Development of Ultradeformable Liposomes with Fatty Acids for Enhanced Dermal Rosmarinic Acid Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Rosmarinic Acid Solution and Different Rosmarinic Acid-Loaded Liposomes
2.3. Characterization of Liposomes
2.3.1. Particle Size, Polydispersity Index (PDI), and Surface Charge
2.3.2. Transmission Electron Microscopy (TEM)
2.3.3. Entrapment Efficiency (% EE) and Loading Efficiency (% LE)
2.4. In Vitro Skin Penetration Study
2.4.1. Skin Preparation
2.4.2. Skin Penetration Study
2.5. Confocal Laser Scanning Microscopy (CLSM) Study
2.5.1. Preparation of Rhodamine B Base-Loaded NBD-PE-Labeled ULs
2.5.2. In Vitro Skin Penetration Study
2.5.3. Skin Cross-Sectioning
2.5.4. CLSM Visualization
2.6. High-Performance Liquid Chromatography (HPLC) Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Liposomes
3.2. In Vitro Skin Penetration Study
3.3. CLSM Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CL | Conventional liposomes |
ULs | Ultradeformable liposomes |
EE | Entrapment efficiency |
LE | Loading efficiency |
ER | Enhancement ratio |
References
- Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Bronze, R.; Duarte, C.M.; Serra, A.T.; Pinto, R.; Freitas, M.; et al. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin. Pharmacol. Toxicol. 2015, 116, 398–413. [Google Scholar] [CrossRef]
- Ding, H.-Y.; Chou, T.-H.; Liang, C.-H. Antioxidant and antimelanogenic properties of rosmarinic acid methyl ester from Origanum vulgare. Food Chem. 2010, 123, 254–262. [Google Scholar] [CrossRef]
- Fujimoto, A.; Shingai, Y.; Nakamura, M.; Maekawa, T.; Sone, Y.; Masuda, T. ChemInform Abstract: A Novel Ring-Expanded Product with Enhanced Tyrosinase Inhibitory Activity from Classical Fe-Catalyzed Oxidation of Rosmarinic Acid, a Potent Antioxidative Lamiaceae Polyphenol. Bioorg. Med. Chem. Lett. 2011, 42, 7393–7396. [Google Scholar] [CrossRef]
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Rosmarinic-acid (accessed on 1 December 2020).
- Naik, A.; Kalia, Y.N.; Guy, R.H. Transdermal drug delivery: Overcoming the skin’s barrier function. Pharm. Sci. Technol. Today 2000, 3, 318–326. [Google Scholar] [CrossRef]
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Stelmakiene, A.; Ramanauskienė, K.; Briedis, V. Release of rosmarinic acid from semisolid formulations and its penetration through human skin ex vivo. Acta Pharm. 2015, 65, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Hathout, R.M.; Nasr, M. Transdermal delivery of betahistine hydrochloride using microemulsions: Physical characterization, biophysical assessment, confocal imaging and permeation studies. Colloids Surfaces B Biointerfaces 2013, 110, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-H.; Lee, K.-K.; Park, M.-H.; Hyun, S.-S.; Kahn, S.-Y.; Joo, K.-S.; Kang, H.-C.; Kwon, W.-T. In vivo anti-melanogenesis activity and in vitro skin permeability of niacinamide-loaded flexible liposomes (Bounsphere™). J. Drug Deliv. Sci. Technol. 2016, 31, 147–152. [Google Scholar] [CrossRef]
- Liao, A.-H.; Lu, Y.-J.; Hung, C.-R.; Yang, M.-Y. Efficacy of transdermal magnesium ascorbyl phosphate delivery after ultrasound treatment with microbubbles in gel-type surrounding medium in mice. Mater. Sci. Eng. C 2016, 61, 591–598. [Google Scholar] [CrossRef]
- Song, J.; Fan, X.; Shen, Q. Daidzein-loaded nanostructured lipid carriers-PLGA nanofibers for transdermal delivery. Int. J. Pharm. 2016, 501, 245–252. [Google Scholar] [CrossRef]
- Pando, D.; Matos, M.; Gutiérrez, G.; Pazos, C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surfaces B Biointerfaces 2015, 128, 398–404. [Google Scholar] [CrossRef]
