3D Bioprinted Scaffolds Containing Mesenchymal Stem/Stromal Lyosecretome: Next Generation Controlled Release Device for Bone Regenerative Medicine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Lyosecretome Preparation and Characterization
2.2.1. MSC Culture and Secretome Collection
2.2.2. MSC Secretome Ultrafiltration and Lyophilization
2.2.3. Lyosecretome Protein and Lipid Content
2.3. PCL Scaffold Preparation and Lyosecretome Loading
2.3.1. Printing of PCL Scaffolds and Lyosecretome Loading (PCL)
2.3.2. 3D Coprinting of PCL Scaffolds with Alginate Hydrogels (PCL-Alg6, PCL-Alg10, PCL-Alg10p, cPCL-Alg6, cPCL-Alg10, and cPCL-Alg10p)
2.3.3. Morphological and Structural Characterizations by Scanning Electron Microscopy (SEM)
2.3.4. Drug Release Studies
2.3.5. Drug Release Kinetic Study
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langer, R.; Vacanti, J. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Salazar, M.; Gonzalez-Galofre, Z.N.; Casamitjana, J.; Crisan, M.; James, A.W.; Péault, B. Five Decades Later, Are Mesenchymal Stem Cells Still Relevant? Front. Bioeng. Biotechnol. 2020, 8, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, A.J.; Grande, D.A.; Dines, J.S. The use of mesenchymal stem cells in tissue engineering: A global assessment. Organogenesis 2008, 4, 23–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caplan, A.I. What’s in a Name? Tissue Eng. Part A 2010, 16, 2415–2417. [Google Scholar] [CrossRef] [Green Version]
- Gnecchi, M.; He, H.; Liang, O.D.; Melo, L.G.; Morello, F.; Mu, H.; Noiseux, N.; Zhang, L.; Pratt, R.E.; Ingwall, J.S.; et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 2005, 11, 367–368. [Google Scholar] [CrossRef]
- Crivelli, B.; Chlapanidas, T.; Perteghella, S.; Lucarelli, E.; Pascucci, L.; Brini, A.T.; Ferrero, I.; Marazzi, M.; Pessina, A.; Torre, M.L.; et al. Mesenchymal stem/stromal cell extracellular vesicles: From active principle to next generation drug delivery system. J. Control. Release 2017, 262, 104–117. [Google Scholar] [CrossRef]
- Bari, E.; Ferrarotti, I.; Torre, M.L.; Corsico, A.G.; Perteghella, S. Mesenchymal stem/stromal cell secretome for lung regeneration: The long way through “pharmaceuticalization” for the best formulation. J. Control. Release 2019, 309, 11–24. [Google Scholar] [CrossRef]
- Bari, E.; Ferrarotti, I.; Saracino, L.; Perteghella, S.; Torre, M.L.; Corsico, A.G. Mesenchymal Stromal Cell Secretome for Severe COVID-19 Infections: Premises for the Therapeutic Use. Cells 2020, 9, 924. [Google Scholar] [CrossRef] [Green Version]
- Bari, E.; Perteghella, S.; Di Silvestre, D.; Sorlini, M.; Catenacci, L.; Sorrenti, M.; Marrubini, G.; Rossi, R.; Tripodo, G.; Mauri, P.; et al. Pilot Production of Mesenchymal Stem/Stromal Freeze-Dried Secretome for Cell-Free Regenerative Nanomedicine: A Validated GMP-Compliant Process. Cells 2018, 7, 190. [Google Scholar] [CrossRef] [Green Version]
