Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making
Abstract
:1. Introduction
2. Physicochemical Properties
2.1. Solubility
2.2. Lipophilicity
3. Absorption
4. Distribution
5. Metabolism
6. Excretion
7. Physiologically Based Pharmacokinetic Models of Atorvastatin
7.1. Zhang, 2015
7.2. Duan et al., 2017
7.3. Li et al., 2019
7.4. Morse et al., 2019
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schachter, M. Chemical, Pharmacokinetic and Pharmacodynamic Properties of Statins: An Update. Fundam. Clin. Pharmacol. 2005, 19, 117–125. [Google Scholar] [CrossRef] [PubMed]
- du Souich, P.; Roederer, G.; Dufour, R. Myotoxicity of Statins: Mechanism of Action. Pharmacol. Ther. 2017, 175, 1–16. [Google Scholar] [CrossRef]
- Lennernas, H. Clinical Pharmacokinetics of Atorvastatin. Clin. Pharm. 2003, 42, 1141–1160. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Tang, Q.; Feng, J.; Dai, R.; Wang, Y.; Yang, Y.; Tang, X.; Deng, C.; Zeng, H.; Zhao, Y.; et al. Association between SLCO1B1 −521T>C and −388A>G Polymorphisms and Risk of Statin-Induced Adverse Drug Reactions: A Meta-Analysis. Springerplus 2016, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Christians, U.; Jacobsen, W.; Floren, L.C. Metabolism and Drug Interactions of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors in Transplant Patients: Are the Statins Mechanistically Similar? Pharmacol. Ther. 1998, 80, 1–34. [Google Scholar] [CrossRef]
- Taha, D.A.; De Moor, C.H.; Barrett, D.A.; Gershkovich, P. Translational Insight into Statin-Induced Muscle Toxicity: From Cell Culture to Clinical Studies. Transl. Res. J. Lab. Clin. Med. 2014, 164, 85–109. [Google Scholar] [CrossRef]
- Schirris, T.J.J.; Ritschel, T.; Bilos, A.; Smeitink, J.A.M.; Russel, F.G.M. Statin Lactonization by Uridine 5′-Diphospho-Glucuronosyltransferases (UGTs). Mol. Pharm. 2015, 12, 4048–4055. [Google Scholar] [CrossRef] [PubMed]
- Riedmaier, S.; Klein, K.; Hofmann, U.; Keskitalo, J.E.; Neuvonen, P.J.; Schwab, M.; Niemi, M.; Zanger, U.M. UDP-Glucuronosyltransferase (UGT) Polymorphisms Affect Atorvastatin Lactonization In Vitro and In Vivo. Clin. Pharmacol. Ther. 2009, 87, 65–73. [Google Scholar] [CrossRef]
- Athyros, V.G.; Tziomalos, K.; Karagiannis, A.; Mikhailidis, D.P. Atorvastatin: Safety and Tolerability. Expert Opin. Drug Saf. 2010, 9, 667–674. [Google Scholar] [CrossRef]
- Physiologically Based Pharmacokinetic Analyses—Format and Content Guidance for Industry. US Official News, 9 April 2018.
- Guideline on the Reporting of Physiologically Based Pharmacokinetic (PBPK). Modelling and Simulation. European Union News, 13 December 2018.
- European Medicines Agency Referrals. Lipitor. Annex III Summary of Product Characteristics, Labelling and Package Leaflet. Available online: https://www.ema.europa.eu/en/medicines/human/referrals/lipitor (accessed on 5 March 2021).
- Yin, Y.; Cui, F.; Kim, J.S.; Choi, M.; Choi, B.C.; Chung, S.; Shim, C.; Kim, D. Preparation, Characterization and in Vitro Intestinal Absorption of a Dry Emulsion Formulation Containing Atorvastatin Calcium. Drug Deliv. 2009, 16, 30–36. [Google Scholar] [CrossRef]
- Shaker, M.A.; Elbadawy, H.M.; Shaker, M.A. Improved Solubility, Dissolution, and Oral Bioavailability for Atorvastatin-Pluronic(R) Solid Dispersions. Int. J. Pharm. 2020, 574, 118891. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Zhang, Z.; Le, Y.; Shen, Z.; Chen, J. Micronization of Atorvastatin Calcium by Antisolvent Precipitation Process. Int. J. Pharm. 2009, 374, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Drugs@FDA: FDA-Approved Drugs. Lipitor. Available online: https://www.accessdata.fda.gov (accessed on 3 March 2021).
