Matrix Effects of the Hydroethanolic Extract of Calyces of Physalis peruviana L. on Rutin Pharmacokinetics in Wistar Rats Using Population Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Hydroalcoholic Extract from Calyces of P. peruviana
2.3. Animals
2.4. Pharmacokinetics Studies
2.5. Bioanalyses
2.6. Pharmacokinetic Analysis
2.6.1. Non-Compartmental Analysis
2.6.2. Population Pharmacokinetic Modeling
2.7. Statistical Analyses
3. Results and Discussion
3.1. Rutin Content in the Extract of Calyces of P. peruviana
3.2. Bioanalytical Method Validation
3.3. Non-Compartmental Pharmacokinetic Analysis (PK-NCA)
3.3.1. Rutin PK-NCA from Intravenous Administration
3.3.2. Quercetin Conjugates PK-NCA after Oral Administration
3.4. Population Pharmacokinetic (PopPK) Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, L.S. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 2013, 150, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother. 2017, 96, 305–312. [Google Scholar] [CrossRef]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid. Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef]
- Lorenzi, H.; Matus, F.J.A. Plantas Medicinais no Brasil: Nativas e Exóticas, 2nd ed.; Instituto Plantarum de Estudos da Flora: Nova Odessa, Brazil, 2008; p. 455. [Google Scholar]
- Perea, M.; Rodríguez, N.; Fischer, G.; Velásquez, M.; Micán, Y. Uchuva. In Biotecnología Aplicada al Mejoramiento de los Cultivos de Frutas Tropicales; Perea, M., Matallana, L.P., Tirado, A., Eds.; Universidad Nacional de Colombia: Bogotá, Colombia, 2010; pp. 466–490. [Google Scholar]
- Echeverry, S.M.; Valderrama, I.H.; Costa, G.M.; Ospina-Giraldo, L.F.; Aragón, D.M. Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. J. Appl. Pharm. Sci. 2018, 8, 10–18. [Google Scholar]
- Domínguez-Moré, G.P.; Feltrin, C.; Brambila, P.F.; Cardona, M.I.; Echeverry, S.M.; Simões, C.M.O.; Aragón, D.M. Matrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutin. J. Pharm. Pharmacol. 2020, 72, 738–747. [Google Scholar] [CrossRef]
- Toro, R.M.; Aragón, D.M.; Ospina, L.F. Hepatoprotective effect of calyces extract of Physalis peruviana in hepatotoxicity induced by CCl4 in Wistar rats. Vitae 2013, 20, 125–132. [Google Scholar]
- Toro, R.M.; Aragón, D.M.; Ospina, L.F.; Ramos, F.A.; Castellanos, L. Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana. Nat. Prod. Commun. 2014, 9, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659. [Google Scholar] [CrossRef]
- Reinboth, M.; Wolffram, S.; Abraham, G.; Ungemach, F.R.; Cermak, R. Oral bioavailability of quercetin from different quercetin glycosides in dogs. Br. J. Nutr. 2010, 104, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Berger, L.M.; Wein, S.; Blank, R.; Metges, C.C.; Wolffram, S. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin. J. Dairy Sci. 2012, 95, 5047–5055. [Google Scholar] [CrossRef]