- Bari, E.; Perteghella, S.; Catenacci, L.; Sorlini, M.; Croce, S.; Mantelli, M.; Avanzini, M.A.; Sorrenti, M.; Torre, M.L. Freeze-dried and GMP-compliant pharmaceuticals containing exosomes for acellular mesenchymal stromal cell immunomodulant therapy. Nanomedicine 2019, 14, 753–765. [Google Scholar] [CrossRef]
- Bari, E.; Ferrarotti, I.; Di Silvestre, D.; Grisoli, P.; Barzon, V.; Balderacchi, A.; Torre, M.L.; Rossi, R.; Mauri, P.; Corsico, A.G.; et al. Adipose Mesenchymal Extracellular Vesicles as Alpha-1-Antitrypsin Physiological Delivery Systems for Lung Regeneration. Cells 2019, 8, 965. [Google Scholar] [CrossRef] [Green Version]
- Perteghella, S.; Bari, E.; Chlapanidas, T.; Sorlini, M.; De Girolamo, L.; Perucca Orfei, C.; Viganò, M.; Torre, M.L. Process for Isolating and Lyophilizing Extracellular Vesicles. PCT/IB2017/056591, 28 October 2016. [Google Scholar]
- Fan, D.; Staufer, U.; Accardo, A. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering 2019, 6, 113. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral Biol. Craniofacial Res. 2020, 10, 381–388. [Google Scholar] [CrossRef]
- Jun, I.; Han, H.-S.; Edwards, J.R.; Jeon, H. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int. J. Mol. Sci. 2018, 19, 745. [Google Scholar] [CrossRef] [Green Version]
- Sofokleous, P.; Chin, M.H.; Day, R. Phase-separation technologies for 3D scaffold engineering. In Functional 3D Tissue Engineering Scaffolds—Materials, Technologies and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 101–126. [Google Scholar] [CrossRef]
- Fereshteh, Z. Freeze-drying technologies for 3D scaffold engineering. In Functional 3D Tissue Engineering Scaffolds—Materials, Technologies and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 151–174. [Google Scholar]
- Peck, M.; Dusserre, N.; McAllister, T.N.; L’Heureux, N. Tissue engineering by self-assembly. Mater. Today 2011, 14, 218–224. [Google Scholar] [CrossRef]
- Muwaffak, Z.; Goyanes, A.; Clark, V.; Basit, A.W.; Hilton, S.T.; Gaisford, S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int. J. Pharm. 2017, 527, 161–170. [Google Scholar] [CrossRef]
- Soufivand, A.A.; Abolfathi, N.; Hashemi, A.; Lee, S.J. The effect of 3D printing on the morphological and mechanical properties of polycaprolactone filament and scaffold. Polym. Adv. Technol. 2020, 31, 1038–1046. [Google Scholar] [CrossRef]
- Huang, R.-L.; Kobayashi, E.; Liu, K.; Li, Q. Bone Graft Prefabrication Following the In Vivo Bioreactor Principle. EBioMedicine 2016, 12, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Alaribe, F.N.; Manoto, S.L.; Motaung, S.C. Scaffolds from biomaterials: Advantages and limitations in bone and tissue engineering. Biologia 2016, 71, 353–366. [Google Scholar] [CrossRef]
- Diomede, F.; Gugliandolo, A.; Cardelli, P.; Merciaro, I.; Ettorre, V.; Traini, T.; Bedini, R.; Scionti, D.; Bramanti, A.; Nanci, A.; et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: A new tool for bone defect repair. Stem Cell Res. Ther. 2018, 9, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Zheng, L.; Wang, Y.; Tao, M.; Xie, Z.; Xia, C.; Gu, C.; Chen, J.; Qiu, P.; Mei, S.; et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics 2019, 9, 2439–2459. [Google Scholar] [CrossRef] [PubMed]
- Presen, D.M.; Traweger, A.; Gimona, M.; Redl, H. Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Front. Bioeng. Biotechnol. 2019, 7, 352. [Google Scholar] [CrossRef] [PubMed]
- Bari, E.; Di Silvestre, D.; Mastracci, L.; Grillo, F.; Grisoli, P.; Marrubini, G.; Nardini, M.; Mastrogiacomo, M.; Sorlini, M.; Rossi, R.; et al. GMP-compliant sponge-like dressing containing MSC lyo-secretome: Proteomic network of healing in a murine wound model. Eur. J. Pharm. Biopharm. 2020, 155, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Silva, E.A.; Mooney, D.J. Growth factor delivery-based tissue engineering: General approaches and a review of recent developments. J. R. Soc. Interface 2011, 8, 153–170. [Google Scholar] [CrossRef] [Green Version]
- Holkar, K.; Vaidya, A.; Pethe, P.; Kale, V.; Ingavle, G. Biomaterials and extracellular vesicles in cell-free therapy for bone repair and regeneration: Future line of treatment in regenerative medicine. Materialia 2020, 12, 100736. [Google Scholar] [CrossRef]
- MacCurdy, R.; Katzschmann, R.; Kim, Y.; Rus, D. Printable Hydraulics: A Method for Fabricating Robots by 3D Co-Printing Solids and Liquids. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3878–3885. [Google Scholar]
- Kang, H.-W.; Lee, S.J.; Ko, I.K.; Kengla, C.; Yoo, J.J.; Atala, A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 2016, 34, 312–319. [Google Scholar] [CrossRef]
- Samavedi, S.; Joy, N. 3D printing for the development of in vitro cancer models. Curr. Opin. Biomed. Eng. 2017, 2, 35–42. [Google Scholar] [CrossRef]
- Groll, J.; Burdick, J.A.; Cho, D.-W.; Derby, B.; Gelinsky, M.; Heilshorn, S.C.; Jüngst, T.; Malda, J.; Mironov, V.A.; Nakayama, K.; et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication 2019, 11, 013001. [Google Scholar] [CrossRef]
- Faustini, M.; Bucco, M.; Chlapanidas, T.; Lucconi, G.; Marazzi, M.; Tosca, M.C.; Gaetani, P.; Klinger, M.; Villani, S.; Ferretti, V.V.; et al. Nonexpanded Mesenchymal Stem Cells for Regenerative Medicine: Yield in Stromal Vascular Fraction from Adipose Tissues. Tissue Eng. Part C Methods 2010, 16, 1515–1521. [Google Scholar] [CrossRef]
- Gaetani, P.; Torre, M.L.; Klinger, M.; Faustini, M.; Crovato, F.; Bucco, M.; Marazzi, M.; Chlapanidas, T.; Levi, D.; Tancioni, F.; et al. Adipose-Derived Stem Cell Therapy for Intervertebral Disc Regeneration: AnIn VitroReconstructed Tissue in Alginate Capsules. Tissue Eng. Part A 2008, 14, 1415–1423. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Telang, C.; Yu, L.; Suryanarayanan, R. Effective inhibition of mannitol crystallization in frozen solutions by sodium chloride. Pharm. Res. 2003, 20, 660–667. [Google Scholar] [CrossRef]
- Caccavo, D. An overview on the mathematical modeling of hydrogels’ behavior for drug delivery systems. Int. J. Pharm. 2019, 560, 175–190. [Google Scholar] [CrossRef]
- Chen, C.; Han, D.; Cai, C.; Tang, X. An overview of liposome lyophilization and its future potential. J. Control. Release 2010, 142, 299–311. [Google Scholar] [CrossRef]
- Costa, P.F. Bone Tissue Engineering Drug Delivery. Curr. Mol. Biol. Rep. 2015, 1, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Dumortier, G.; Grossiord, J.L.; Agnely, F.; Chaumeil, J.C. A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics. Pharm. Res. 2006, 23, 2709–2728. [Google Scholar] [CrossRef]
- Wang, P.L.; Johnston, T.P. Enhanced stability of two model proteins in an agitated solution environment using poloxamer 407. J. Parenter. Sci. Technol. 1993, 47, 183–189. [Google Scholar]
- Katakam, M.; Banga, A.K. Use of Poloxamer Polymers to Stabilize Recombinant Human Growth Hormone Against Various Processing Stresses. Pharm. Dev. Technol. 1997, 2, 143–149. [Google Scholar] [CrossRef]
- Vigo, D.; Faustini, M.; Torre, M.L.; Pecile, A.; Villani, S.; Asti, A.; Norberti, R.; Maggi, L.; Conte, U.; Cremonesi, F.; et al. Boar semen controlled-delivery system: Morphological investigation and in vitro fertilization test. Reprod. Fertil. Dev. 2002, 14, 307. [Google Scholar] [CrossRef]
- Peppas, N.A.; Narasimhan, B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. J. Control. Release 2014, 190, 75–81. [Google Scholar] [CrossRef]
- Peppas, N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 1985, 60, 110–111. [Google Scholar] [PubMed]
- Tamjid, E.; Bohlouli, M.; Mohammadi, S.; Alipour, H.; Nikkhah, M. Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing. J. Biomed. Mater. Res. Part A 2020, 108, 1426–1438. [Google Scholar] [CrossRef]
- Yilgor, P.; Yilmaz, G.; Onal, M.B.; Solmaz, I.; Gundogdu, S.; Keskil, S.; Sousa, R.A.; Reis, R.L.; Hasirci, N.; Hasirci, V. Anin vivostudy on the effect of scaffold geometry and growth factor release on the healing of bone defects. J. Tissue Eng. Regen. Med. 2013, 7, 687–696. [Google Scholar] [CrossRef]
- Chew, S.A.; Arriaga, M.A.; Hinojosa, V.A. Effects of surface area to volume ratio of PLGA scaffolds with different architectures on scaffold degradation characteristics and drug release kinetics. J. Biomed. Mater. Res. Part A 2016, 104, 1202–1211. [Google Scholar] [CrossRef]
- Panyam, J.; Dali, M.M.; Sahoo, S.K.; Ma, W.; Chakravarthi, S.S.; Amidon, G.L.; Levy, R.J.; Labhasetwar, V. Polymer degradation and in vitro release of a model protein from poly(d,l-lactide-co-glycolide) nano- and microparticles. J. Control. Release 2003, 92, 173–187. [Google Scholar] [CrossRef]
3D Printer Operational Variable | PCL | Lyosecretome-Laden Alginate | |
---|---|---|---|
6% (w/v) | 10% (w/v) | ||
