Obtaining Cocrystals by Reaction Crystallization Method: Pharmaceutical Applications
Abstract
:1. Introduction
2. Pharmaceutical Cocrystals
3. Techniques for Obtaining Cocrystals
3.1. Reaction Crystallization Method
3.1.1. Mechanism
3.1.2. Influence of the Quantities of Individual Components
3.1.3. Solvent
3.1.4. Advantages
3.1.5. Pharmaceutical Cocrystals Reported in the Literature Obtained by the RCM
Class II
Class III
Class I
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vioglio, P.C.; Chierotti, M.R.; Gobetto, R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev. 2017, 117, 86–110. [Google Scholar] [CrossRef]
- Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef]
- Izutsu, K.; Koide, T.; Takata, N.; Ikeda, Y.; Ono, M.; Inoue, M.; Fukami, T.; Yonemochi, E. Characterization and Quality Control of Pharmaceutical Cocrystals. Chem. Pharm. Bull. 2016, 64, 1421–1430. [Google Scholar] [CrossRef] [Green Version]
- Malamatari, M.; Ross, S.A.; Douroumis, D.; Velaga, S.P. Experimental cocrystal screening and solution based scale-up cocrystallization methods. Adv. Drug Deliv. Rev. 2017, 117, 162–177. [Google Scholar] [CrossRef]
- Morissette, S.L.; Almarsson, Ö.; Peterson, M.L.; Remenar, J.F.; Read, M.J.; Lemmo, A.V.; Ellis, S.; Cima, M.J.; Gardner, C.R. High-throughput crystallization: Polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliv. Rev. 2004, 56, 275–300. [Google Scholar] [CrossRef]
- Berry, D.J.; Steed, J.W. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv. Drug Deliv. Rev. 2017, 117, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Douroumis, D.; Ross, S.A.; Nokhodchi, A. Advanced methodologies for cocrystal synthesis. Adv. Drug Deliv. Rev. 2017, 117, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Albert Irudayaraj, A.; Dhayal Raj, A.; Illavarasi, G. Growth and characterization of BTCS and BTZA crystals grown by slow evaporation method. Optik 2014, 125, 824–827. [Google Scholar] [CrossRef]
- Chiarella, R.A.; Davey, R.J.; Peterson, M.L. Making co-crystals—The utility of ternary phase diagrams. Cryst. Growth Des. 2007, 7, 1223–1226. [Google Scholar] [CrossRef]
- Ober, C.A.; Gupta, R.B. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization. AAPS Pharmscitech 2012, 13, 1396–1406. [Google Scholar] [CrossRef] [Green Version]
- Delori, A.; Friščić, T.; Jones, W. The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm 2012, 14, 2350–2362. [Google Scholar] [CrossRef]
- Berry, D.J.; Seaton, C.C.; Clegg, W.; Harrington, R.W.; Coles, S.J.; Horton, P.N.; Hursthouse, M.B.; Storey, R.; Jones, W.; Friscic, T.; et al. Applying hot-stage microscopy to co-crystal screening: A study of nicotinamide with seven active pharmaceutical ingredients. Cryst. Growth Des. 2008, 8, 1697–1712. [Google Scholar] [CrossRef]
- Childs, S.L.; Mougin, P.; Stahly, B.C. Screening for Solid Forms by Ultrasound Crystallization and Cocrystallization Using Ultrasound. European Patent EP2292585, 14 March 2015. [Google Scholar]
- Yu, Z.Q.; Chow, P.S.; Tan, R.B.H.; Ang, W.H. Supersaturation Control in Cooling Polymorphic Co-Crystallization of Caffeine and Glutaric Acid. Cryst. Growth Des. 2011, 11, 4525–4532. [Google Scholar] [CrossRef]