- Ou-yang, Z.; Cao, X.; Wei, Y.; Zhang, W.W.Q.; Zhao, M.; Duan, J. Pharmacokinetic study of rutin and quercetin in rats after oral administration of total flavones of mulberry leaf extract. Rev. Bras. Farmacogn. 2013, 23, 776–782. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, M. Natural polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol. 2007, 3, 389–406. [Google Scholar] [CrossRef]
- Wang, L.; Sun, R.; Zhang, Q.; Luo, Q.; Zeng, S.; Li, X.; Gong, X.; Li, Y.; Lu, L.; Hu, M.; et al. An update on polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol. 2019, 15, 151–165. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, B.; Jiang, W.; Yin, T.; Jia, X.; Basu, S.; Yang, G.; Hu, M. Revolving door action of breast cancer resistance protein (BCRP) facilitates or controls the efflux of flavone glucuronides from UGT1A9-overexpressing hela cells. Mol. Pharm. 2013, 10, 1736–1750. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Moré, G.P.; Cardenas, P.A.; Costa, G.M.; Simoes, C.M.O.; Aragon, D.M. Pharmacokinetics of botanical drugs and plant extracts. Mini Rev. Med. Chem. 2017, 17, 1646–1664. [Google Scholar] [CrossRef]
- Boyer, J.; Brown, D.; Liu, R.H. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers. J. Agric. Food Chem. 2004, 54, 7172–7179. [Google Scholar] [CrossRef]
- Henriques, J.; Falé, P.L.; Pacheco, R.; Florêncio, M.H.; Serralheiro, M.L. Phenolic compounds from Actinidia deliciosa leaves: Caco-2 permeability, enzyme inhibitory activity and cell protein profile studies. J. King Saud Univ. Sci. 2018, 30, 513–518. [Google Scholar] [CrossRef]
- Verjee, S.; Kelber, O.; Kolb, C.; Abdel-Aziz, H.; Butterweck, V. Permeation characteristics of hypericin across Caco-2 monolayers in the presence of single flavonoids, defined flavonoid mixtures or Hypericum extract matrix. J. Pharm. Pharmacol. 2019, 71, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Jiang, W.; Yin, T.; Ming, H. Highly variable contents of phenolics in St. John’s wort products impact their transport in the human intestinal Caco-2 cell model: Pharmaceutical and biopharmaceutical rationale for product standardization. J. Agric. Food Chem. 2010, 58, 6650–6659. [Google Scholar] [CrossRef] [Green Version]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, Z.; Li, S.; Ye, X.; Li, X.; He, K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014, 92, 133–147. [Google Scholar] [CrossRef]
- Shi, J.; Fu, Q.; Chen, W.; Yang, H.P.; Liu, J.; Wang, X.M.; He, X. Comparative study of pharmacokinetics and tissue distribution of osthole in rats after oral administration of pure osthole and Libanotis buchtormensis supercritical extract. J. Ethnopharmacol. 2013, 145, 25–31. [Google Scholar] [CrossRef]
- Guan, J.; Zhao, Y.; Zhu, H.; An, Z.; Yu, Y.; Li, R.; Yu, Z. A rapid and sensitive UHPLC-MS/MS method for quantification of 2-(2-hydroxypropanamido) benzoic acid in rat plasma: Application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2014, 95, 20–25. [Google Scholar] [CrossRef]