- Khan, F.N.; Dehghan, M.H.G. Enhanced Bioavailability and Dissolution of Atorvastatin Calcium from Floating Microcapsules using Minimum Additives. Sci. Pharm. 2012, 80, 215–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhu, P.; Prabhu, P.; Patravale, V.; Patravale, V. Dissolution Enhancement of Atorvastatin Calcium by Co-Grinding Technique. Drug Deliv. Transl. Res. 2016, 6, 380–391. [Google Scholar] [CrossRef]
- Shayanfar, A.; Ghavimi, H.; Hamishekar, H.; Jouyban, A. Coamorphous Atorvastatin Calcium to Improve its Physicochemical and Pharmacokinetic Properties. J. Pharm. Pharm. Sci. 2013, 16, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Kong, R.; Zhu, X.; Meteleva, E.S.; Polyakov, N.E.; Khvostov, M.V.; Baev, D.S.; Tolstikova, T.G.; Dushkin, A.V.; Su, W. Atorvastatin Calcium Inclusion Complexation with Polysaccharide Arabinogalactan and Saponin Disodium Glycyrrhizate for Increasing of Solubility and Bioavailability. Drug Deliv. Transl. Res. 2018, 8, 1200–1213. [Google Scholar] [CrossRef]
- Kulthe, V.V.; Chaudhari, P.D. Drug Resinates an Attractive Approach of Solubility Enhancement of Atorvastatin Calcium. Indian. J. Pharm. Sci. 2013, 75, 523–532. [Google Scholar]
- Poli, A. Atorvastatin: Pharmacological Characteristics and Lipid-Lowering Effects. Drugs 2007, 67, 3–15. [Google Scholar] [CrossRef]
- Corsini, A.; Bellosta, S.; Baetta, R.; Fumagalli, R.; Paoletti, R.; Bernini, F. New Insights into the Pharmacodynamic and Pharmacokinetic Properties of Statins. Pharmacol. Ther. 1999, 84, 413–428. [Google Scholar] [CrossRef]
- Sirtori, C.R. The Pharmacology of Statins. Pharmacol. Res. 2014, 88, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Shitara, Y.; Sugiyama, Y. Pharmacokinetic and Pharmacodynamic Alterations of 3-Hydroxy-3-Methylglutaryl Coenzyme A (HMG-CoA) Reductase Inhibitors: Drug-Drug Interactions and Interindividual Differences in Transporter and Metabolic Enzyme Functions. Pharmacol. Ther. 2006, 112, 71–105. [Google Scholar] [CrossRef] [PubMed]
- Cilla, D.D.; Gibson, D.M.; Whitfield, L.R.; Sedman, A.J. Pharmacodynamic Effects and Pharmacokinetics of Atorvastatin After Administration to Normocholesterolemic Subjects in the Morning and Evening. J. Clin. Pharmacol. 1996, 36, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Radulovic, L.L.; Cilla, D.D.; Posvar, E.L.; Sedman, A.J.; Whitfield, L.R. Effect of Food on the Bioavailability of Atorvastatin, an HMG-CoA Reductase Inhibitor. J. Clin. Pharmacol. 1995, 35, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, L.R.; Stern, R.H.; Sedman, A.J.; Abel, R.; Gibson, D.M. Effect of Food on the Pharmacodynamics and Pharmacokinetics of Atorvastatin, an Inhibitor of HMG-CoA Reductase. Eur. J. Drug Metab. Pharmacokinet. 2000, 25, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Whitfield, L.R.; Stewart, B.H. Atorvastatin Transport in the Caco-2 Cell Model: Contributions of P-Glycoprotein and the Proton-Monocarboxylic Acid Co-Transporter. Pharm. Res. 2000, 17, 209–215. [Google Scholar] [CrossRef]