- Crowley, M.M.; Zhang, F.; Repka, M.A.; Thumma, S.; Upadhye, S.B.; Battu, S.K.; McGinity, J.W.; Martin, C. Pharmaceutical applications of hot-melt extrusion: Part I. Drug Dev. Ind. Pharm. 2007, 33, 909–926. [Google Scholar] [CrossRef] [PubMed]
- Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res. 2008, 25, 999–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padrela, L.; Rodrigues, M.A.; Tiago, J.; Velaga, S.P.; Matos, H.A.; De Azevedo, E.G. Insight into the Mechanisms of Cocrystallization of Pharmaceuticals in Supercritical Solvents. Cryst. Growth Des. 2015, 15, 3175–3181. [Google Scholar] [CrossRef]
- Rodríguez-Hornedo, N.; Nehm, S.J.; Seefeldt, K.F.; Pagán-Torres, Y.; Falkiewicz, C.J. Reaction crystallization of pharmaceutical molecular complexes. Mol. Pharm. 2006, 3, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Aakeröy, C.B.; Salmon, D.J. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm 2005, 7, 439–448. [Google Scholar] [CrossRef]
- Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm. 2011, 419, 1–11. [Google Scholar] [CrossRef]
- Batzdorf, L.; Zientek, N.; Rump, D.; Fischer, F.; Maiwald, M.; Emmerling, F. Make and break—Facile synthesis of cocrystals and comprehensive dissolution studies. J. Mol. Struct. 2017, 1133, 18–23. [Google Scholar] [CrossRef]
- Baghel, S.; Cathcart, H.; Redington, W.; O’Reilly, N.J. An investigation into the crystallization tendency/kinetics of amorphous active pharmaceutical ingredients: A case study with dipyridamole and cinnarizine. Eur. J. Pharm. Biopharm. 2016, 104, 59–71. [Google Scholar] [CrossRef]
- McNamara, D.P.; Childs, S.L.; Giordano, J.; Iarriccio, A.; Cassidy, J.; Shet, M.S.; Mannion, R.; O’Donnell, E.; Park, A. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm. Res. 2006, 23, 1888–1897. [Google Scholar] [CrossRef]
- Berge, S.M.; Bighley, L.D.; Monkhouse, D.C. Pharmaceutical Salts. J. Pharm. Sci. 1977, 66, 1–19. [Google Scholar] [CrossRef]
- Schultheiss, N.; Newman, A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des. 2009, 9, 2950–2967. [Google Scholar] [CrossRef] [Green Version]
- Erxleben, A. Cocrystal applications in drug delivery. Pharmaceutics 2020, 12, 834. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Guidance for Industry Regulatory Classification of Pharmaceutical Co-Crystals; FDA: Silver Spring, MD, USA, 2013; pp. 1–5. [Google Scholar]
- European Medicines Agency (EMA). Reflection Paper on the Use of Cocrystals of Active Substances in Medicinal Products; EMA: Amsterdam, The Netherlands, 2014; pp. 1–10. [Google Scholar]
- Kuminek, G.; Cao, F.; Bahia de Oliveira da Rocha, A.; Cardoso, S.G.; Rodríguez-Hornedo, N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv. Drug Deliv. Rev. 2016, 101, 143–166. [Google Scholar] [CrossRef] [Green Version]
- Buddhadev, S.S.; Garala, K.C. Pharmaceutical Cocrystals—A Review. Proceedings 2021, 62, 14. [Google Scholar] [CrossRef]
- Rocha, A.B.O.; Kuminek, G.; Machado, T.C.; Rosa, J.; Rauber, G.S.; Borba, P.A.A.; Siedler, S.; Stulzer, H.K.; Cuffini, S.L.; Rodriguez-Hornedo, N.; et al. Cocristais: Uma Estratégia Promissora Na Área Farmacêutica. Quim. Nov. 2016, 39, 1112–1125. [Google Scholar] [CrossRef]
