. at (Max. Shear Rate) (mean ± SD) |
---|---|---|---|---|---|---|---|---|
C-HV A+C-S60-C6 | Carbopol-HV | 4% ± 0.30 | 20.06 ± 0.13 | 0.05 ± 0.01 | 648.63 ± 0.51 | Pseudoplastic | 64,773.33 ± 130.51 | 402.73 ± 3.47 |
C-LV A+C-S60-C6 | Carbopol-LV | 2% ± 0.13 | 45.73 ± 0.15 | 0.02 ± 0.01 | 786.49 ± 0.57 | Pseudoplastic | 183,666.67 ± 288.68 | 907.83 ± 2.75 |
H-HV A+C-S60-C6 | HPMC-HV | 4% ± 0.14 | 1.37 ± 0.04 | 0.72 ± 0.07 | 120.23 ± 0.31 | Pseudoplastic | 9306 ± 3.61 | 523 ± 2.65 |
H-LV A+C-S60-C6 | HPMC-LV | 2% ± 0.13 | 1.63 ± 0.08 | 0.55 ± 0.02 | 28.31 ± 0.22 | pseudoplastic | 2734.67 ± 4.93 | 79.60 ± 1.00 |
Parameters | GP1 | GP2 | GP3 | GP4 | GP5 |
---|---|---|---|---|---|
t½ (h) | 3.31 ± 0.71 | 4.15 ± 0.51 | 11.49 ± 0.93 | 2.73 ± 3.51 | 19.02 ± 0.87 |
tmax (min) | 30.00 ± 1.80 | 30.00 ± 2.42 | 30.00 ± 2.22 | 60.00 ± 2.13 | 60.00 ± 2.10 |
Cmax (µg/mL) | 4.53 ± 0.52 | 3.98 ± 0.32 | 5.13 ± 0.52 | 2.59 ± 2.23 | 6.52 ± 2.43 |
AUC (0–8) (µg h/mL) | 31.85 ± 2.70 | 31.99 ± 2.90 | 79.59 ± 2.73 | 29.49 ± 1.92 | 74.47 ± 1.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelmonem, R.; Elhabal, S.F.; Abdelmalak, N.S.; El-Nabarawi, M.A.; Teaima, M.H. Formulation and Characterization of Acetazolamide/Carvedilol Niosomal Gel for Glaucoma Treatment: In Vitro, and In Vivo Study. Pharmaceutics 2021, 13, 221. https://doi.org/10.3390/pharmaceutics13020221
Abdelmonem R, Elhabal SF, Abdelmalak NS, El-Nabarawi MA, Teaima MH. Formulation and Characterization of Acetazolamide/Carvedilol Niosomal Gel for Glaucoma Treatment: In Vitro, and In Vivo Study. Pharmaceutics. 2021; 13(2):221. https://doi.org/10.3390/pharmaceutics13020221
Chicago/Turabian StyleAbdelmonem, Rehab, Sammar F. Elhabal, Nevine S. Abdelmalak, Mohamed A. El-Nabarawi, and Mahmoud H. Teaima. 2021. "Formulation and Characterization of Acetazolamide/Carvedilol Niosomal Gel for Glaucoma Treatment: In Vitro, and In Vivo Study" Pharmaceutics 13, no. 2: 221. https://doi.org/10.3390/pharmaceutics13020221
APA StyleAbdelmonem, R., Elhabal, S. F., Abdelmalak, N. S., El-Nabarawi, M. A., & Teaima, M. H. (2021). Formulation and Characterization of Acetazolamide/Carvedilol Niosomal Gel for Glaucoma Treatment: In Vitro, and In Vivo Study. Pharmaceutics, 13(2), 221. https://doi.org/10.3390/pharmaceutics13020221