- Chen, C.; Mireles, R.J.; Campbell, S.D.; Lin, J.; Mills, J.B.; Xu, J.J.; Smolarek, T.A. Differential Interaction of 3-Hydroxy-3-Methylglutaryl-Coa Reductase Inhibitors with Abcb1, Abcc2, and Oatp1b1. Drug Metab. Dispos. 2005, 33, 537–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuvonen, P.J.; Niemi, M.; Backman, J.T. Drug Interactions with Lipid-Lowering Drugs: Mechanisms and Clinical Relevance. Clin. Pharmacol. Ther. 2006, 80, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Igel, M.; Sudhop, T.; von Bergmann, K. Metabolism and Drug Interactions of 3-Hydroxy-3-Methylglutaryl Coenzyme A-Reductase Inhibitors (Statins). Eur. J. Clin. Pharmacol. 2001, 57, 357–364. [Google Scholar] [CrossRef]
- DeGorter, M.K.; Urquhart, B.L.; Gradhand, U.; Tirona, R.G.; Kim, R.B. Disposition of Atorvastatin, Rosuvastatin, and Simvastatin in Oatp1b2−/− Mice and Intraindividual Variability in Human Subjects. J. Clin. Pharmacol. 2012, 52, 1689–1697. [Google Scholar] [CrossRef]
- Vildhede, A.; Karlgren, M.; Svedberg, E.K.; Wisniewski, J.R.; Lai, Y.; Norén, A.; Artursson, P. Hepatic Uptake of Atorvastatin: Influence of Variability in Transporter Expression on Uptake Clearance and Drug-Drug Interactions. Drug Metab. Dispos. 2014, 42, 1210–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keskitalo, J.; Zolk, O.; Fromm, M.; Kurkinen, K.; Neuvonen, P.; Niemi, M. ABCG2 Polymorphism Markedly Affects the Pharmacokinetics of Atorvastatin and Rosuvastatin. Clin. Pharmacol. Ther. 2009, 86, 197–203. [Google Scholar] [CrossRef]
- Prado, Y.; Zambrano, T.; Salazar, L.A. Transporter Genes ABCG2 rs2231142 and ABCB1 rs1128503 Polymorphisms and Atorvastatin Response in Chilean Subjects. J. Clin. Pharm. Ther. 2018, 43, 87–91. [Google Scholar] [CrossRef]
- Birmingham, B.K.; Bujac, S.R.; Elsby, R.; Azumaya, C.T.; Wei, C.; Chen, Y.; Mosqueda-Garcia, R.; Ambrose, H.J. Impact of ABCG2 and SLCO1B1 Polymorphisms on Pharmacokinetics of Rosuvastatin, Atorvastatin and Simvastatin Acid in Caucasian and Asian Subjects: A Class Effect? Eur. J. Clin. Pharmacol. 2015, 71, 341–355. [Google Scholar] [CrossRef]
- Prueksaritanont, T.; Subramanian, R.; Fang, X.; Ma, B.; Qiu, Y.; Lin, J.H.; Pearson, P.G.; Baillie, T.A. Glucuronidation of Statins in Animals and Humans: A Novel Mechanism of Statin Lactonization. Drug Metab. Dispos. 2002, 30, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, W.; Kuhn, B.; Soldner, A.; Kirchner, G.; Sewing, K.; Kollman, P.A.; Benet, L.Z.; Christians, U. Lactonization is the Critical First Step in the Disposition of the 3-Hydroxy-3-Methylglutaryl-Coa Reductase Inhibitor Atorvastatin. Drug Metab. Dispos. 2000, 28, 1369–1378. [Google Scholar]
- Fujino, H.; Saito, T.; Tsunenari, Y.; Kojima, J.; Sakaeda, T. Metabolic Properties of the Acid and Lactone Forms of HMG-CoA Reductase Inhibitors. Xenobiotica 2004, 34, 961–971. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.; Bae, S.K.; Moon, B.; Liu, K.; Shin, J. Contribution of Cytochrome P450 3A4 and 3A5 to the Metabolism of Atorvastatin. Xenobiotica 2008, 38, 1240–1251. [Google Scholar] [CrossRef]
- Malhotra, H.S.; Goa, K.L. Atorvastatin: An Updated Review of its Pharmacological Properties and use in Dyslipidaemia. Drugs 2001, 61, 1835–1881. [Google Scholar] [CrossRef] [PubMed]
- Black, A.E.; Hayes, R.N.; Roth, B.D.; Woo, P.; Woolf, T.F. Metabolism and Excretion of Atorvastatin in Rats and Dogs. Drug Metab. Dispos. 1999, 27, 916–923. [Google Scholar]