- Trask, A.V.; Van De Streek, J.; Motherwell, W.D.S.; Jones, W. Achieving polymorphic and stoichiometric diversity in cocrystal formation: Importance of solid-state grinding, powder X-ray structure determination, and seeding. Cryst. Growth Des. 2005, 5, 2233–2241. [Google Scholar] [CrossRef]
- Yu, Z.Q.; Chow, P.S.; Tan, R.B.H. Operating regions in cooling cocrystallization of caffeine and glutaric acid in acetonitrile. Cryst. Growth Des. 2010, 10, 2383–2387. [Google Scholar] [CrossRef]
- Trask, A.V.; Jones, W. Crystal engineering of organic cocrystals by the solid-state grinding approach. Top. Curr. Chem. 2005, 254, 41–70. [Google Scholar] [CrossRef]
- Etter, M.C.; Adsmond, D.A. The Use of Cocrystallization as a Method of studying Hydrogen Bond Preferences of 2-Aminopyrimidine. J. Chem. Soc. 1990, 589, 589–591. [Google Scholar] [CrossRef]
- Shan, N.; Jones, W. A green chemistry approach to the synthesis of a crystalline organic inclusion compound. Green Chem. 2003, 5, 728–730. [Google Scholar] [CrossRef]
- Trask, A.V.; Motherwell, W.D.S.; Jones, W. Solvent-drop grinding: Green polymorph control of cocrystallisation. Chem. Commun. 2004, 7, 890–891. [Google Scholar] [CrossRef]
- Wouters, J.; Quere, L. Pharmaceutical Salts and Co-Crystals, 16th ed.; RSC Drug Discovery Series: Cambridge, UK, 2011; ISBN 978-1-84973-158-4. [Google Scholar]
- Stahly, G.P. Diversity in single- and multiple-component crystals. the search for and prevalence of polymorphs and cocrystals. Cryst. Growth Des. 2007, 7, 1007–1026. [Google Scholar] [CrossRef] [Green Version]
- Childs, S.L.; Rodríguez-Hornedo, N.; Reddy, L.S.; Jayasankar, A.; Maheshwari, C.; McCausland, L.; Shipplett, R.; Stahly, B.C. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm 2008, 10, 856. [Google Scholar] [CrossRef]
- Apshingekar, P.P.; Aher, S.; Kelly, A.L.; Brown, E.C.; Paradkar, A. Synthesis of Caffeine/Maleic Acid Co-crystal by Ultrasound-assisted Slurry Co-crystallization. J. Pharm. Sci. 2017, 106, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Friscic, T.; Childs, S.L.; Rizvi, S.A.A.; Jones, W. The role of solvent in mechanochemical and sonochemical cocrystal formation: A solubility-based approach for predicting cocrystallisation outcome. R. Soc. Chem. 2009, 11, 388–403. [Google Scholar] [CrossRef]
- Nehm, S.J.; Rodriguez-Spong, B.; Rodriguez-Hornedo, N. Phase Solubility Diagrams of Cocrystals Are Explained by Solubility Product and Solution Complexation. Cryst. Growth Des. 2006, 6, 592–600. [Google Scholar] [CrossRef]
- Rager, T.; Hilfiker, R. Application of Phase Diagrams in Co-crystal Search and Preparation. In Pharmaceutical Salts and Co-Crystals; Wouters, J., Quere, L., Eds.; Royal Society of Chemistry: Kaiseraugst, Switzerland, 2012; pp. 280–299. ISBN 9781849733502. [Google Scholar]
- Good, D.J.; Rodríguez-Hornedo, N. Solubility Advantage of Pharmaceutical Cocrystals. Cryst. Growth Des. 2009, 9, 2255–2264. [Google Scholar] [CrossRef]
- Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst. Growth Des. 2018, 18, 6370–6387. [Google Scholar] [CrossRef]
- Gagniere, E.; Mangin, D.; Puel, F.; Valour, J.P.; Klein, J.P.; Monnier, O. Cocrystal formation in solution: Inducing phase transition by manipulating the amount of cocrystallizing agent. J. Cryst. Growth 2011, 316, 118–125. [Google Scholar] [CrossRef]
- Spong, B.R. Enhancing the Pharmaceutical Behavior of Poorly Soluble. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, USA, 2005. [Google Scholar]
- Pawar, N.; Saha, A.; Nandan, N.; Parambil, J.V. Solution cocrystallization: A scalable approach for cocrystal production. Crystals 2021, 11, 303. [Google Scholar] [CrossRef]
- Karagianni, A.; Malamatari, M.; Kachrimanis, K. Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics 2018, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Herrmannsdörfer, D.; Gerber, P.; Heintz, T.; Herrmann, M.J.; Klapötke, T.M. Investigation of Crystallisation Conditions to Produce CL-20/HMX Cocrystal for Polymer-bonded Explosives. PropellantsExplos. Pyrotech. 2019, 44, 668–678. [Google Scholar] [CrossRef]
- Sun, C.C. Cocrystallization for successful drug delivery. Expert Opin. Drug Deliv. 2013, 10, 201–213. [Google Scholar] [CrossRef]
- Porter, W.W.; Elie, S.C.; Matzger, A.J. Polymorphism in carbamazepine cocrystals. Cryst. Growth Des. 2008, 8, 14–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehder, S.; Klukkert, M.; Löbmann, K.A.M.; Strachan, C.J.; Sakmann, A.; Gordon, K.; Rades, T.; Leopold, C.S. Investigation of the formation process of two piracetam cocrystals during grinding. Pharmaceutics 2011, 3, 706–722. [Google Scholar] [CrossRef] [Green Version]
- Ullah, M.; Hussain, I.; Sun, C.C. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Drug Dev. Ind. Pharm. 2016, 42, 969–976. [Google Scholar] [CrossRef]
- Childs, S.L.; Kandi, P.; Lingireddy, S.R. Formulation of a Danazol Cocrystal with Controlled Supersaturation Plays an Essential Role in Improving Bioavailability. Mol. Pharm. 2013, 10, 3112–3127. [Google Scholar] [CrossRef]
- Gagniere, E.; Mangin, D.; Puel, F.; Bebon, C.; Klein, J.P.; Monnier, O.; Garcia, E. Cocrystal formation in solution: In situ solute concentration monitoring of the two components and kinetic pathways. Cryst. Growth Des. 2009, 9, 3376–3383. [Google Scholar] [CrossRef]
- Jayasankar, A.; Good, D.J.; Arbor, A. Mechanisms by Which Moisture Generates Cocrystals. Mol. Pharm. 2007, 4, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amidon, G.L.; Lennernas, H.; Shah, V.P.; Crison, J.R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of In Vitro Drug Product Dissolution and In Vivo Bioavailability, Pharm Res 12, 413–420, 1995—Backstory of BCS. AAPS J. 2014, 16, 894–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhalaweh, A.; Roy, L.; Rodríguez-Hornedo, N.; Velaga, S.P. PH-dependent solubility of indomethacin-saccharin and carbamazepine- saccharin cocrystals in aqueous media. Mol. Pharm. 2012, 9, 2605–2612. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, J.M.; Lu, T.B. Simultaneously enhancing the solubility and permeability of acyclovir by crystal engineering approach. CrystEngComm 2013, 15, 6457–6460. [Google Scholar] [CrossRef]
