Synthesis and Evaluation of the Cytotoxic Activity of Water-Soluble Cationic Organometallic Complexes of the Type [Pt(η1-C2H4OMe)(L)(Phen)]+ (L = NH3, DMSO; Phen = 1,10-Phenanthroline)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Methods
2.2. Synthesis of Pt(II) Complexes
2.3. Cell Cultures
- Caco-2: DMEM (low glucose) medium (Sigma-Aldrich, St. Louis, MO, USA), 10% FBS (Sigma-Aldrich, St. Louis, MO, USA), glutamine 2 mM, penicillin (100 U/mL), streptomycin (100 mg/mL), 1% non-essential amino acids.
- MG-63 and SK-OV-3: DMEM (high glucose) medium (EuroClone, Pero, MI, Italy), 10% FBS (Sigma-Aldrich, St. Louis, MO, USA), glutamine 2 mM, penicillin (100 U/mL), streptomycin (100 mg/mL).
- HeLa, MCF-7 and ZL-55: RPMI 1640 (EuroClone, Pero, MI, Italy), 10% FBS (Sigma-Aldrich, St. Louis, MO, USA), glutamine 2 mM, penicillin (100 U/mL), streptomycin (100 mg/mL).
- Hep-G2: DMEM (low glucose) medium (Sigma-Aldrich, St. Louis, MO, USA), 10% FBS (Sigma-Aldrich, St. Louis, MO, USA), glutamine 2 mM, penicillin (100 U/mL), streptomycin (100 mg/mL).
- SH-SY5Y: 1:1 mixture of DMEM (high glucose) and Ham’s F-12 Nutrient Mixture (Sigma-Aldrich, St. Louis, MO, USA), 10% FBS (Sigma-Aldrich, St. Louis, MO, USA), glutamine 2 mM, penicillin (100 U/mL), streptomycin (100 mg/mL).
2.4. Cytotoxicity Assays
2.5. Analysis by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy)
3. Results and Discussion
3.1. PtCl(η1-C2H4OMe)(phen)] (1), phen = 1,10-phenanthroline
3.2. Synthesis of [Pt(η1-C2H4OMe)(NH3)(phen)]Cl (2) and [Pt(η1-C2H4OMe)(DMSO)(phen)]Cl (3) Complexes
3.3. Pt(η1-C2H4OMe)(NH3)(phen)]Cl (2)
3.4. Pt(η1-C2H4OMe)(DMSO)(phen)]Cl (3)
3.5. Cytotoxicity of the Potential Antitumor Drugs [Pt(η1-C2H4OMe)(NH3)(phen)]+ (2) and [Pt(η1-C2H4OMe)(DMSO)(phen)]+ (3)
3.6. In-Cell Accumulation of the Tested Pt(II) Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rosenberg, B.; Van Camp, L.; Krigas, T. Inhibition of Cell Division in Escherichia Coli by Electrolysis Products from a Platinum Electrode. Nature 1965, 205, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, B.; Vancamp, L.; Trosko, J.E.; Mansour, V.H. Platinum Compounds: A New Class of Potent Antitumour Agents. Nature 1969, 222, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, B. Platinum Complexes for the Treatment of Cancer: Why the Search Goes On. In Cisplatin; Lippert, B., Ed.; Verlag Helvetica Chimica Acta: Zürich, Switzerland, 2006; pp. 1–27. ISBN 978-3-906390-42-0. [Google Scholar]
- Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116, 3436–3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnstone, T.C.; Park, G.Y.; Lippard, S.J. Understanding and Improving Platinum Anticancer Drugs-Phenanthriplatin. Anticancer Res. 2014, 34, 471–476. [Google Scholar]
- Cleare, M.J.; Hoeschele, J.D. Studies on the Antitumor Activity of Group VIII Transition Metal Complexes. Part I. Platinum(II) Complexes. Bioinorg. Chem. 1973, 2, 187–210. [Google Scholar] [CrossRef]