Extrusion pressure (kPa) | 85 | 10 | 20 |
Conical nozzle diameter (mm) | 0.5 | 0.41 | |
Printing speed (mm/min) | 45 | 600 | |
Printing temperature | 90 °C | Room temperature |
3D Scaffold | Layer Height (mm) | Fiber Distance (mm) |
---|---|---|
Reference model | 0.35 | 0.37 |
Printed (mean ± std. dev) | 0.35 ± 0.02 | 0.34 ± 0.06 |
Scaffold | Proteins (µg) | Lipids (µg) |
---|---|---|
PCL-Alg6 | 188.68 ± 18.386 | 25.00 ± 7.042 |
PCL-Alg10 | 104.52 ± 16.977 | 55.10 ± 11.588 |
PCL-Alg10p | 538.63 ± 11.729 | 131.63 ± 15.715 |
3D Scaffold | Layer Height (mm) | Fibers Distance (mm) |
---|---|---|
Reference model | 0.35 | 0.4 |
Printed (mean ± std. dev) | 0.33 ± 0.03 | 0.38 ± 0.05 |
Scaffold | Proteins (µg) | Lipids (µg) |
---|---|---|
cPCL-Alg6 | 218.75 ± 243.383 | 69.82 ± 76.169 |
cPCL-Alg10 | 342.66 ± 39.920 | 85.77 ± 0.0521 |
cPCL-Alg10p | 543.97 ± 105.892 | 37.86 ± 28.954 |
Model | Equation | Sample | Proteins/Lipids | Coefficients (95% Confidence Bounds) | Sum of Squares | R2 | Degrees of Freedom | SE |
---|---|---|---|---|---|---|---|---|
Ritger–Peppas | F(t) = k × tn | PCL | Proteins | k = 79.99 (77.02, 82.96) n = 0.05101 (0.03735, 0.06487) | 716.4 | 0.9698 | 31 | k 1.449 n 0.006697 |
Lipids | k = 95.38 (89.26, 101.5) n = 0.0322 (0.008344, 0.05660) | 3145 | 0.9026 | 31 | k 3.044 n 0.01204 | |||
PCL-Alg6 | Proteins | k = 84.66 (80.32, 89.01) n = 0.05194 (0.03319, 0.07108) | 1558 | 0.9434 | 31 | k 2.136 n 0.00932 | ||
Lipids | k = 70.22 (64.70, 75.79) n = 0.1097 (0.08268, 0.1378) | 1107 | 0.9442 | 20 | k 2.708 n 0.01351 | |||
PCL-Alg10 | Proteins | k = 68.7 (63.49, 75.79) n = 0.1166 (0.09065, 0.1435) | 2393 | 0.9225 | 31 | k 2.607 n 0.01322 | ||
Lipids | k = 35.57 (32.07, 39.14) n = 0.2775 (0.2470, 0.3098) | 1301 | 0.9622 | 31 | k 1.782 n 0.01585 | |||
PCL-Alg10p | Proteins | k = 21.9 (14.7, 28.7) n = 0.1835 (0.1157, 0.2611) | 492,356 | 0.6315 | 31 | k 34.81 n 0.03748 | ||
Lipids | k = 34.09 (18.84, 53.25) n = 0.2648 (0.1645, 0.3881) | 46,372 | 0.5897 | 31 | k 9.229 n 0.05876 | |||
cPCL-ALg6 | Proteins | k = 29.03 (3.229, 88.22) n = 0.4657 (0.1563, 0.9889) | 271,193 | 0.3611 | 31 | k 23.17 n 0.2043 | ||
Lipids | k = 3.949 (0.2132, 17.73) n = 0.6505 (0.2522, 1.328) | 23,253 | 0.4061 | 31 | k 4.294 n 0.2682 | |||
cPCL-Alg10 | Proteins | k = 39.99 (27.29, 55.59) n = 0.4998 (0.4152, 0.5948) | 35,392 | 0.9223 | 31 | k 7.771 n 0.04934 | ||
Lipids | k = 4.533 (3.162, 6.269) n = 0.6616 (0.5811, 0.7492) | 882.3 | 0.9628 | 31 | k 0.8106 n 0.04402 | |||
cPCL-Alg10p | Proteins | k = 21.8 (19.6, 24.8) n = 0.1667 (0.1403, 0.1945) | 58,586 | 0.9184 | 31 | k 12.32 n 0.01299 | ||
Lipids | k = 2.099 (0.5318, 5.270) n = 0.54 (0.3499, 0.8064) | 3687 | 0.6421 | 31 | k 1.241 n 0.1183 | |||
Korsmeyer–Peppas | F(t) = kKP × tn × Q0 | PCL | Proteins | kKP = 79.99 (77.02, 82.96) n = 0.05101 (0.03735, 0.06487) | 716.4 | 0.9698 | 31 | kKP 1.449 n 0.006697 |