- Bethune, S.J.; Huang, N.; Jayasankar, A.; Rodrı, N. Understanding and Predicting the Effect of Cocrystal Components and pH on Cocrystal Solubility. Cryst. Growth Des. 2009, 9, 3976–3988. [Google Scholar] [CrossRef]
- Huang, N.; Rodríguez-Hornedo, N. Engineering Cocrystal Solubility, Stability, and pHmax by Micellar Solubilization. J. Pharm. Sci. 2011, 100, 5219–5234. [Google Scholar] [CrossRef] [Green Version]
- Lipert, M.P.; Roy, L.; Childs, S.L.; Arbor, A. Cocrystal solubilization in biorelevant media and its prediction from drug solubilization. J. Pharm. Sci. 2016, 104, 4153–4163. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Amidon, G.L.; Rodríguez-Hornedo, N.; Amidon, G.E. Mechanistic Basis of Cocrystal Dissolution Advantage. J. Pharm. Sci. 2018, 107, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Sugandha, K.; Kaity, S.; Mukherjee, S.; Isaac, J.; Ghosh, A. Enhancement of solubility of Ezetimibe by liquisolid technique. Int. J. Pharm. Chem. Anal. 2014, 1, 1–25. [Google Scholar] [CrossRef]
- Sreenivas Reddy, L.; Bethune, S.J.; Kampf, J.W.; Rodríguez-Hornedo, N. Cocrystals and salts of gabapentin: pH dependent cocrystal stability and solubility. Cryst. Growth Des. 2009, 9, 378–385. [Google Scholar] [CrossRef]
- Maheshwari, C.; André, V.; Reddy, S.; Roy, L.; Duarte, T.; Rodríguez-Hornedo, N. Tailoring aqueous solubility of a highly soluble compound via cocrystallization: Effect of coformer ionization, pH max and solute-solvent interactions. CrystEngComm 2012, 14, 4801–4811. [Google Scholar] [CrossRef]
- Rosa, J.; Machado, T.C.; Karolina, A.; Kuminek, G. Isoniazid-Resveratrol Cocrystal: A Novel Alternative for Topical Treatment of Cutaneous Tuberculosis. Cryst. Growth Des. 2019, 19, 5029–5036. [Google Scholar] [CrossRef]
- Chen, Y.M.; Rodríguez-Hornedo, N. Cocrystals Mitigate Negative Effects of High pH on Solubility and Dissolution of a Basic Drug. Cryst. Growth Des. 2018, 18, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, K.L.; Maheshwari, C.; Rodríguez-hornedo, N. Understanding the Differences between Cocrystal and Salt Aqueous Solubilities. J. Pharm. Sci. 2018, 107, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Machado, T.C. Solubilidade e Estabilidade Termodinâmica de Cocristais de Meloxicam. Master’s Thesis, Federal University of Santa Catarina, Florianópolis, SC, Brazil, 2016. [Google Scholar]
- Wang, J.R.; Yu, X.; Zhou, C.; Lin, Y.; Chen, C.; Pan, G.; Mei, X. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with isonicotinamide. Bioorganic Med. Chem. Lett. 2015, 25, 1036–1039. [Google Scholar] [CrossRef]
- Martínez-Alejo, J.M.; Domínguez-Chávez, J.G.; Rivera-Islas, J.; Herrera-Ruiz, D.; Höpfl, H.; Morales-Rojas, H.; Senosiain, J.P. A Twist in Cocrystals of Salts: Changes in Packing and Chloride Coordination Lead to Opposite Trends in the Biopharmaceutical Performance of Fluoroquinolone Hydrochloride Cocrystals Published as part of the Crystal Growth & Design virtual special issue I. Cryst. Growth Des. 2014, 14, 3078–3095. [Google Scholar]