- Kearney, A.S.; Crawford, L.F.; Mehta, S.C.; Radebaugh, G.W. The Interconversion Kinetics, Equilibrium, and Solubilities of the Lactone and Hydroxyacid Forms of the HMG-CoA Reductase Inhibitor, CI-981. Pharm. Res. 1993, 10, 1461–1465. [Google Scholar] [CrossRef] [PubMed]
- Draganov, D.I.; Teiber, J.F.; Speelman, A.; Osawa, Y.; Sunahara, R.; La Du, B.N. Human Paraoxonases (PON1, PON2, and PON3) are Lactonases with Overlapping and Distinct Substrate Specificities. J. Lipid Res. 2005, 46, 1239–1247. [Google Scholar] [CrossRef] [Green Version]
- Furlong, C.E.; Marsillach, J.; Jarvik, G.P.; Costa, L.G. Paraoxonases-1, -2 and -3: What are their Functions? Chem. Biol. Interact. 2016, 259, 51–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedmaier, S.; Klein, K.; Winter, S.; Hofmann, U.; Schwab, M.; Zanger, U.M. Paraoxonase (PON1 and PON3) Polymorphisms: Impact on Liver Expression and Atorvastatin-Lactone Hydrolysis. Front. Pharmacol. 2011, 2, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Partani, P.; Manaswita Verma, S.; Gurule, S.; Khuroo, A.; Monif, T. Simultaneous Quantitation of Atorvastatin and its Two Active Metabolites in Human Plasma by Liquid Chromatography/(–) Electrospray Tandem Mass Spectrometry. J. Pharm. Anal. 2014, 4, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lins, R.L.; Matthys, K.E.; Verpooten, G.A.; Peeters, P.C.; Dratwa, M.; Stolear, J.; Lameire, N.H. Pharmacokinetics of Atorvastatin and its Metabolites After Single and Multiple Dosing in Hypercholesterolaemic Haemodialysis Patients. Nephrol. Dial. Transplant. 2003, 18, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Keskitalo, J.; Kurkinen, K.; Neuvonen, P.; Niemi, M. ABCB1 Haplotypes Differentially Affect the Pharmacokinetics of the Acid and Lactone Forms of Simvastatin and Atorvastatin. Clin. Pharmacol. Ther. 2008, 84, 457–461. [Google Scholar] [CrossRef]
- Zhang, T. Physiologically Based Pharmacokinetic Modeling of Disposition and Drug–drug Interactions for Atorvastatin and its Metabolites. Eur. J. Pharm. Sci. 2015, 77, 216–229. [Google Scholar] [CrossRef]
- Backman, J.T.; Luurila, H.; Neuvonen, M.; Neuvonen, P.J. Rifampin Markedly Decreases and Gemfibrozil Increases the Plasma Concentrations of Atorvastatin and its Metabolites. Clin. Pharmacol. Ther. 2005, 78, 154–167. [Google Scholar] [CrossRef]
- Bullman, J.; Nicholls, A.; Van Landingham, K.; Fleck, R.; Vuong, A.; Miller, J.; Alexander, S.; Messenheimer, J. Effects of Lamotrigine and Phenytoin on the Pharmacokinetics of Atorvastatin in Healthy Volunteers. Epilepsia 2011, 52, 1351–1358. [Google Scholar] [CrossRef]
- Derks, M.; Abt, M.; Parr, G.; Meneses-Lorente, G.; Young, A.; Phelan, M. No Clinically Relevant Drug-Drug Interactions when Dalcetrapib is Co-Administered with Atorvastatin. Expert Opin. Investig. Drugs 2010, 19, 1135–1145. [Google Scholar] [CrossRef]
- Dingemanse, J.; Nicolas, L.; van Bortel, L. Investigation of Combined CYP3A4 Inductive/Inhibitory Properties by Studying Statin Interactions: A Model Study with the Renin Inhibitor ACT-178882. Eur. J. Clin. Pharmacol. 2014, 70, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Pei, Q.; Yin, J.; Peng, X.; Zhou, B.; Zhao, Y.; Wu, L.; Meng, X.; Wang, G.; Li, Q.; et al. Effects ofGinkgo Bilobaextracts on Pharmacokinetics and Efficacy of Atorvastatin Based on Plasma Indices. Xenobiotica 2012, 42, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Hoch, M.; Hoever, P.; Theodor, R.; Dingemanse, J. Almorexant Effects on CYP3A4 Activity Studied by its Simultaneous and Time-Separated Administration with Simvastatin and Atorvastatin. Eur. J. Clin. Pharmacol. 