- Sammeta, S.M.; Repka, M.A.; Murthy, S.N. Magnetophoresis in combination with chemical enhancers for transdermal drug delivery. Drug Dev. Ind. Pharm. 2011, 37, 1076–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subongkot, T.; Duangjit, S.; Rojanarata, T.; Opanasopit, P.; Ngawhirunpat, T. Ultradeformable liposomes with terpenes for delivery of hydrophilic compound. J. Liposome Res. 2012, 22, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, M.C.; Froiio, F.; Spaccapelo, R.; Mancuso, A.; Nisticò, S.P.; Udongo, B.P.; Fresta, M.; Paolino, D. Sulforaphane-Loaded Ul-tradeformable Vesicles as A Potential Natural Nanomedicine for the Treatment of Skin Cancer Diseases. Pharmaceutics 2019, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Xie, Q.; Huang, X.; Ban, J.; Wang, B.; Wei, X.; Chen, Y.; Lu, Z. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery. Int. J. Nanomed. 2018, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2012, 64, 603–618. [Google Scholar] [CrossRef]
- Aungst, B.J.; Rogers, N.J.; Shefter, E. Enhancement of naloxone penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amides. Int. J. Pharm. 1986, 33, 225–234. [Google Scholar] [CrossRef]
- Aungst, B.J. Structure/Effect Studies of Fatty Acid Isomers as Skin Penetration Enhancers and Skin Irritants. Pharm. Res. 1989, 6, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Ghadiri, M.; Canney, F.; Pacciana, C.; Colombo, G.; Young, P.M.; Traini, D. The use of fatty acids as absorption enhancer for pul-monary drug delivery. Int. J. Pharm. 2018, 541, 93–100. [Google Scholar] [CrossRef]
- Trucillo, P.; Campardelli, R.; Reverchon, E. Antioxidant loaded emulsions entrapped in liposomes produced using a supercritical assisted technique. J. Supercrit. Fluids 2019, 154, 104626. [Google Scholar] [CrossRef]
- Subongkot, T.; Sirirak, T. Development and skin penetration pathway evaluation of microemulsions for enhancing the dermal delivery of celecoxib. Colloids Surfaces B Biointerfaces 2020, 193, 111103. [Google Scholar] [CrossRef]
- Chain, E.; Kemp, I. The isoelectric points of lecithin and sphingomyelin. Biochem. J. 1934, 28, 2052–2055. [Google Scholar] [CrossRef] [Green Version]
- Gomez, A.G.; Syed, S.; Marshall, K.; Hosseinidoust, Z. Liposomal Nanovesicles for Efficient Encapsulation of Staphylococcal Anti-biotics. ACS Omega 2019, 4, 10866–10876. [Google Scholar] [CrossRef] [PubMed]
- Lampe, M.A.; Burlingame, A.L.; Whitney, J.; Williams, M.L.; Brown, B.E.; Roitman, E.; Elias, P.M. Human stratum corneum lipids: Char-acterization and regional variations. J. Lipid. Res. 1983, 24, 120–130. [Google Scholar] [CrossRef]
- van Smeden, J.; Bouwstra, J.A. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients. Curr. Probl. Dermatol. 2016, 49, 8–26. [Google Scholar] [PubMed]
- Harada, K.; Murakami, T.; Yata, N.; Yamamoto, S. Role of Intercellular Lipids in Stratum Corneum in the Percutaneous Permeation of Drugs. J. Investig. Dermatol. 1992, 99, 278–282. [Google Scholar] [CrossRef] [Green Version]
- Sheu, H.M.; Lee, J.Y.; Chai, C.Y.; Kuo, K.W. Depletion of stratum corneum intercellular lipid lamellae and barrier function abnor-malities after long-term topical corticosteroids. Br. J. Dermatol. 1997, 136, 884–890. [Google Scholar] [CrossRef]
- Ngawhirunpat, T.; Subongkot, T.; Rojanarata, T.; Opanasopit, P.; Pamornpathomkul, B. Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes. Int. J. Nanomed. 2014, 9, 3539–3550. [Google Scholar] [CrossRef] [Green Version]
- Golden, G.M.; McKie, J.E.; Potts, R.O. Role of Stratum Corneum Lipid Fluidity in Transdermal Drug Flux. J. Pharm. Sci. 1987, 76, 25–28. [Google Scholar] [CrossRef]