- He, L.; Liang, Z.; Yu, G.; Li, X.; Chen, X.; Zhou, Z.; Ren, Z. Green and Efficient Resolution of Racemic Ofloxacin Using Tartaric Acid Derivatives via Forming Cocrystal in Aqueous Solution. Cryst. Growth Des. 2018, 18, 5008–5020. [Google Scholar] [CrossRef]
- Ahmed, H.; Shimpi, M.R.; Velaga, S.P. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol. Drug Dev. Ind. Pharm. 2017, 43, 89–97. [Google Scholar] [CrossRef]
- Kuminek, G.; Cavanagh, K.L.; Piedade, M.F.M.; Rodríguez-hornedo, N. Posaconazole cocrystal with superior solubility and dissolution behavior. Cryst. Growth Des. 2019, 19, 6592–6602. [Google Scholar] [CrossRef]
- Surov, A.O.; Manin, A.N.; Voronin, A.P.; Churakov, A.V.; Perlovich, G.L.; Vener, M.V. Weak Interactions Cause Packing Polymorphism in Pharmaceutical Two-Component Crystals: The Case Study of the Salicylamide Cocrystal. Cryst. Growth Des. 2017, 17, 1425–1437. [Google Scholar] [CrossRef]
- Shimpi, M.R.; Alhayali, A.; Cavanagh, K.L.; Rodríguez-Hornedo, N.; Velaga, S.P. Tadalafil-Malonic Acid Cocrystal: Physicochemical Characterization, pH-Solubility, and Supersaturation Studies. Cryst. Growth Des. 2018, 18, 4378–4387. [Google Scholar] [CrossRef]
- Iwata, K.; Karashima, M.; Ikeda, Y. Cocrystallization Enhanced TAK-441 Aqueous Solubility and Suppressed High Solvatomorphism. Cryst. Growth Des. 2016, 16, 4599–4606. [Google Scholar] [CrossRef]
- Jayasankar, A.; Roy, L.; Rodríguez-Hornedo, N. Transformation Pathways of Cocrystal Hydrates When Coformer Modulates Water Activity. J. Pharm. Sci. 2010, 99, 3977–3985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbah, C.J.; Uzor, P.F.; Omeje, E.O. Perspectives on Transdermal Drug Delivery. J. Chem. Pharm. Res. 2011, 3, 287–294. [Google Scholar]
- Masuda, T.; Yoshihashi, Y.; Yonemochi, E.; Fujii, K.; Uekusa, H.; Terada, K. Cocrystallization and amorphization induced by drug-excipient interaction improves the physical properties of acyclovir. Int. J. Pharm. 2012, 422, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Aitipamula, S.; Chow, P.S.; Tan, R.B.H. Polymorphism in cocrystals: A review and assessment of its significance. CrystEngComm 2014, 16, 3451–3465. [Google Scholar] [CrossRef]
Drug | Coformer | BCS | Improved Properties | Reference |
---|---|---|---|---|
Acyclovir | Fumaric acid | III | Solubility and permeability | Yan et al., 2013 [62] |
Carbamazepine | Nicotinamide | II | Solubility | Rodríguez-Hornedo et al., 2006 [18] |
Carbamazepine | 17 Carboxylic Acids * | II | Solubility | Childs et al., 2008 [40] |
Carbamazepine | Salicylic Acid, 4-Aminobenzoic Acid | II | Solubility | Bethune et al., 2009 [63] |
Carbamazepine | Theophylline, Caffeine, Nicotinamide, Malonic Acid, Glutaric Acid, Saccharin, Oxalic Acid, Succinic Acid, Salicylic Acid | II | Solubility | Good and Rodríguez-Hornedo 2009 [45] |
Carbamazepine | Succinic Acid | II | Solubility, Stability | Huang and Rodríguez-Hornedo 2011 [64] |
Carbamazepine | Saccharin | II | Solubility | Alhalaweh et al., 2012 [61] |
Carbamazepine | Saccharin, Salicylic Acid, 4- Aminobenzoic Acid monohydrate | II | Solubility | Lipert et al., 2016 [65] |