2013, 69, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Hulskotte, E.G.; Feng, H.P.; Xuan, F.; Gupta, S.; van Zutven, M.G.; O’Mara, E.; Wagner, J.A.; Butterton, J.R. Pharmacokinetic Evaluation of the Interaction between Hepatitis C Virus Protease Inhibitor Boceprevir and 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors Atorvastatin and Pravastatin. Antimicrob. Agents Chemother. 2013, 57, 2582–2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantola, T.; Kivistö, K.T.; Neuvonen, P.J. Effect of Itraconazole on the Pharmacokinetics of Atorvastatin. Clin. Pharmacol. Ther. 1998, 64, 58–65. [Google Scholar] [CrossRef]
- Lau, Y.Y.; Huang, Y.; Frassetto, L.; Benet, L.Z. Effect of OATP1B Transporter Inhibition on the Pharmacokinetics of Atorvastatin in Healthy Volunteers. Clin. Pharmacol. Ther. 2007, 81, 194–204. [Google Scholar] [CrossRef]
- Mazzu, A. Itraconazole Alters the Pharmacokinetics of Atorvastatin to a Greater Extent than either Cerivastatin Or Pravastatin. Clin. Pharmacol. Ther. 2000, 68, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.A.; la Porte, C.J.L.; Lee, L.S.; van Heeswijk, R.; Sabo, J.P.; Elgadi, M.M.; Piliero, P.J.; Barditch-Crovo, P.; Fuchs, E.; Flexner, C.; et al. Differential Effects of Tipranavir Plus Ritonavir on Atorvastatin Or Rosuvastatin Pharmacokinetics in Healthy Volunteers. Antimicrob. Agents Chemother. 2009, 53, 4385–4392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, N.; Dvorchik, B.; Sussman, N.; Wang, H.; Yamamoto, K.; Mori, A.; Uchimura, T.; Chaikin, P. A Study of the Pharmacokinetic Interaction of Istradefylline, a Novel Therapeutic for Parkinson’s Disease, and Atorvastatin. J. Clin. Pharmacol. 2008, 48, 1092–1098. [Google Scholar] [CrossRef]
- Shin, J.; Pauly, D.F.; Pacanowski, M.A.; Langaee, T.; Frye, R.F.; Johnson, J.A. Effect of Cytochrome P450 3A5 Genotype on Atorvastatin Pharmacokinetics and its Interaction with Clarithromycin. Pharmacotherapy 2011, 31, 942–950. [Google Scholar] [CrossRef] [Green Version]
- Asberg, A.; Hartmann, A.; Fjeldsa, E.; Bergan, S.; Holdaas, H. Bilateral Pharmacokinetic Interaction between Cyclosporine A and Atorvastatin in Renal Transplant Recipients. Am. J. Transplant. 2001, 1, 382–386. [Google Scholar] [CrossRef]
- Pasanen, M.K.; Fredrikson, H.; Neuvonen, P.J.; Niemi, M. Different Effects of SLCO1B1 Polymorphism on the Pharmacokinetics of Atorvastatin and Rosuvastatin. Clin. Pharmacol. Ther. 2007, 82, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Siedlik, P.H.; Olson, S.C.; Yang, B.; Stern, R.H. Erythromycin Coadministration Increases Plasma Atorvastatin Concentrations. J. Clin. Pharmacol. 1999, 39, 501–504. [Google Scholar]
- Hermann, M.; Åsberg, A.; Christensen, H.; Holdaas, H.; Hartmann, A.; Reubsaet, J.L.E. Substantially Elevated Levels of Atorvastatin and Metabolites in Cyclosporine-Treated Renal Transplant Recipients. Clin. Pharmacol. Ther. 2004, 76, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, L.R.; Porcari, A.R.; Alvey, C.; Abel, R.; Bullen, W.; Hartman, D. Effect of Gemfibrozil and Fenofibrate on the Pharmacokinetics of Atorvastatin. J. Clin. Pharmacol. 2011, 51, 378–388. [Google Scholar] [CrossRef] [PubMed]
- de la Peña, A.; Cui, X.; Geiser, J.; Loghin, C. No Dose Adjustment is Recommended for Digoxin, Warfarin, Atorvastatin Or a Combination Oral Contraceptive when Coadministered with Dulaglutide. Clin. Pharmacokinet. 2017, 56, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Rodde, M.S.; Divase, G.T.; Devkar, T.B.; Tekade, A.R. Solubility and Bioavailability Enhancement of Poorly Aqueous Soluble Atorvastatin: In Vitro, Ex Vivo, and in Vivo Studies. Biomed. Res. Int. 2014, 2014, 463895. [Google Scholar] [CrossRef] [Green Version]
- Salmani, J.M.; Lv, H.; Asghar, S.; Zhou, J. Amorphous Solid Dispersion with Increased Gastric Solubility in Tandem with Oral Disintegrating Tablets: A Successful Approach to Improve the Bioavailability of Atorvastatin. Pharm. Dev. Technol. 2015, 20, 465–472. [Google Scholar] [CrossRef]
- Duan, P.; Duan, P.; Zhao, P.; Zhao, P.; Zhang, L.; Zhang, L. Physiologically Based Pharmacokinetic (PBPK) Modeling of Pitavastatin and Atorvastatin to Predict Drug-Drug Interactions (DDIs). Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 689–705. [Google Scholar] [CrossRef]
- Rodgers, T.; Leahy, D.; Rowland, M. Physiologically Based Pharmacokinetic Modeling 1: Predicting the Tissue Distribution of Moderate-to-Strong Bases. J. Pharm. Sci. 2005, 94, 1259–1276. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, T.; Rowland, M. Physiologically Based Pharmacokinetic Modelling 2: Predicting the Tissue Distribution of Acids, very Weak Bases, Neutrals and Zwitterions. J. Pharm. Sci. 2006, 95, 1238–1257. [Google Scholar] [CrossRef]
- Hermann, M.; Bogsrud, M.; Molden, E.; Asberg, A.; Mohebi, B.; Ose, L.; Retterstol, K. Exposure of Atorvastatin is Unchanged but Lactone and Acid Metabolites are Increased several-Fold in Patients with Atorvastatin-Induced Myopathy. Clin. Pharmacol. Ther. 2006, 79, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yu, Y.; Jin, Z.; Dai, Y.; Lin, H.; Jiao, Z.; Ma, G.; Cai, W.; Han, B.; Xiang, X. Prediction of Pharmacokinetic Drug-Drug Interactions Causing Atorvastatin-Induced Rhabdomyolysis using Physiologically Based Pharmacokinetic Modelling. Biomed. Pharmacother. 2019, 119, 109416. [Google Scholar] [CrossRef] [PubMed]
- Morse, B.L.; Alberts, J.J.; Posada, M.M.; Rehmel, J.; Kolur, A.; Tham, L.S.; Loghin, C.; Hillgren, K.M.; Hall, S.D.; Dickinson, G.L. Physiologically-Based Pharmacokinetic Modeling of Atorvastatin Incorporating Delayed Gastric Emptying and Acid-to-Lactone Conversion. CPT: Pharmacomet. Syst. Pharmacol. 2019, 8, 664–675. [Google Scholar]
- Shebley, M.; Sandhu, P.; Emami Riedmaier, A.; Jamei, M.; Narayanan, R.; Patel, A.; Peters, S.A.; Reddy, V.P.; Zheng, M.; de Zwart, L.; et al. Physiologically Based Pharmacokinetic Model Qualification and Reporting Procedures for Regulatory Submissions: A Consortium Perspective. Clin. Pharmacol. Ther. 2018, 104, 88–110. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.M.; Fontana, V.; FitzGerald, R.; Morris, A.P.; Pirmohamed, M. Investigating the Clinical Factors and Comedications Associated with Circulating Levels of Atorvastatin and its Major Metabolites in Secondary Prevention. Br. J. Clin. Pharmacol. 2020, 86, 62–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostami-Hodjegan, A.; Tucker, G.T. Simulation and Prediction of in Vivo Drug Metabolism in Human Populations from in Vitro Data. Nature reviews. Drug Discov. 2007, 6, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Rostami-Hodjegan, A. Physiologically Based Pharmacokinetics Joined with in Vitro-in Vivo Extrapolation of ADME: A Marriage Under the Arch of Systems Pharmacology. Clin. Pharmacol. Ther. 2012, 92, 50–61. [Google Scholar] [CrossRef]
