Modulation of Urate Transport by Drugs
Abstract
:1. Urate Homeostasis and Its Disorders
2. The Double Face of Urate
3. Transporters of Urate
3.1. Secretory Renal Urate Transporters
3.1.1. OAT1/SLC22A6 and OAT3/SLC22A8
3.1.2. OAT2
3.1.3. BCRP/ABCG2
3.1.4. MRP4/ABCC4
3.1.5. NPT1/SLC17A1 and NPT4/SLC17A3
3.2. Reabsorptive Renal Urate Transporters
3.2.1. URAT1/SLC22A12
3.2.2. OAT4/SLC22A11 and OAT10/SLC22A13
3.2.3. GLUT9/URATv1/SLC2A9
4. In Vitro Methods to Investigate the Interaction of Urate Transporters with Drugs
4.1. Cellular Expression Systems
4.2. Assay Types
5. Therapeutic Approaches to Treat Hyperuricemia and Gout
5.1. Approaches Targeting the Metabolism of Urate
5.2. Approaches Targeting the Reabsorption of Urate: Uricosuric Agents
Drug/Compound | MW | Dose | Cgut | Cmax | fu | Cmax,u | References |
---|---|---|---|---|---|---|---|
Uricosurics | |||||||
Benzbromarone | 424 | 100 mg | 943 µM | 7 µM | 0.01 | 0.07 µM | [91] |
Probenecid | 285 | 2000 mg | 28.1 mM | 520.7 µM | 0.09 | 46.9 µM | [70,92,93] |
Lesinurad | 404 | 200 mg | 1.98 mM | 29 µM | 0.016 | 0.46 µM | [94,95] |
Verinurad | 348 | 10 mg | 115 µM | 0.46 µM | 0.02 | 0.0092 µM | [96] |
Dotinurad | 358 | 4 mg | 44.8 µM | 1.2 µM | 0.007 | 0.012 µM 1 | [69] |
Arhalofenate | 416 | 600 mg | 5.77 mM | 337 µM | N/A | 3.37 µM 1 | [97] |
Fenofibrate | 361 | 67 mg | 742 µM | 25.8 µM | 0.01 | 0.236 µM | [98] |
Fenofibric acid | 319 | - | - | N/A | N/A | 0.81 µM | [99] |
Tranilast | 327 | 200 mg | 2.45 mM | 129 µM | N/A | 1.29 µM 1 | [100] |
Losartan | 423 | 50 mg | 473 µM | 0.60 µM | 0.013 | 0.0078 µM | [101] |
Sulfinpyrazone | 405 | 200 mg | 1.98 mM | 48.1 µM | 0.017 | 0.82 µM | [102] |
Salicylate (high dose) | 160 | 5200 mg | 130 mM | 1100 µM | 0.25 | 275 µM | [103,104] |
Epaminurad (UR-1102, URC-102) 2 | 414 | ~70 mg | 676 µM | 0.22 µM | N/A | 0.0022 µM 1 | [105] |
Hyperuricemic drugs | |||||||
Bumetanide | 364 | 1 mg | 11.0 µM | 0.8 µM | 0.125 | 0.1 µM | [72,106,107] |
Furosemide | 331 | 80 mg | 970 µM | 8–17 µM | 0.041 | 0.697 µM | [51,108] |
Torasemide | 348 | 200 mg | 2.30 mM | ~51.7 µM | 0.01 | 0.517 µM | [109,110] |
Chlorothiazide | 296 | 1000 mg | 13.51 mM | 120–240 µM | >0.1 | >24 µM | [51] |
Hydrochlorothiazide | 298 | 100 mg | 1342 µM | 1.64 µM | 0.33 | 0.54 µM | [111] |
Bendroflumethiazide | 421 | 5 mg | 47.5 µM | 0.08–0.2 µM | 0.05 | 4–10 nM | [112,113] |
Salicylate (low dose) | 160 | 1000 mg | 25 mM | ~280 µM | 0.25 | ~70 µM | [103,104] |
Pyrazinoate (pyrazinamide metabolite) | 124 | 3000 mg 3 | - | ≤150 µM | 0.69 | ≤103.5 µM | [34,114] |
Cyclosporine A | 1202 | 300 mg | 1.66 mM | 1.5 µM | 0.122 | 0.183 µM | [115] |
Favipiravir | 157 | 2400 mg | 61.1 mM | 294 µM 4 | 0.46 | 135 µM 4 | [116] |
Favipiravir M1 | 173 | 1200 mg 3 | - | 87.9 µM | 0.712 | 62.6 µM | [117] |
Transporter | BCRP (Gut) | OAT1 | OAT3 | BCRP (Kidney) | MRP4 | NPT1 | NPT4 | URAT1 | OAT4 | OAT10 | GLUT9 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Role | Secr. | Secr. | Secr. | Secr. | Secr. | Secr. | Secr. | Reabs. | Reabs. | Reabs. | Reabs. | |
Drug/Compound | References | |||||||||||
Benzbromarone | IC50 = 0.289 | Ki = 0.22; IC50 = 12.75; 13.23; 3.14 | Ki = 0.11; IC50 = 0.967 | IC50 = 0.289 | IC50 = 0.104(H)/15.6 (L) | IC50: 17.1 | Ki = 0.052; IC50 =0.18;0.29 | IC50 = 3.19 | IC50 > 3 | IC50 ~ 100 | [68,69,71,94,105,118,119] | |
Probenecid | IC50= 433 | IC50 = 49.68; 4.66; 10.9 | IC50 = 27.9; 2.37 | IC50 = 132 (potentia-tion) | IC50 = 66.82; 13.23, 165 | IC50 = 15.54 | [69,70,71,94,118] | |||||
Lesinurad | IC50 > 3000; 26.4; >100 | IC50 = 43.99; 4.3; 6.99 | IC50 = 1.07; 3.5 | IC50 > 3000; 26.4; >100 | IC50 = 65.47; 3.53 | IC50 = 2.03 | IC50 > 100 | [69,94,95,118] | ||||
Verinurad | IC50 = 4.6 | IC50 = 0.025 | IC50 = 5.9 | [120] | ||||||||
Dotinurad | IC50 = 4.16 | IC50 = 4.08 | IC50 = 1.32 | IC50 = 4.16 | IC50 = 0.0372 | [69] | ||||||
Arhalofenate | IC50 = 92 | IC50 = 2.6 | IC50 = 53 | [119] | ||||||||
Fenofibrate/Fenofibric acid 1 | IC50 = 170 | Ki = 2.2 | IC50 = 35.68 | [98,121,122] | ||||||||
Tranilast | N/I | complete inh at 100 | IC50 = ~15 | N/I | IC50 = 18.9 | IC50 = ~21; Ki = 21.33 | IC50 = ~22 | IC50 = ~31 | (GLUT9a) IC50 = 15.6; Ki = 17.13 | [68] | ||
Losartan | N/I | IC50 = 12 | IC50 = 1.6 | N/I | IC50 = 1.5 | Ki = 0.0077 | IC50 = 18 | IC50 = ~1000 (mSlc2a9) | [74,101,123] | |||
Sulfinpyrazone | IC50 = 0.16(H)/40 (L) | IC50 = 716; 3.4 | [71,120,124] | |||||||||
Salicylate (high dose) | IC50 = 1573.4; Ki = 341 | IC50 = 2.1 (H)/1547 (L) | IC50 = 106; 23.9 | [34,71,75,104,125] | ||||||||
Epaminurad | Ki = 7.2 | Ki = 2.4 | Ki = 0.057 | [105] |
Transporter | OAT1 | OAT3 | BCRP (Kidney) | MRP4 | NPT1 | NPT4 | URAT1 | OAT4 | OAT10 | GLUT9 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Role | Secr. | Secr. | Secr. | Secr. | Secr. | Secr. | Reabs. | Reabs. | Reabs. | Reabs. | |
Drug/Compound | References | ||||||||||
Benzbromarone | 0.44 µM/4.2 | 0.22 µM/2.1 | 0.289 µM/2.8 | 0.104 µM/1.0 | 0.104 µM/1 | 3.19 µM/30.7 | >3 µM/>28.8 | ~100 µM/~961 | [69,71,94,105,119] | ||
Probenecid | 4.66 µM/0.35 | 27.9 µM/2.11 | 132 µM/10.0 | 13.23 µM/1 | 15.54 µM/1.17 | [70,71,94] | |||||
Lesinurad | 4.3 µM/1.22 | 1.07 µM/0.31 | 26.4 µM/7.54 | 3.53 µM/1 | 2.03 µM/0.58 | ~100 µM/~28.6 | [69,94,95] | ||||
Verinurad | 4.6 µM/184 | 0.025 µM/1 | 5.9 µM/236 | [120] | |||||||
Dotinurad | 4.08 µM/110 | 1.32 µM/35.5 | 0.0372 µM/1 | [69] | |||||||
Arhalofenate | 92 µM/1 | 2.6 µM/0.028 | 53 µM/0.58 | [119] | |||||||
Fenofibric acid | 4.4 µM/0.12 | 35.68 µM/1 | [121,122] | ||||||||
Tranilast | ~15 µM/0.71 | 18.9 µM/0.90 | ~21 µM [68]/1 | ~22 µM/1.05 | ~31 µM/1.48 | 15.6 µM/0.75 | [68] | ||||
Losartan | 12 µM/779 | 1.6 µM/104 | 1.5 µM/97.4 | 0.0154 µM/1 | 18 µM/1169 | [101] | |||||
Sulfinpyrazone | IC50 = 0.16 µM (H)/0.047; 40 µM (L)/11.8 | 3.4 µM/1 | [71,120,124] | ||||||||
Salicylate (high dose) | 682 µM/14.3 | 2.1 µM/0.088 | 23.9 µM/1 | [71,75,125] | |||||||
Epaminurad | 14.4 µM/126 | 4.8 µM/42.1 | 0.114 µM/1 | [105] |
5.2.1. Benzbromarone
5.2.2. Probenecid
5.2.3. Sulfinpyrazone
5.2.4. Losartan
5.2.5. Salicylic Acid
5.2.6. Lesinurad
5.2.7. Dotinurad
5.2.8. Verinurad
5.2.9. Tranilast
5.2.10. Arhalofenate
5.2.11. Fenofibrate
5.3. Dual Inhibitors
6. Drug-Induced Hyperuricemia
Transporter | BCRP (Gut) | OAT1 | OAT3 | BCRP (Kidney) | MRP4 | NPT4 | URAT1 | OAT4 | OAT10 | GLUT9 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Role | Secr. | Secr. | Secr. | Secr. | Secr. | Secr. | Reabs. | Reabs. | Reabs. | Reabs. | |
Drug/Compound | References | ||||||||||
Bumetanide | IC50 = ~100–1000 | IC50 = 1.9 (rOat1);7.60 | IC50 = 0.75 | IC50 = ~100–1000 | N/I; substrate; IC50 = ~ 10 -100 | IC50 = 223.5 | IC50 = 348 | [51,71,72,147,148,149] | |||
Furosemide | IC50 = 170 | IC50 = 5.05; 18 | IC50 = 51.1; 7.31 | IC50 = 170 | IC50 = 1.29 | IC50 = 73.5 | 71.6% inhibition at 1 mM | IC50 = 44.5 | [18,51,67,70,71,148] | ||
Torasemide | Ki = 55.2 | Ki = 89.9; TS of E3S transport | N/I | Ki = 47.0; TS of urate transport | [146] | ||||||
Chlorothiazide | IC50 = 212.3 | IC50 = 3.78 | IC50 = 65.3 | IC50 = 212.3 | IC50 = 0.24nM (H)/10.4(L) | IC50 = 739.6 | IC50 = 2632 | [51,71,148,150] | |||
Hydrochlorothiazide | N/I | IC50 = 126 | IC50 = 213 | N/I | IC50 = 1.9(H)/220 (L) | TS of urate uptake | [58,71,151] | ||||
Bendroflumethiazide | IC50 = 8 (mOat1) | IC50 = 21 (mOat3) | [152] | ||||||||
Salicylate (low dose) | IC50 = 1573.4; Ki = 341 | IC50 = 2.1(H)/1547 (L) | TS of urate uptake | [34,71,75,103,104,125] | |||||||
Pyrazinoate | IC50 = 582.6 | N/I; TS of urate uptake | [18,34,104] | ||||||||
Cyclosporine A | IC50 = 4.6 | N/I | N/I | IC50 = 4.6 | N/I | TS of urate uptake | [59,73,153] | ||||
Favipiravir | 30.9% inhibition at 800 µM | 50.0% inhibition at 800 µM | 65.7% inhibition at 800 µM | [145] | |||||||
Favipiravir M1 | 45.4% inhibition at 300 µM | 57.7% inhibition at 300 µM | 31.0% inhibition at 300 µM; stimulation of urate uptake | [145] |
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, X.W.; Muzny, D.M.; Lee, C.C.; Caskey, C.T. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J. Mol. Evol. 1992, 34, 78–84. [Google Scholar] [CrossRef]
- Sattui, S.E.; Gaffo, A.L. Treatment of hyperuricemia in gout: Current therapeutic options, latest developments and clinical implications. Ther. Adv. Musculoskelet. Dis. 2016, 8, 145–159. [Google Scholar] [CrossRef]
- Hosomi, A.; Nakanishi, T.; Fujita, T.; Tamai, I. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS ONE 2012, 7, e30456. [Google Scholar] [CrossRef] [Green Version]
- Bertolini, J.; Masarei, J.R. The binding of urate by plasma proteins. Aust. J. Exp. Biol. Med. Sci. 1979, 57, 51–60. [Google Scholar] [CrossRef]
- Hyndman, D.; Liu, S.; Miner, J.N. Urate Handling in the Human Body. Curr. Rheumatol. Rep. 2016, 18, 34. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.A.; Schumacher, H.R., Jr.; Wortmann, R.L.; MacDonald, P.A.; Eustace, D.; Palo, W.A.; Streit, J.; Joseph-Ridge, N. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N. Engl. J. Med. 2005, 353, 2450–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Doherty, M.; Bardin, T.; Pascual, E.; Barskova, V.; Conaghan, P.; Gerster, J.; Jacobs, J.; Leeb, B.; Liote, F.; et al. EULAR evidence based recommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann. Rheum. Dis. 2006, 65, 1312–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Ruiz, F.; Liote, F. Lowering serum uric acid levels: What is the optimal target for improving clinical outcomes in gout? Arthritis Rheum. 2007, 57, 1324–1328. [Google Scholar] [CrossRef]
- Nakayama, A.; Nakatochi, M.; Kawamura, Y.; Yamamoto, K.; Nakaoka, H.; Shimizu, S.; Higashino, T.; Koyama, T.; Hishida, A.; Kuriki, K.; et al. Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients. Ann. Rheum. Dis. 2020, 79, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Hong, F.; Zheng, A.; Xu, P.; Wang, J.; Xue, T.; Dai, S.; Pan, S.; Guo, Y.; Xie, X.; Li, L.; et al. High-Protein Diet Induces Hyperuricemia in a New Animal Model for Studying Human Gout. Int. J. Mol. Sci. 2020, 21, 2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richette, P.; Bardin, T. Gout. Lancet 2010, 375, 318–328. [Google Scholar] [CrossRef]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011, 63, 3136–3141. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Du, G.L.; Song, N.; Ma, Y.T.; Li, X.M.; Gao, X.M.; Yang, Y.N. Hyperuricemia and its association with adiposity and dyslipidemia in Northwest China: Results from cardiovascular risk survey in Xinjiang (CRS 2008–2012). Lipids Health Dis. 2020, 19, 58. [Google Scholar] [CrossRef] [Green Version]
- Konta, T.; Ichikawa, K.; Kawasaki, R.; Fujimoto, S.; Iseki, K.; Moriyama, T.; Yamagata, K.; Tsuruya, K.; Narita, I.; Kondo, M.; et al. Association between serum uric acid levels and mortality: A nationwide community-based cohort study. Sci. Rep. 2020, 10, 6066. [Google Scholar] [CrossRef] [Green Version]
- George, C.; Minter, D.A. Hyperuricemia; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Pineda, C.; Soto-Fajardo, C.; Mendoza, J.; Gutierrez, J.; Sandoval, H. Hypouricemia: What the practicing rheumatologist should know about this condition. Clin. Rheumatol. 2020, 39, 135–147. [Google Scholar] [CrossRef]
- Nakayama, A.; Matsuo, H.; Ohtahara, A.; Ogino, K.; Hakoda, M.; Hamada, T.; Hosoyamada, M.; Yamaguchi, S.; Hisatome, I.; Ichida, K.; et al. Clinical practice guideline for renal hypouricemia (1st edition). Hum. Cell 2019, 32, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S.H.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T.; et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002, 417, 447–452. [Google Scholar] [CrossRef]
- Dinour, D.; Gray, N.K.; Campbell, S.; Shu, X.; Sawyer, L.; Richardson, W.; Rechavi, G.; Amariglio, N.; Ganon, L.; Sela, B.A.; et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J. Am. Soc. Nephrol. 2010, 21, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Ding, H.; Chen, C.; Chen, Y.; Wang, D.W.; Lv, Y. Novel URAT1 mutations caused acute renal failure after exercise in two Chinese families with renal hypouricemia. Gene 2013, 512, 97–101. [Google Scholar] [CrossRef]
- Jeannin, G.; Chiarelli, N.; Gaggiotti, M.; Ritelli, M.; Maiorca, P.; Quinzani, S.; Verzeletti, F.; Possenti, S.; Colombi, M.; Cancarini, G. Recurrent exercise-induced acute renal failure in a young Pakistani man with severe renal hypouricemia and SLC2A9 compound heterozygosity. BMC Med. Genet. 2014, 15, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Cui, T.; Ci, X.; Zhao, F.; Sun, Y.; Li, Y.; Liu, R.; Wu, W.; Yi, X.; Liu, C. The effect of polymorphism of uric acid transporters on uric acid transport. J. Nephrol. 2019, 32, 177–187. [Google Scholar] [CrossRef]
- So, A.; Thorens, B. Uric acid transport and disease. J. Clin. Investig. 2010, 120, 1791–1799. [Google Scholar] [CrossRef] [Green Version]
- Fatima, T.; McKinney, C.; Major, T.J.; Stamp, L.K.; Dalbeth, N.; Iverson, C.; Merriman, T.R.; Miner, J.N. The relationship between ferritin and urate levels and risk of gout. Arthritis Res. Ther. 2018, 20, 179. [Google Scholar] [CrossRef] [PubMed]
- So, A.K.; Martinon, F. Inflammation in gout: Mechanisms and therapeutic targets. Nat. Rev. Rheumatol. 2017, 13, 639–647. [Google Scholar] [CrossRef]
- Bobulescu, I.A.; Moe, O.W. Renal transport of uric acid: Evolving concepts and uncertainties. Adv. Chronic Kidney Dis. 2012, 19, 358–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponticelli, C.; Podesta, M.A.; Moroni, G. Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney Int. 2020, 98, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Lanaspa, M.A.; Andres-Hernando, A.; Kuwabara, M. Uric acid and hypertension. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2020, 43, 832–834. [Google Scholar] [CrossRef] [PubMed]
- Feig, D.I.; Soletsky, B.; Johnson, R.J. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: A randomized trial. JAMA 2008, 300, 924–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, D.J.; Langlois, V.; Noone, D. Hyperuricemia and Hypertension: Links and Risks. Integr. