A Novel Polymer Insect Repellent Conjugate for Extended Release and Decreased Skin Permeation of Para-Menthane-3,8-Diol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of Monomer–PMD Conjugate
2.2.2. Synthesis of Copolymers
2.2.3. Molecular Weight and Molecular Weight Distribution of the Copolymers
2.2.4. Reactivity Ratio Determination
2.2.5. Thermal Analysis
2.2.6. In Vitro Hydrolysis of the Copolymer by Porcine Liver Esterases (PLEs)
2.2.7. In Vitro Hydrolysis of Monomer Drug Conjugate (APMD) by PLEs
2.2.8. In Vitro Hydrolysis with Enzyme Replenishment
2.2.9. Skin Preparation
2.2.10. Skin Permeation and Uptake Studies
2.2.11. Toxicity Testing Using a Planarian Fluorescent Assay
3. Results and Discussion
3.1. Synthesis of Monomer Drug Conjugate (APMD)
3.2. Synthesis of Poly(AA-co-APMD)
3.3. Copolymer Composition and Monomer Reactivity Ratios
3.4. Molecular Weight Characterisation
3.5. Thermal Analysis
3.6. Analysis of PMD
3.7. In Vitro Hydrolysis of the Copolymer
3.8. In Vitro Skin Penetration and Permeation
3.9. Toxicity Testing of the Copolymer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maia, M.F.; Moore, S.J. Plant-based insect repellents: A review of their efficacy, development and testing. Malar. J. 2011, 10 (Suppl. 1), S11. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, S.D.; Drake, L.L.; Price, D.P.; Hammond, J.I.; Hansen, I.A. The efficacy of some commercially available insect repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae). J. Insect Sci. 2015, 15, 140–144. [Google Scholar] [CrossRef]
- Brown, M.B.; Williams, A.C. The Art and Science of Dermal Formulation Development; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Riviere, J.; Baynes, R.; Brooks, J.; Yeatts, J.; Monteiro-Riviere, N. Percutaneous absorption of topical N,N-diethyl-m-toluamide (Deet): Effects of exposure variables and coadministered toxicants. J. Toxicol. Environ. Health Part A 2003, 66, 133–151. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Takeda, Y.; Yoshida, M.; Matsumoto, M.; Watanabe, Y. Enhancement effect of p-menthane-3,8-diol on in vitro permeation of antipyrine and indomethacin through Yucatan micropig skin. Drug Dev. Ind. Pharm. 2004, 30, 673–677. [Google Scholar] [CrossRef]
- Barradas, T.N.; Senna, J.P.; Junior, E.R.; Mansur, C.R.E. Polymer-based drug delivery systems applied to insects repellents devices: A review. Curr. Drug Deliv. 2016, 13, 221–235. [Google Scholar] [CrossRef]
- Katz, T.M.; Miller, J.H.; Hebert, A.A. Insect repellents: Historical perspectives and new developments. J. Am. Acad. Dermatol. 2008, 58, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Salafsky, B.; Ramaswamy, K.; He, Y.X.; Li, J.; Shibuya, T. Development and evaluation of LIPODEET, a new long-acting formulation of N, N-diethyl-m-toluamide (DEET) for the prevention of schistosomiasis. Am. J. Trop. Med. Hyg. 1999, 61, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Jing, H.; Weijun, D.; Liqin, L.; Zuobing, X. Synthesis and application of polyacrylate nanocapsules loaded with lilial. J. Appl. Polym. Sci. 2014, 131, 40182. [Google Scholar] [CrossRef]
- Solomon, B.; Sahle, F.F.; Gebre-Mariam, T.; Asres, K.; Neubert, R.H.H. Microencapsulation of citronella oil for mosquito-repellent application: Formulation and in vitro permeation studies. Eur. J. Pharm. Biopharm. 2012, 80, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.M.; White, A.W.; Heard, C.M. Topical delivery of a naproxen-dithranol co-drug: In vitro skin penetration, permeation, and staining. Pharm. Res. 2010, 27, 2734–2742. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.I.; Williams, A.C.; Lau, W.M.; Khutoryanskiy, V.V. Planarian toxicity fluorescent assay: A rapid and cheap pre-screening tool for potential skin irritants. Toxicol. In Vitro 2020, 69, 105004. [Google Scholar] [CrossRef]
- Paulsen, K.; Frasco, D.; Zhu, Y. Qualitative and Quantitative Analysis of the Polymerization of PS- b -P t BA Block Copolymer Using picoSpin 80 NMR. Themroscientific Application Note. Available online: https://assets.thermofisher.com/TFS-Assets/CAD/Application-Notes/Polymerization-App-Note-r17-03-06.pdf (accessed on 4 January 2021).