- Jamei, M.; Marciniak, S.; Edwards, D.; Wragg, K.; Feng, K.; Barnett, A.; Rostami-Hodjegan, A. The Simcyp Population Based Simulator: Architecture, Implementation, and Quality Assurance. In. Silico Pharmacol. 2013, 1, 1–14, eCollection 2013. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.M.; Rowland, M. The Role of Physiologically Based Pharmacokinetic Modeling in Regulatory Review. Clin. Pharmacol. Ther. 2012, 91, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhang, L.; Grillo, J.A.; Liu, Q.; Bullock, J.M.; Moon, Y.J.; Song, P.; Brar, S.S.; Madabushi, R.; Wu, T.C.; et al. Applications of Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation during Regulatory Review. Clin. Pharmacol. Ther. 2011, 89, 259–267. [Google Scholar] [CrossRef]
- Zhao, P.; Rowland, M.; Huang, S.M. Best Practice in the use of Physiologically Based Pharmacokinetic Modeling and Simulation to Address Clinical Pharmacology Regulatory Questions. Clin. Pharmacol. Ther. 2012, 92, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Poulin, P.; Theil, F.P. Prediction of Pharmacokinetics Prior to in Vivo Studies. 1. Mechanism-Based Prediction of Volume of Distribution. J. Pharm. Sci. 2002, 91, 129–156. [Google Scholar] [CrossRef] [PubMed]
- Holtzman, C.W.; Wiggins, B.S.; Spinler, S.A. Role of P-Glycoprotein in Statin Drug Interactions. Pharmacotherapy 2006, 26, 1601–1607. [Google Scholar] [CrossRef]
- Boyd, R.A.; Stern, R.H.; Stewart, B.H.; Wu, X.; Reyner, E.L.; Zegarac, E.A.; Randinitis, E.J.; Whitfield, L. Atorvastatin Coadministration may Increase Digoxin Concentrations by Inhibition of Intestinal P-Glycoprotein-Mediated Secretion. J. Clin. Pharmacol. 2000, 40, 91–98. [Google Scholar] [CrossRef] [PubMed]
Zhang, 2015 | Duan et al., 2017 | Li et al., 2019 | Morse et al., 2019 | |
---|---|---|---|---|
Number of independent clinical studies | 13 a | 7 b | 6 c | 5 d |
Dosing regimen (Number of trials) | SD (12) MD (2) | SD (6) MD (2) | SD (5) MD (1) | SD (5) |
Number of subjects (total) | 386 | 166 | 180 | 145 |
Clinical status (number of subjects) | HV (386) | HV (145) RTP (21) | HV (162) RTP (18) | HV (145) |
Dose level (mg) (number of subjects) | 20 (83) 40 (303) | 10 (33) 20 (60) 40 (73) | 10 (36) 20 (55) 40 (89) | 10 (12) 40 (133) |
Model Parameter | Zhang, 2015 | Duan et al., 2017 | Li et al., 2019 | Morse et al., 2019 |
---|---|---|---|---|
Physicochemical Properties | ||||
Molecular weight (g/mol) | 558.66 | 558.64 | 558.64 | 559.00 |
logPo:w | 5.7 | 4.07 | 4.434 | 5.39 |
Compound type | Monoprotic Acid | Monoprotic Acid | Monoprotic Acid | Monoprotic Acid |
pKa | 4.46 | 4.46 | 4.46 | 4.33 |
B/P | 0.61 | 0.61 | 0.61 | 0.55 |
fu | 0.051 | 0.024 | 0.050 | 0.022 |
Absorption | ||||
Model | ADAM | ADAM | ADAM | ADAM |
Peff,man (10−4 cm/s) | 2.05 | NR | 1.05 | 4.49 |