Lipids | kKP = 95.38 (89.26, 101.5) n = 0.0322 (0.008344, 0.05660) | 3145 | 0.9026 | 31 | kKP 3.044 n 0.01024 | |||
PCL-Alg6 | Proteins | kKP = 84.66 (80.32, 89.01) n = 0.05194 (0.03319, 0.07108) | 1558 | 0.9434 | 31 | kKP 2.136 n 0.00932 | ||
Lipids | kKP = 70.22 (64.70, 75.79) n = 0.1097 (0.08268, 0.1378) | 1107 | 0.9442 | 20 | kKP 2.708 n 0.01351 | |||
PCL-Alg10 | Proteins | kKP = 68.7 (63.49, 73.95) n = 0.1166 (0.09065, 0.1435) | 2393 | 0.9225 | 31 | kKP 2.607 n 0.01322 | ||
Lipids | kKP = 35.57 (32.07, 39.14) n = 0.2775 (0.2470, 0.3098) | 1301 | 0.9622 | 31 | kKP 1.782 n 0.01585 | |||
PCL-Alg10p | Proteins | kKP = 21.9 (14.7, 28.7) n = 0.1835 (0.1157, 0.2611) | 492,356 | 0.6315 | 31 | kKP 34.81 n 0.03748 | ||
Lipids | kKP = 34.09 (18.84, 53.25) n = 0.2648 (0.1645, 0.3881) | 46,372 | 0.5897 | 31 | kKP 9.229 n 0.05876 | |||
cPCL-Alg6 | Proteins | kKP = 29.03 (3.229, 88.22) n = 0.4657 (0.1563, 0.9889) | 271,193 | 0.3611 | 31 | kKP 23.17 n 0.2043 | ||
Lipids | kKP = 3.949 (0.2132, 17.73) n = 0.6505 (0.2522, 1.328) | 23,253 | 0.4061 | 31 | kKP 4.294 n 0.2682 | |||
cPCL-Alg10 | Proteins | kKP = 39.99 (27.29, 55.59) n = 0.4998 (0.4152, 0.5948) | 35,392 | 0.9223 | 31 | kKP 7.771 n 0.04934 | ||
Lipids | kKP = 4.533 (3.162, 6.269) n = 0.6616 (0.5811, 0.7492) | 882.3 | 0.9628 | 31 | kKP 0.8106 n 0.04402 | |||
cPCL-Alg10p | Proteins | kKP = 21.8 (19.6, 24.8) n = 0.1667 (0.1403, 0.1945) | 58,586 | 0.9184 | 31 | kKP 12.32 n 0.01299 | ||
Lipids | kKP = 2.099 (0.5318, 5.270) n = 0.54 (0.3499, 0.8064) | 3687 | 0.6421 | 31 | kKP 1.241 n 0.1183 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bari, E.; Scocozza, F.; Perteghella, S.; Sorlini, M.; Auricchio, F.; Torre, M.L.; Conti, M. 3D Bioprinted Scaffolds Containing Mesenchymal Stem/Stromal Lyosecretome: Next Generation Controlled Release Device for Bone Regenerative Medicine. Pharmaceutics 2021, 13, 515. https://doi.org/10.3390/pharmaceutics13040515
Bari E, Scocozza F, Perteghella S, Sorlini M, Auricchio F, Torre ML, Conti M. 3D Bioprinted Scaffolds Containing Mesenchymal Stem/Stromal Lyosecretome: Next Generation Controlled Release Device for Bone Regenerative Medicine. Pharmaceutics. 2021; 13(4):515. https://doi.org/10.3390/pharmaceutics13040515
Chicago/Turabian StyleBari, Elia, Franca Scocozza, Sara Perteghella, Marzio Sorlini, Ferdinando Auricchio, Maria Luisa Torre, and Michele Conti. 2021. "3D Bioprinted Scaffolds Containing Mesenchymal Stem/Stromal Lyosecretome: Next Generation Controlled Release Device for Bone Regenerative Medicine" Pharmaceutics 13, no. 4: 515. https://doi.org/10.3390/pharmaceutics13040515
APA StyleBari, E., Scocozza, F., Perteghella, S., Sorlini, M., Auricchio, F., Torre, M. L., & Conti, M. (2021). 3D Bioprinted Scaffolds Containing Mesenchymal Stem/Stromal Lyosecretome: Next Generation Controlled Release Device for Bone Regenerative Medicine. Pharmaceutics, 13(4), 515. https://doi.org/10.3390/pharmaceutics13040515