- Ekpenyong, K.I. Monomer reactivity ratios: Acrylic acid-methylmethacrylate copolymerization in dimethylsulfoxide. J. Chem. Educ. 1985, 62, 173. [Google Scholar] [CrossRef]
- Erbil, C.; Terlan, B.; Akdemir, Ö.; Gökçeören, A.T. Monomer reactivity ratios of N-isopropylacrylamide–itaconic acid copolymers at low and high conversions. Eur. Polym. J. 2009, 45, 1728–1737. [Google Scholar] [CrossRef]
- Abbasi, R.; Nodehi, A.; Atai, M. Synthesis of poly(acrylic-co-itaconic acid) through precipitation photopolymerization for glass-ionomer cements: Characterization and properties of the cements. Dent. Mater. 2020, 36, e169–e183. [Google Scholar] [CrossRef]
- Tüdos, F.; Földes-Berezsnich, T. Free-radical polymerization: Inhibition and retardation. Prog. Polym. Sci. 1989, 14, 717–761. [Google Scholar] [CrossRef]
- Krivorotova, T.; Radzevicius, P.; Makuska, R. Synthesis and characterization of anionic pentablock brush copolymers bearing poly(acrylic acid) side chains on the brush blocks separated by linear poly(butyl methacrylate) blocks. Eur. Polym. J. 2015, 66, 543–557. [Google Scholar] [CrossRef]
- McNeill, I.C.; Sadeghi, S.M.T. Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: Part 1—Poly(acrylic acid). Polym. Degrad. Stab. 1990, 29, 233–246. [Google Scholar] [CrossRef]
- Wong, C.L.H.; Kim, J.; Torkelson, J.M. Breadth of glass transition temperature in styrene/acrylic acid block, random, and gradient copolymers: Unusual sequence distribution effects. J. Polym. Sci. B Polym. Phys. 2007, 45, 2842–2849. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, X.; Zhou, Y.; Guo, Z. Extraction and determination of volatile constituents in leaves of Eucalyptus citriodora. Se Pu Chin. J. Chromatogr. 2005, 23, 651–654. [Google Scholar]
- D’Souza, A.J.M.; Topp, E.M. Release from polymeric prodrugs: Linkages and their degradation. J. Pharm. Sci. 2004, 93, 1962–1979. [Google Scholar] [CrossRef]
- Tallury, P.; Airrabeelli, R.; Li, J.; Paquette, D.; Kalachandra, S. Release of antimicrobial and antiviral drugs from methacrylate copolymer system: Effect of copolymer molecular weight and drug loading on drug release. Dent. Mater. 2008, 24, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Pitt, C.G.; Shah, S.S. Manipulation of the rate of hydrolysis of polymer-drug conjugates: The secondary structure of the polymer. J. Control. Release 1996, 39, 221–229. [Google Scholar] [CrossRef]
- Seeman, J.I.; Viers, J.W.; Schug, J.C.; Stovall, M.D. Correlation of nonadditive kinetic effects with molecular geometries. Structure and reactivity of alkyl- and cycloalkenylpyridines. J. Am. Chem. Soc. 1984, 106, 143–151. [Google Scholar] [CrossRef]
- Larsen, C. Macromolecular prodrugs. XII. Kinetics of release of naproxen from various polysaccharide ester prodrugs in neutral and alkaline solution. Int. J. Pharm. 1989, 51, 233–240. [Google Scholar] [CrossRef]
- Shah, S.S.; Kulkarni, M.G.; Mashelkar, R.A. Release kinetics of pendant substituted bioactive molecules from swellable hydrogels: Role of chemical reaction and diffusive transport. J. Memb. Sci. 1990, 51, 83–104. [Google Scholar] [CrossRef]
- Wang, L.F.; Chiang, H.N.; Chen, W.B. Synthesis and properties of a naproxen polymeric prodrug. J. Pharm. Pharmacol. 2002, 54, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
Feed Molar Ratio (AA/APMD) | Mw | Mw/Mn |
---|---|---|
10:90 | 1800 | 2.1 |
30:70 | 6200 | 2.9 |
50:50 | 11,500 | 3.1 |
70:30 | 29,200 | 3.3 |
90:10 | 53,100 | 3.4 |
Poly(acrylic acid) (PAA) (100:0) | 252,000 | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.I.; Khutoryanskiy, V.V.; Williams, A.C. A Novel Polymer Insect Repellent Conjugate for Extended Release and Decreased Skin Permeation of Para-Menthane-3,8-Diol. Pharmaceutics 2021, 13, 403. https://doi.org/10.3390/pharmaceutics13030403
Shah SI, Khutoryanskiy VV, Williams AC. A Novel Polymer Insect Repellent Conjugate for Extended Release and Decreased Skin Permeation of Para-Menthane-3,8-Diol. Pharmaceutics. 2021; 13(3):403. https://doi.org/10.3390/pharmaceutics13030403
Chicago/Turabian StyleShah, Sayyed I., Vitaliy V. Khutoryanskiy, and Adrian C. Williams. 2021. "A Novel Polymer Insect Repellent Conjugate for Extended Release and Decreased Skin Permeation of Para-Menthane-3,8-Diol" Pharmaceutics 13, no. 3: 403. https://doi.org/10.3390/pharmaceutics13030403
APA StyleShah, S. I., Khutoryanskiy, V. V., & Williams, A. C. (2021). A Novel Polymer Insect Repellent Conjugate for Extended Release and Decreased Skin Permeation of Para-Menthane-3,8-Diol. Pharmaceutics, 13(3), 403. https://doi.org/10.3390/pharmaceutics13030403