In vitro assay | Caco-2 | Caco-2 | Caco-2 | Caco-2 |
pHapical:pHbasolateral | 7.4:7.4 | 7.4:7.4 | 7.4:7.4 | 6.5:7.4 |
Papp (10−6 cm/s) | 8.6 | 7.9 | 4.9 | 28.4 |
Refference compound | Propranolol | NR | NR | NR |
Papp refference (10−6 cm/s) | 20 | NR | NR | NR |
Distribution | ||||
Model | Full PBPK | Full PBPK | Full PBPK | Full PBPK |
Method | 1 and 2 | 2 | 2 | 2 |
Vss (L/kg) | 8.7 | 0.226 | 2.67 | 0.690 |
Kp scalar (model) | 2(1) and 4.6(2) | NR | NR | 2 |
Lipid Binding Scalar | NR | NR | 4.15 | NR |
Metabolism | ||||
Model | Enzyme kinetics | Enzyme kinetics | Enzyme kinetics | Enzyme kinetics |
CYP3A4 | ||||
Metabolite | 2OH-ATS | 2OH-ATS | ||
Km (βM) | 29.7 | 34.8 | 34.8 | |
Vmax (pmol/min/pmol isoform) | 29.3 | 1048 | 1048 | |
fu,mic | 1 | NR | NR | |
Scaling Factor | 7 (ISEF) | NR | NR | |
Km (µM) | 25.6 | 33 | 33 | |
Vmax (pmol/min/pmol isoform) | 29.8 | 1353 | 1353 | |
fumic | 1 | NR | NR | |
CLint (µL/min/pmol isoform) | 8 | NR | NR | |
Scaling Factor | 7 (ISEF) | |||
CYP2C8 | ||||
Km (µM) | 35.9 | |||
Vmax (pmol/min/pmol isoform) | 0.29 | |||
fu,mic | 1 | |||
Scaling Factor | 4 (ISEF) | |||
UGT1A1 | ||||
Metabolite | ATS-L | ATS-L | ||
Km (µM) | 11 | 2 | ||
Vmax (pmol/min/pmol isoform) | 72 | 2 | ||
fu,mic | 1 | NR | ||
Scaling Factor | 2 (ISEF) | NR | ||
UGT1A3 | ||||
Metabolite | ATS-L | ATS-L | ||
Km (µM) | 11 | 4 | ||
Vmax (pmol/min/pmol isoform) | 72 | 38 | ||
fu,mic | 1 | NR | ||
Scaling Factor | 2 (ISEF) | NR | ||
CLint (µL/min/mg protein) | 6.2 | |||
Other HLM | ||||
CLint (µL/min/mg protein) | 65 | |||
Transport | ||||
Intestine | ||||
P-gp | Efflux (gut wall) | |||
Km (µM) | 115 | |||
Jmax (pmol/cm2/min) | 141 | |||
Scaling Factor | 1 (RAF/REF) | |||
BCRP | Efflux (gut wall) | |||
CLint,T (µL/min) | 6 | |||
Liver | ||||
CLPD (mL/min/106 cells) | 0.023 | 0.017 | 0.023 | 0.013 |
fu,IW | 0.324 | |||
fu,EW | 0.038 | |||
OATP1B1 | Uptake (sinusoidal) | |||
CLint (µL/min/106 cells) | 1000 | 31.5 | ||
CLint,T (µL/min) | 55 | |||
Km (µM) | 0.77 | |||
Jmax (pmol/min/106 cells) | 277.2 | |||
Scaling Factor | 10 (RAF/REF) | 4 | 30 | |
OATP1B3 | Uptake (sinusoidal) | |||
CLint (µL/min/106 cells) | 900 | 31.5 | ||
Scaling Factor | 30 | |||
BCRP | Efflux (canalicular) | |||
CLint,T (µL/min/106 cells) | 1.4 | |||
Excretion | ||||
CLR (L/h) | 0.47 | 0.375 | ||
CLint,bile (µL/min/106 cells) | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reig-López, J.; García-Arieta, A.; Mangas-Sanjuán, V.; Merino-Sanjuán, M. Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making. Pharmaceutics 2021, 13, 709. https://doi.org/10.3390/pharmaceutics13050709
Reig-López J, García-Arieta A, Mangas-Sanjuán V, Merino-Sanjuán M. Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making. Pharmaceutics. 2021; 13(5):709. https://doi.org/10.3390/pharmaceutics13050709
Chicago/Turabian StyleReig-López, Javier, Alfredo García-Arieta, Víctor Mangas-Sanjuán, and Matilde Merino-Sanjuán. 2021. "Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making" Pharmaceutics 13, no. 5: 709. https://doi.org/10.3390/pharmaceutics13050709
APA StyleReig-López, J., García-Arieta, A., Mangas-Sanjuán, V., & Merino-Sanjuán, M. (2021). Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making. Pharmaceutics, 13(5), 709. https://doi.org/10.3390/pharmaceutics13050709