- Kammalla, A.K.; Ramasamy, M.K.; Chintala, J.; Dubey, G.P.; Agrawal, A.; Kaliappan, I. Comparative pharmacokinetic interactions of quercetin and rutin in rats after oral administration of European patented formulation containing Hipphophae rhamnoides and co-administration of quercetin and rutin. Eur. J. Drug Metab. Pharmacokinet. 2014, 40, 277–284. [Google Scholar] [CrossRef]
- Lu, L.; Qian, D.; Guo, J.; Qian, Y.; Xu, B.; Sha, M.; Duan, J. Abelmoschi Corolla non-flavonoid components altered the pharmacokinetic profile of its flavonoids in rat. J. Ethnopharmacol. 2013, 148, 804–811. [Google Scholar] [CrossRef]
- Tamura, M.; Nakagawa, H.; Tsushida, T.; Hirayama, K.; Itoh, K. Effect of pectin enhancement on plasma quercetin and fecal flora in rutin-supplemented mice. J. Food Sci. 2007, 72, 648–651. [Google Scholar] [CrossRef]
- Li, H.; Cao, X.; Liu, Y.; Liu, T.; Wang, M.; Ren, X. Establishment of modified biopharmaceutics classification system absorption model for oral Traditional Chinese Medicine (Sanye Tablet). J. Ethnopharmacol. 2019, 244, 112148. [Google Scholar] [CrossRef]
- Toro, R.M. Propuesta de un Marcador Analítico Como Herramienta en la Microencapsulación de un Extracto con Actividad Antioxidante de Cálices de Physalis peruviana. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2014. [Google Scholar]
- Franco, L.A.; Ocampo, Y.C.; Gómez, H.A.; De La Puerta, R.; Espartero, J.L.; Ospina, L.F. Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity. Planta Med. 2014, 80, 1605–1614. [Google Scholar] [CrossRef]
- Ramadan, M.F. Bioactive phytochemicals of Cape Gooseberry (Physalis peruviana L.). In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H., Bapat, V., Eds.; Springer: New York, NY, USA, 2019; pp. 1–16. [Google Scholar]
- Mould, D.R.; Upton, R.N. Basic concepts in population modeling, simulation, and model-based drug development—Part 2: Introduction to pharmacokinetic modeling methods. CPT Pharmacometr. Syst. Pharmacol. 2013, 2, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Schuck, E.; Bohnert, T.; Chakravarty, A.; Damian-Iordache, V.; Gibson, C.; Hsu, C.P.; Heimbach, T.; Krishnatry, A.S.; Liederer, B.M.; Lin, J. Preclinical pharmacokinetic/pharmacodynamic modeling and simulation in the pharmaceutical industry: An IQ consortium survey examining the current landscape. AAPS J. 2015, 17, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Yu, Y.; Kassir, N.; Zhu, M.; Hanley, W.D.; Earp, J.C.; Chow, A.T.; Gupta, M.; Hu, C. The utility of a population approach in drug–drug interaction assessments: A simulation evaluation. J. Clin. Pharmacol. 2017, 57, 1268–1278. [Google Scholar] [CrossRef]
- Munekage, M.; Ichikawa, K.; Kitagawa, H.; Ishihara, K.; Uehara, H.; Watanabe, J.; Kono, T.; Hanazaki, K. Population pharmacokinetic analysis of daikenchuto, a traditional Japanese medicine (kampo) in Japanese and US health volunteers. Drug Metab. Dispos. 2013, 41, 1256–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardona, M.I.; Toro, R.M.; Costa, G.M.; Ospina, L.F.; Castellanos, L.; Ramos, F.A.; Aragón, D.M. Influence of extraction process on antioxidant activity and rutin content in Physalis peruviana calyces extract. J. Appl. Pharm. Sci. 2017, 7, 164–168. [Google Scholar]