Carbamazepine | Saccharin, Salicylic Acid | II | Solubility | Cao et al., 2018 [66] |
Danazol | Hydroxybenxoic Acid, Vanillin | II | Solubility | Lipert et al., 2016 [65] |
Ezetimibe | Methyl Paraben | II | Solubility | Sugandha et al., 2014 [67] |
Gabapentin | 3-Hydroxybenzoic Acid, 4-Hydroxybenzoic Acid, Salicylic Acid, 1-Hydroxy-2-Napthoic Acid, Mandelic Acid, Tartaric Acid, Malic Acid, (+)-Camphoric Acid, Gallic Acid | II | Solubility, Stability | Sreenivas Reddy et al., 2009 [68] |
Gabapentin-lactam | 4-Hydroxybenzoid Acid, 4-Aminobenzoic Acid, Benzoic Acid, Gentisic Acid, Fumaric Acid | II | Solubility | Maheshwari et al., 2012 [69] |
Indomethacin | Saccharin | II | Solubility | Alhalaweh et al., 2012 [61] |
Indomethacin | Saccharin | II | Solubility | Lipert et al., 2016 [65] |
Isoniazid | Resveratrol | I/III | No advantage | Rosa et al., 2019 [70] |
Ketoconazole | Adipic Acid, Fumaric Acid, Succinic Acid | II | Solubility | Chen and Rodríguez-Hornedo 2018 [71] |
Lamotrigine | Nicotinamide | II | Solubility | Cavanagh et al., 2018 [72] |
Meloxicam | Salicylic Acid and Maleic Acid | II | Solubility | Machado 2016 [73] |
6-Mercaptopurine | Isonicotinamide | II | Dissolution and Bioavailability | Wang et al., 2015 [74] |
Moxifloxacin | 4-hydroxybenzoic Acid | I | Solubility and Dissolution | Martínez-Alejo et al., 2014 [75] |
Ofloxacin | Tartaric Acid Derivatives | I | Efficient separation of racemic compounds | He et al., 2018 [76] |
Paracetamol | Oxalic Acid, 4-Bipyridine Cocrystal | I | Tableting properties | Ahmed et al., 2017 [77] |
Piroxicam | Saccharin | II | Solubility | Lipert et al., 2016 [65] |
Posaconazole | 4-Aminobenzoic Acid | II | Solubility | Kuminek et al., 2019 [78] |
Salicylamide | Oxalic Acid | I | Dissolution | Surov et al., 2017 [79] |
Tadalafil | Malonic Acid | II | Solubility | Shimpi et al., 2018 [80] |
TAK-441 | L-malic Acid, L-tartaric Acid | II | Solubility, Stability | Iwata et al., 2016 [81] |
Theophylline | Nicotinamide, Salicylic Acid | I | Solubility | Good and Rodríguez-Hornedo 2009 [45] |
Theophylline | Citric Acid | I | Solubility | Jayasankar et al., 2010 [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biscaia, I.F.B.; Gomes, S.N.; Bernardi, L.S.; Oliveira, P.R. Obtaining Cocrystals by Reaction Crystallization Method: Pharmaceutical Applications. Pharmaceutics 2021, 13, 898. https://doi.org/10.3390/pharmaceutics13060898
Biscaia IFB, Gomes SN, Bernardi LS, Oliveira PR. Obtaining Cocrystals by Reaction Crystallization Method: Pharmaceutical Applications. Pharmaceutics. 2021; 13(6):898. https://doi.org/10.3390/pharmaceutics13060898
Chicago/Turabian StyleBiscaia, Isabela Fanelli Barreto, Samantha Nascimento Gomes, Larissa Sakis Bernardi, and Paulo Renato Oliveira. 2021. "Obtaining Cocrystals by Reaction Crystallization Method: Pharmaceutical Applications" Pharmaceutics 13, no. 6: 898. https://doi.org/10.3390/pharmaceutics13060898
APA StyleBiscaia, I. F. B., Gomes, S. N., Bernardi, L. S., & Oliveira, P. R. (2021). Obtaining Cocrystals by Reaction Crystallization Method: Pharmaceutical Applications. Pharmaceutics, 13(6), 898. https://doi.org/10.3390/pharmaceutics13060898