- Cleare, M.J.; Hoeschele, J.D. Antitumor Platinum Compounds. Relation between Structure and Activity. Platin. Met. Rev. 1973, 17, 2–13. [Google Scholar]
- Poyraz, M.; Demirayak, S.; Banti, C.N.; Manos, M.J.; Kourkoumelis, N.; Hadjikakou, S.K. Platinum(II)-Thiosemicarbazone Drugs Override the Cell Resistance Due to Glutathione; Assessment of Their Activity against Human Adenocarcinoma Cells. J. Coord. Chem. 2016, 69, 3560–3579. [Google Scholar] [CrossRef]
- De Castro, F.; Benedetti, M.; Antonaci, G.; Del Coco, L.; De Pascali, S.A.; Muscella, A.; Marsigliante, S.; Fanizzi, F.P. Response of Cisplatin Resistant Skov-3 Cells to [Pt(O,O′-Acac)(γ-Acac)(DMS)] Treatment Revealed by a Metabolomic 1H-NMR Study. Molecules 2018, 23, 2301. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, M.; De Castro, F.; Romano, A.; Migoni, D.; Piccinni, B.; Verri, T.; Lelli, M.; Roveri, N.; Fanizzi, F.P. Adsorption of the cis-[Pt(NH3)2(P2O7)]2− (Phosphaplatin) on Hydroxyapatite Nanocrystals as a Smart Way to Selectively Release Activated cis-[Pt(NH3)2Cl2] (Cisplatin) in Tumor Tissues. J. Inorg. Biochem. 2016, 157, 73–79. [Google Scholar] [CrossRef]
- Pizarro, A.M.; Habtemariam, A.; Sadler, P.J. Activation Mechanisms for Organometallic Anticancer Complexes. In Medicinal Organometallic Chemistry; Jaouen, G., Metzler-Nolte, N., Eds.; Topics in Organometallic Chemistry; Springer: Berlin/Heidelberg, Germany, 2010; Volume 32, pp. 21–56. ISBN 978-3-642-13184-4. [Google Scholar]
- Luo, F.R.; Wyrick, S.D.; Chaney, S.G. Comparative Neurotoxicity of Oxaliplatin, Ormaplatin, and Their Biotransformation Products Utilizing a Rat Dorsal Root Ganglia in Vitro Explant Culture Model. Cancer Chemother. Pharmacol. 1999, 44, 29–38. [Google Scholar] [CrossRef]
- Wong, E.; Giandomenico, C.M. Current Status of Platinum-Based Antitumor Drugs. Chem. Rev. 1999, 99, 2451–2466. [Google Scholar] [CrossRef]
- Morris, T.T.; Ruan, Y.; Lewis, V.A.; Narendran, A.; Gailer, J. Fortification of Blood Plasma from Cancer Patients with Human Serum Albumin Decreases the Concentration of Cisplatin-Derived Toxic Hydrolysis Products in Vitro. Metallomics 2014, 6, 2034–2041. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Anthony, E.J.; Bolitho, E.M.; Bridgewater, H.E.; Carter, O.W.L.; Donnelly, J.M.; Imberti, C.; Lant, E.C.; Lermyte, F.; Needham, R.J.; Palau, M.; et al. Metallodrugs Are Unique: Opportunities and Challenges of Discovery and Development. Chem. Sci. 2020, 11, 12888–12917. [Google Scholar] [CrossRef]
- Mandriota, G.; Di Corato, R.; Benedetti, M.; De Castro, F.; Fanizzi, F.P.; Rinaldi, R. Design and Application of Cisplatin-Loaded Magnetic Nanoparticle Clusters for Smart Chemotherapy. ACS Appl. Mater. Interfaces 2019, 11, 1864–1875. [Google Scholar] [CrossRef]