- Ongpipattanakul, B.; Burnette, R.R.; Potts, R.O.; Francoeur, M.L. Evidence that Oleic Acid Exists in a Separate Phase Within Stratum Corneum Lipids. Pharm. Res. 1991, 8, 350–354. [Google Scholar] [CrossRef]
- Lane, M.E. Skin penetration enhancers. Int. J. Pharm. 2013, 447, 12–21. [Google Scholar] [CrossRef]
- Shigeta, Y.; Imanaka, H.; Ando, H.; Ryu, A.; Oku, N.; Baba, N.; Makino, T. Skin Whitening Effect of Linoleic Acid Is Enhanced by Liposomal Formulations. Biol. Pharm. Bull. 2004, 27, 591–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subongkot, T.; Wonglertnirant, N.; Songprakhon, P.; Rojanarata, T.; Opanasopit, P.; Ngawhirunpat, T. Visualization of ultrade-formable liposomes penetration pathways and their skin interaction by confocal laser scanning microscopy. Int. J. Pharm. 2013, 441, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm. 2018, 535, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Marwah, H.; Garg, T.; Goyal, A.K.; Rath, G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2016, 23, 564–578. [Google Scholar] [CrossRef] [PubMed]
- Moser, K.; Kriwet, K.; Naik, A.; Kalia, Y.N.; Guy, R.H. Passive skin penetration enhancement and its quantification in vitro. Eur. J. Pharm. Biopharm. 2001, 52, 103–112. [Google Scholar] [CrossRef]
- Carrer, D.C.; Vermehren, C.; Bagatolli, L.A. Pig skin structure and transdermal delivery of liposomes: A two photon microscopy study. J. Control. Release 2008, 132, 12–20. [Google Scholar] [CrossRef] [PubMed]
Formulations | Rosmarinic Acid (% w/v) | Phospholipid (% w/v) | Cholesterol (% w/v) | Tween 20 (% w/v) | Fatty Acids (% w/v) | Water (mL) |
---|---|---|---|---|---|---|
Conventional liposomes (CL) | 0.13 | 0.69 | 0.078 | - | - | qs 100 |
Ultradeformable liposomes (ULs) | 0.13 | 0.69 | 0.078 | 2 | - | qs 100 |
ULs with oleic acid | 0.13 | 0.69 | 0.078 | 2 | 0.5 | qs 100 |
ULs with linoleic acid | 0.13 | 0.69 | 0.078 | 2 | 0.5 | qs 100 |
ULs with linolenic acid | 0.13 | 0.69 | 0.078 | 2 | 0.5 | qs 100 |
Formulations | Particle Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
CL | 130 ± 5.1 | 0.40 ± 0.07 | −2.89 ± 0.37 |
ULs | 71 ± 7.5 | 0.28 ± 0.024 | –2.54 ± 0.58 |
ULs with oleic acid | 60 ± 17.3 | 0.32 ± 0.1 | –18.03 ± 0.35 |
ULs with linoleic acid | 50 ± 0.3 | 0.24 ± 0.008 | –14.87 ± 0.86 |
ULs with linolenic acid | 53 ± 2.3 | 0.27 ± 0.014 | –13.20 ± 0.70 |
Formulations | Stratum Corneum (mcg/cm2) | Deeper Skin (mcg/cm2) | ER |
---|---|---|---|
Solution | 2.70 ± 0.53 | 0.19 ± 0.03 | - |
ULs | 0.38 ± 0.16 | 0.43 ± 0.22 | 2.26 |
ULs with 0.5% oleic acid | 1.13 ± 0.10 | 1.76 ± 0.41 * | 9.26 |
ULs with 0.5% linoleic acid | 0.46 ± 0.16 | 1.40 ± 0.72 | 7.37 |
ULs with 0.5% linolenic acid | 1.91 ± 0.64 | 1.11 ± 0.99 | 5.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subongkot, T.; Ngawhirunpat, T.; Opanasopit, P. Development of Ultradeformable Liposomes with Fatty Acids for Enhanced Dermal Rosmarinic Acid Delivery. Pharmaceutics 2021, 13, 404. https://doi.org/10.3390/pharmaceutics13030404
Subongkot T, Ngawhirunpat T, Opanasopit P. Development of Ultradeformable Liposomes with Fatty Acids for Enhanced Dermal Rosmarinic Acid Delivery. Pharmaceutics. 2021; 13(3):404. https://doi.org/10.3390/pharmaceutics13030404
Chicago/Turabian StyleSubongkot, Thirapit, Tanasait Ngawhirunpat, and Praneet Opanasopit. 2021. "Development of Ultradeformable Liposomes with Fatty Acids for Enhanced Dermal Rosmarinic Acid Delivery" Pharmaceutics 13, no. 3: 404. https://doi.org/10.3390/pharmaceutics13030404
APA StyleSubongkot, T., Ngawhirunpat, T., & Opanasopit, P. (2021). Development of Ultradeformable Liposomes with Fatty Acids for Enhanced Dermal Rosmarinic Acid Delivery. Pharmaceutics, 13(3), 404. https://doi.org/10.3390/pharmaceutics13030404