- FDA; CDER; CVM. Guidance for Industry Bioanalytical Method Validation Guidance for Industry Bioanalytical Method Validation; FDA: Silver Spring, WA, USA, 2018; pp. 1–41. [Google Scholar]
- Michels, L.R.; Maciel, T.R.; Nakama, K.A.; Teixeira, F.E.G.; de Carvalho, F.B.; Gundel, A.; Verlindo, B.; Hass, S. Effects of surface characteristics of polymeric nanocapsules on the pharmacokinetics and efficacy of antimalarial quinine. Int. J. Nanomed. 2019, 14, 10165–10178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazra, A.; Gogtay, N. Biostatistics series module 3: Comparing groups: Numerical variables. Indian J. Dermatol. 2016, 61, 251–260. [Google Scholar] [CrossRef]
- Xiao, J.; Kai, G. A review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship. Crit. Rev. Food Sci. Nutr. 2012, 52, 85–101. [Google Scholar] [CrossRef]
- Cao, H.; Liu, X.; Ulrih, N.P.; Sengupta, P.K.; Xiao, J. Plasma protein binding of dietary polyphenols to human serum albumin: A high performance affinity chromatography approach. Food Chem. 2019, 270, 257–263. [Google Scholar] [CrossRef]
- Sengupta, P.; Sardar, P.S.; Roy, P.; Dasgupta, S.; Bose, A. Investigation on the interaction of rutin with serum albumins: Insights from spectroscopic and molecular docking techniques. J. Photochem. Photobiol. B Biol. 2018, 183, 101–110. [Google Scholar] [CrossRef]
- Liua, S.; Guo, C.; Guo, Y.; Yu, H.; Greenaway, F.; Sun, M.-Z. Comparative binding affinities of flavonoid phytochemicals with bovine serum albumin. Iran. J. Pharm. Res. 2014, 13, 1019–1028. [Google Scholar]
- Benet, L.Z.; Hoener, B.A. Changes in plasma protein binding have little clinical relevance. Clin. Pharmacol. Ther. 2002, 71, 115–121. [Google Scholar] [CrossRef]
- Stern, S.T.; Martinez, M.N.; Stevens, D.M. When is it important to measure unbound drug in evaluating nanomedicine pharmacokinetics? Drug Metab. Dispos. 2016, 44, 1934–1939. [Google Scholar] [CrossRef] [Green Version]
- Abou-Baker, D.H.; Rady, H.M. Bioassay-guided approach employed to isolate and identify anticancer compounds from Physalis peruviana calyces. Plant Arch. 2020, 20 (Suppl. S1), 3285–3291. [Google Scholar]
- Reyes-Beltrán, M.E.D.; Guanilo-Reyes, C.K.; Ibáñez-Cárdenas, M.W.; García-Collao, C.E.; Idrogo-Alfaro, J.J.; Huamán-Saavedra, J.J. Efecto del consumo de Physalis peruviana L. (aguaymanto) sobre el perfil lipídico de pacientes con hipercolesterolemia. Acta Med. Peru. 2015, 32, 195–201. [Google Scholar] [CrossRef]
- Williamson, G.; Kay, C.D.; Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, K.A.; Day, A.J.; Needs, P.W.; Mellon, F.A.; O’Brien, N.M.; Williamson, G. Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: The role of human β-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem. Pharmacol. 2003, 65, 479–491. [Google Scholar] [CrossRef]
- Yin, J.; Wang, J. Renal drug transporters and their significance in drug-drug interactions. Acta Pharm. Sin. B 2016, 6, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zuo, Z.; Lin, G. Intestinal and hepatic glucuronidation of flavonoids. Mol. Pharm. 2007, 4, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Braune, A.; Blaut, M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016, 7, 216–234. [Google Scholar] [CrossRef] [Green Version]
Group | Intervention | Administration Route | Dose of Intervention (mg/kg) |
---|---|---|---|
1 | Pure rutin | i.v. | 1.45 |
2 | 2.9 | ||
3 | p.o. | 75 | |
4 | 100 | ||
5 | Extract of calyces of P. peruviana | i.v. | 250/3.7 * |
6 | 500/7.4 * | ||
7 | 1000/14.8 * | ||
8 | p.o. | 500/7.4 * | |
9 | 750/11.1 * | ||
10 | 1000/14.8 * |
Parameter | Rutin | P. peruviana Extract | |||
---|---|---|---|---|---|
Dose (mg/kg) | |||||
1.45 | 2.9 | 250 | 500 | 1000 | |
AUC0-INF (ng*h/mL) | 14,853.11 ± 2528.037 | 33,933.58 ± 2878.316 | 16,932.91 ± 4568.149 | 28,821.05 ± 6633.516 | 80,696.50 ± 19,536.208 |
Vdss (L/kg) | 0.11 ± 0.0306 | 0.07 ± 0.009 | 0.18 ± 0.056 # | 0.18 ± 0.052 # | 0.11 ± 0.040 |
Cl (L/h/kg) | 0.10 ± 0.017 | 0.09 ± 0.008 | 0.23 ± 0.065 *# | 0.27 ± 0.067 *# | 0.19 ± 0.049 *# |
k (h−1) | 1.08 ± 0.195 | 1.29 ± 0.159 | 1.67 ± 0.312 * | 1.77 ± 0.05 *# | 1.96 ± 0.175 *# |
t1/2 (h) | 0.66 ± 0.130 | 0.54 ± 0.062 | 0.43 ± 0.070 * | 0.39 ± 0.011 *# | 0.36 ± 0.031 *## |
MRT (h) | 1.08 ± 0.176 | 0.81 ± 0.053 * | 0.78 ± 0.089 * | 0.66 ± 0.027 * | 0.54 ± 0.078 *# ¥ |
Vdz (L/kg) | 0.096 ± 0.027 | 0.068 ± 0.012 | 0.14 ± 0.039 # | 0.15 ± 0.043 # | 0.099 ± 0.029 |
AUC/dose × 10−3 (h/L) | 10,243.52 ± 1743.478 | 11,701.24 ± 992.522 | 4576.46 ± 1234.634 *# | 3894.74 ± 896.421 *# | 5452.47 ± 1320.012 *# |
Parameter | Rutin | Extract | |||
---|---|---|---|---|---|
Dose (mg/kg) | |||||
75 | 100 | 500 | 750 | 1000 | |
AUC0-INF (ng*h/mL) | 4095.34 ± 227.038 | 5227.34 ± 469.187 | 3197.85 ± 198.808 | 3724.53 ± 274.346 | 9074.85 ± 737.580 |
Cmax (ng/mL) | 462.78 ± 49.310 | 627.51 ± 96.807 | 254.55 ± 39.385 | 266.72 ± 11.914 | 193.41 ± 25.174 |
Tmax (h) | 6 | 6 | 1.80 ± 0.274 *# | 1.60 ± 1.282 *# | 0.60 ± 0.137 *# ¥ |
Vdz/F (L/kg) | 86.08 ± 12.200 | 87.12 ± 13.980 | 26.40 ± 3.714 *# | 35.76 ± 4.681 *# | 79.98 ± 10.112 *# ¥ ƶ |
Cl/F (L/h/kg) | 18.36 ± 0.963 | 19.26 ± 1.699 | 2.32 ± 0.144 *# | 2.99 ± 0.214 *# | 1.64 ± 0.125 *# |
k (h−1) | 0.22 ± 0.034 | 0.22 ± 0.033 | 0.09 ± 0.010 *# | 0.08 ± 0.005 *# | 0.02 ± 0.002 ¥ ƶ |
t1/2 (h) | 3.25 ± 0.446 | 3.13 ± 0.391 | 7.87 ± 0.907 *# | 8.26 ± 0.545 *# | 33.82 ± 3.412 ¥ ƶ |
MRT (h) | 9.29 ± 0.323 | 8.98 ± 0.316 | 12.38 ± 1.211 | 12.11 ± 0.633 | 49.06 ± 4.864 *# ¥ ƶ |
AUC/dose × 10−3 (h/L) | 54.61 ± 3.026 | 52.27 ± 4.691 | 432.14 ± 26.864 *# | 335.54 ± 24.714 *# ¥ | 613.16 ± 49.838 *# ¥ ƶ |
Frel | 1.0 | 1.0 | 7.9 | 6.1 | 11.2 |
Value | Stochastic Approximation | ||
---|---|---|---|
S.E. | R.S.E. (%) | ||
Fixed Effects | |||
Vpop (L/kg) | 0.0646 | 0.00662 | 10.2 |
βVGEXT | 0.478 | 0.128 | 26.8 |
kpop (h−1) | 1.47 | 0.0812 | 5.54 |
βkGEXT | 0.395 | 0.0622 | 15.8 |
k12_pop (h−1) | 2.6 | 1.1 | 42.3 |
k21_pop (h−1) | 13.6 | 4.37 | 32.2 |
Standard Deviation of the Random Effects | |||
Ω V | 0.306 | 0.0469 | 15.3 |
Ω k | 0.147 | 0.0231 | 15.8 |
Correlations | |||
k V | −0.701 | 0.111 | 15.8 |
Error Model Parameters | |||
a | 38.9 | 6.47 | 16.6 |
b | 0.128 | 0.00801 | 6.28 |
Value | Stochastic Approximation | ||
---|---|---|---|
S.E. | R.S.E. (%) | ||
Fixed Effects | |||
ka1_pop (h−1) | 0.104 | 0.0129 | 12.5 |
βka1D75 | 0.281 | 0.167 | 59.6 |
βka1D500 | 1.94 | 0.166 | 8.54 |
βka1D750 | 3.15 | 0.176 | 5.59 |
βka1D1000 | 3.77 | 0.175 | 4.64 |
ka2_pop (h−1) | 0.411 | 0.0686 | 16.7 |
F1_pop | 0.565 | 0.0275 | 4.87 |
Tlag2_pop (h) | 3.91 | 0.021 | 0.538 |
βTlag2D75 | −0.0177 | 0.00556 | 31.3 |
βTlag2D500 | 0.149 | 0.0936 | 63 |
βTlag2D750 | −0.695 | 0.0595 | 8.56 |
βTlag2D1000 | −1.17 | 0.254 | 21.7 |
Vpop (L/kg) | 13.2 | 1.14 | 8.68 |
βVD75 | 0.251 | 0.0951 | 37.8 |
βVD500 | −0.645 | 0.105 | 16.4 |
βVD750 | 0.245 | 0.118 | 48.2 |
βVD1000 | 1.09 | 0.101 | 9.25 |
kpop (h−1) | 1.42 | 0.119 | 8.35 |
βkD75 | −0.225 | 0.0824 | 36.6 |
βkD500 | −1.3 | 0.144 | 11.2 |
βkD750 | −2.13 | 0.181 | 8.49 |
βkD1000 | −3.57 | 0.231 | 6.47 |
k12_pop (h−1) | 0.279 | 0.0802 | 28.8 |
k21_pop (h−1) | 0.268 | 0.107 | 39.9 |
Standard Deviation of the Random Effects | |||
Ω ka1 | 0.189 | 0.0429 | 22.7 |
Ω ka2 | 0.236 | 0.0559 | 23.8 |
Ω F1 | 0.214 | 0.0769 | 36 |
Ω V | 0.0819 | 0.0148 | 18.1 |
Error Model Parameters | |||
a | 8.87 | 2.49 | 28.1 |
b | 0.0457 | 0.0143 | 31.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez Moré, G.P.; Cardona, M.I.; Sepúlveda, P.M.; Echeverry, S.M.; Oliveira Simões, C.M.; Aragón, D.M. Matrix Effects of the Hydroethanolic Extract of Calyces of Physalis peruviana L. on Rutin Pharmacokinetics in Wistar Rats Using Population Modeling. Pharmaceutics 2021, 13, 535. https://doi.org/10.3390/pharmaceutics13040535
Domínguez Moré GP, Cardona MI, Sepúlveda PM, Echeverry SM, Oliveira Simões CM, Aragón DM. Matrix Effects of the Hydroethanolic Extract of Calyces of Physalis peruviana L. on Rutin Pharmacokinetics in Wistar Rats Using Population Modeling. Pharmaceutics. 2021; 13(4):535. https://doi.org/10.3390/pharmaceutics13040535
Chicago/Turabian StyleDomínguez Moré, Gina Paola, María Isabel Cardona, Paula Michelle Sepúlveda, Sandra Milena Echeverry, Cláudia Maria Oliveira Simões, and Diana Marcela Aragón. 2021. "Matrix Effects of the Hydroethanolic Extract of Calyces of Physalis peruviana L. on Rutin Pharmacokinetics in Wistar Rats Using Population Modeling" Pharmaceutics 13, no. 4: 535. https://doi.org/10.3390/pharmaceutics13040535
APA StyleDomínguez Moré, G. P., Cardona, M. I., Sepúlveda, P. M., Echeverry, S. M., Oliveira Simões, C. M., & Aragón, D. M. (2021). Matrix Effects of the Hydroethanolic Extract of Calyces of Physalis peruviana L. on Rutin Pharmacokinetics in Wistar Rats Using Population Modeling. Pharmaceutics, 13(4), 535. https://doi.org/10.3390/pharmaceutics13040535