- De Castro, F.; Vergaro, V.; Benedetti, M.; Baldassarre, F.; Del Coco, L.; Dell’Anna, M.M.; Mastrorilli, P.; Fanizzi, F.P.; Ciccarella, G. Visible Light-Activated Water-Soluble Platicur Nanocolloids: Photocytotoxicity and Metabolomics Studies in Cancer Cells. ACS Appl. Bio Mater. 2020, 3, 6836–6851. [Google Scholar] [CrossRef]
- Benedetti, M.; Antonucci, D.; Migoni, D.; Vecchio, V.M.; Ducani, C.; Fanizzi, F.P. Water-Soluble Organometallic Analogues of Oxaliplatin with Cytotoxic and Anticlonogenic Activity. ChemMedChem 2010, 5, 46–51. [Google Scholar] [CrossRef]
- Yonezawa, A.; Masuda, S.; Yokoo, S.; Katsura, T.; Inui, K. Cisplatin and Oxaliplatin, but Not Carboplatin and Nedaplatin, Are Substrates for Human Organic Cation Transporters (SLC22A1–3 and Multidrug and Toxin Extrusion Family). J. Pharmacol. Exp. Ther. 2006, 319, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Lovejoy, K.S.; Shima, J.E.; Lagpacan, L.L.; Shu, Y.; Lapuk, A.; Chen, Y.; Komori, T.; Gray, J.W.; Chen, X.; et al. Organic Cation Transporters Are Determinants of Oxaliplatin Cytotoxicity. Cancer Res. 2006, 66, 8847–8857. [Google Scholar] [CrossRef] [Green Version]
- Ciarimboli, G.; Ludwig, T.; Lang, D.; Pavenstädt, H.; Koepsell, H.; Piechota, H.-J.; Haier, J.; Jaehde, U.; Zisowsky, J.; Schlatter, E. Cisplatin Nephrotoxicity Is Critically Mediated via the Human Organic Cation Transporter 2. Am. J. Pathol. 2005, 167, 1477–1484. [Google Scholar] [CrossRef] [Green Version]
- Soodvilai, S.; Meetam, P.; Siangjong, L.; Chokchaisiri, R.; Suksamrarn, A.; Soodvilai, S. Germacrone Reduces Cisplatin-Induced Toxicity of Renal Proximal Tubular Cells via Inhibition of Organic Cation Transporter. Biol. Pharm. Bull. 2020, 43, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, Y.; Gibson, A.A.; Hu, S.; Sparreboom, A. Targeting OCT2 to Ameliorate Cisplatin-induced Ototoxicity in Zebrafish and Mice. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Kim, M.K.; Shim, C.-K. The Transport of Organic Cations in the Small Intestine: Current Knowledge and Emerging Concepts. Arch. Pharm. Res. 2006, 29, 605–616. [Google Scholar] [CrossRef]
- Park, G.Y.; Wilson, J.J.; Song, Y.; Lippard, S.J. Phenanthriplatin, a Monofunctional DNA-Binding Platinum Anticancer Drug Candidate with Unusual Potency and Cellular Activity Profile. Proc. Natl. Acad. Sci. USA 2012, 109, 11987–11992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almaqwashi, A.A.; Zhou, W.; Naufer, M.N.; Riddell, I.A.; Yilmaz, Ö.H.; Lippard, S.J.; Williams, M.C. DNA Intercalation Facilitates Efficient DNA-Targeted Covalent Binding of Phenanthriplatin. J. Am. Chem. Soc. 2019, 141, 1537–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullinane, C.; Deacon, G.B.; Drago, P.R.; Erven, A.P.; Junk, P.C.; Luu, J.; Meyer, G.; Schmitz, S.; Ott, I.; Schur, J.; et al. Synthesis and Antiproliferative Activity of a Series of New Platinum and Palladium Diphosphane Complexes. Dalton Trans. 2018, 47, 1918–1932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.X.; Lippard, S.J. New Metal Complexes as Potential Therapeutics. Curr. Opin. Chem. Biol. 2003, 7, 481–489. [Google Scholar] [CrossRef]
- Gasser, G.; Ott, I.; Metzler-Nolte, N. Organometallic Anticancer Compounds. J. Med. Chem. 2011, 54, 3–25. [Google Scholar] [CrossRef]
- Butsch, K.; Gust, R.; Klein, A.; Ott, I.; Romanski, M. Tuning the Electronic Properties of Dppz-Ligands and Their Palladium(II) Complexes. Dalton Trans. 2010, 39, 4331–4340. [Google Scholar] [CrossRef]
- Klein, A.; Lüning, A.; Ott, I.; Hamel, L.; Neugebauer, M.; Butsch, K.; Lingen, V.; Heinrich, F.; Elmas, S. Organometallic Palladium and Platinum Complexes with Strongly Donating Alkyl Coligands–Synthesis, Structures, Chemical and Cytotoxic Properties. J. Organomet. Chem. 2010, 695, 1898–1905. [Google Scholar] [CrossRef]
- Lüning, A.; Schur, J.; Hamel, L.; Ott, I.; Klein, A. Strong Cytotoxicity of Organometallic Platinum Complexes with Alkynyl Ligands. Organometallics 2013, 32, 3662–3672. [Google Scholar] [CrossRef]
- Lüning, A.; Neugebauer, M.; Lingen, V.; Krest, A.; Stirnat, K.; Deacon, G.B.; Drago, P.R.; Ott, I.; Schur, J.; Pantenburg, I.; et al. Platinum Diolefin Complexes–Synthesis, Structures, and Cytotoxicity. Eur. J. Inorg. Chem. 2015, 2015, 226–239. [Google Scholar] [CrossRef]
- Lingen, V.; Lüning, A.; Krest, A.; Deacon, G.B.; Schur, J.; Ott, I.; Pantenburg, I.; Meyer, G.; Klein, A. Labile Pd-Sulphur and Pt-Sulphur Bonds in Organometallic Palladium and Platinum Complexes [(COD)M(Alkyl)(S-Ligand)]n+—A Speciation Study. J. Inorg. Biochem. 2016, 165, 119–127. [Google Scholar] [CrossRef]
- Ríos, P.; Rodríguez, A.; Conejero, S. Enhancing the Catalytic Properties of Well-Defined Electrophilic Platinum Complexes. Chem. Commun. 2020, 56, 5333–5349. [Google Scholar] [CrossRef]
- Fürstner, A.; Davies, P.W. Catalytic Carbophilic Activation: Catalysis by Platinum and Gold π Acids. Angew. Chem. Int. Ed. 2007, 46, 3410–3449. [Google Scholar] [CrossRef]
- Benedetti, M.; Lamacchia, V.; Antonucci, D.; Papadia, P.; Pacifico, C.; Natile, G.; Fanizzi, F.P. Insertion of Alkynes into Pt–X Bonds of Square Planar [PtX2(N^N)] (X = Cl, Br, I) Complexes. Dalton Trans. 2014, 43, 8826–8834. [Google Scholar] [CrossRef] [Green Version]
- Barone, C.R.; Benedetti, M.; Vecchio, V.M.; Fanizzi, F.P.; Maresca, L.; Natile, G. New Chemistry of Olefin Complexes of Platinum(II) Unravelled by Basic Conditions: Synthesis and Properties of Elusive Cationic Species. Dalton Trans. 2008, 5313–5322. [Google Scholar] [CrossRef]
- Ang, D.L.; Kelso, C.; Beck, J.L.; Ralph, S.F.; Harman, D.G.; Aldrich-Wright, J.R. A Study of Pt(II)–Phenanthroline Complex Interactions with Double-Stranded and G-Quadruplex DNA by ESI–MS, Circular Dichroism, and Computational Docking. J. Biol. Inorg. Chem. 2020, 25, 429–440. [Google Scholar] [CrossRef]
- Brodie, C.R.; Collins, J.G.; Aldrich-Wright, J.R. DNA Binding and Biological Activity of Some Platinum(II) Intercalating Compounds Containing Methyl-Substituted 1,10-Phenanthrolines. Dalton Trans. 2004, 8, 1145–1152. [Google Scholar] [CrossRef]
- Muscella, A.; Calabriso, N.; Fanizzi, F.P.; De Pascali, S.A.; Urso, L.; Ciccarese, A.; Migoni, D.; Marsigliante, S. [Pt(O,O′-Acac)(γ-Acac)(DMS)], a New Pt Compound Exerting Fast Cytotoxicity in MCF-7 Breast Cancer Cells via the Mitochondrial Apoptotic Pathway: A Pt Compound Provoking Apoptosis in MCF-7 Cells. Br. J. Pharmacol. 2008, 153, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, M.; Antonucci, D.; De Pascali, S.A.; Ciccarella, G.; Fanizzi, F.P. Alkyl-Vinyl-Ethers from Alcoholic Substrates and the Zeise’s Salt, via Square Planar [PtCl(N–N)(η1-CH2CH2OR)] Complexes. J. Organomet. Chem. 2012, 714, 104–108. [Google Scholar] [CrossRef]
- Benedetti, M.; Antonucci, D.; Girelli, C.R.; Fanizzi, F.P. Hindrance, Donor Ability of MenN∩N Chelates and Overall Stability of Pentacoordinate [PtCl2(η2-CH2=CH2)(MenN∩N)] Complexes as Observed by η2-Olefin 1JPt,C Modulation: An NMR Study. Eur. J. Inorg. Chem. 2015, 2015, 2308–2316. [Google Scholar] [CrossRef]
- Benedetti, M.; Castro, F.D.; Papadia, P.; Antonucci, D.; Fanizzi, F.P. 195Pt and 15N NMR Data in Square Planar Platinum(II) Complexes of the Type [Pt(NH3)aXb]n (Xb = Combination of Halides): “NMR Effective Molecular Radius” of Coordinated Ammonia. Eur. J. Inorg. Chem. 2020, 2020, 3395–3401. [Google Scholar] [CrossRef]
- Fanizzi, F.P.; Intini, F.P.; Maresca, L.; Natile, G.; Uccello-Barretta, G. Solvolysis of Platinum Complexes with Substituted Ethylenediamines in Dimethyl Sulfoxide. Inorg. Chem. 1990, 29, 29–33. [Google Scholar] [CrossRef]
- Wimmer, S.; Castan, P.; Wimmer, F.L.; Johnson, N.P. Preparation and Interconversion of Dimeric Di-µ-Hydroxo and Tri-µ-Hydroxo Complexes of Platinum(II) and Palladium(II) with 2,2′-Bipyridine and 1,10-Phenanthroline. J. Chem. Soc. Dalton Trans. 1989, 3, 403–412. [Google Scholar] [CrossRef]
- Farrell, N. Chemical and Biological Activity of Metal Complexes Containing Dimethyl Sulfoxide. In Platinum, Gold, and Other Metal Chemotherapeutic Agents; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1983; Volume 209, pp. 279–296. ISBN 978-0-8412-0758-5. [Google Scholar]
- Sundquist, W.I.; Ahmed, K.J.; Hollis, L.S.; Lippard, S.J. Solvolysis Reactions of Cis- and Trans-Diamminedichloroplatinum(II) in Dimethyl Sulfoxide. Structural Characterization and DNA Binding of Trans-Bis(Ammine)Chloro(DMSO)Platinum(1+). Inorg. Chem. 1987, 26, 1524–1528. [Google Scholar] [CrossRef]
- Gately, D.P.; Howell, S.B. Cellular Accumulation of the Anticancer Agent Cisplatin: A Review. Br. J. Cancer 1993, 67, 1171–1176. [Google Scholar] [CrossRef] [Green Version]
- Muscella, A.; Calabriso, N.; De Pascali, S.A.; Urso, L.; Ciccarese, A.; Fanizzi, F.P.; Migoni, D.; Marsigliante, S. New Platinum(II) Complexes Containing Both an O,O′-Chelated Acetylacetonate Ligand and a Sulfur Ligand in the Platinum Coordination Sphere Induce Apoptosis in HeLa Cervical Carcinoma Cells. Biochem. Pharmacol. 2007, 74, 28–40. [Google Scholar] [CrossRef]
- Vetrugno, C.; Muscella, A.; Fanizzi, F.P.; Cossa, L.G.; Migoni, D.; De Pascali, S.A.; Marsigliante, S. Different Apoptotic Effects of [Pt(O,O′-Acac)(γ-Acac)(DMS)] and Cisplatin on Normal and Cancerous Human Epithelial Breast Cells in Primary Culture: [Pt(O,O′-Acac)(γ-Acac)(DMS)] Effects. Br. J. Pharmacol. 2014, 171, 5139–5153. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.D.; Telma, K.A.; Chang, K.-E.; Lee, T.D.; Madigan, J.P.; Lloyd, J.R.; Goldlust, I.S.; Hoeschele, J.D.; Gottesman, M.M. Say No to DMSO: Dimethylsulfoxide Inactivates Cisplatin, Carboplatin, and Other Platinum Complexes. Cancer Res. 2014, 74, 3913–3922. [Google Scholar] [CrossRef] [Green Version]
Cell Lines | Disease |
---|---|
Caco-2 | Colorectal adenocarcinoma |
HeLa | Endocervical adenocarcinoma |
Hep-G2 | Hepatocellular carcinoma |
MCF-7 | Breast adenocarcinoma |
MG-63 | Osteosarcoma |
SH-SY5Y | Neuroblastoma |
SK-OV-3 | Ovarian adenocarcinoma |
ZL-55 | Pleural epithelioid mesothelioma |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Castro, F.; Stefàno, E.; Migoni, D.; Iaconisi, G.N.; Muscella, A.; Marsigliante, S.; Benedetti, M.; Fanizzi, F.P. Synthesis and Evaluation of the Cytotoxic Activity of Water-Soluble Cationic Organometallic Complexes of the Type [Pt(η1-C2H4OMe)(L)(Phen)]+ (L = NH3, DMSO; Phen = 1,10-Phenanthroline). Pharmaceutics 2021, 13, 642. https://doi.org/10.3390/pharmaceutics13050642
De Castro F, Stefàno E, Migoni D, Iaconisi GN, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. Synthesis and Evaluation of the Cytotoxic Activity of Water-Soluble Cationic Organometallic Complexes of the Type [Pt(η1-C2H4OMe)(L)(Phen)]+ (L = NH3, DMSO; Phen = 1,10-Phenanthroline). Pharmaceutics. 2021; 13(5):642. https://doi.org/10.3390/pharmaceutics13050642
Chicago/Turabian StyleDe Castro, Federica, Erika Stefàno, Danilo Migoni, Giorgia N. Iaconisi, Antonella Muscella, Santo Marsigliante, Michele Benedetti, and Francesco P. Fanizzi. 2021. "Synthesis and Evaluation of the Cytotoxic Activity of Water-Soluble Cationic Organometallic Complexes of the Type [Pt(η1-C2H4OMe)(L)(Phen)]+ (L = NH3, DMSO; Phen = 1,10-Phenanthroline)" Pharmaceutics 13, no. 5: 642. https://doi.org/10.3390/pharmaceutics13050642
APA StyleDe Castro, F., Stefàno, E., Migoni, D., Iaconisi, G. N., Muscella, A., Marsigliante, S., Benedetti, M., & Fanizzi, F. P. (2021). Synthesis and Evaluation of the Cytotoxic Activity of Water-Soluble Cationic Organometallic Complexes of the Type [Pt(η1-C2H4OMe)(L)(Phen)]+ (L = NH3, DMSO; Phen = 1,10-Phenanthroline). Pharmaceutics, 13(5), 642. https://doi.org/10.3390/pharmaceutics13050642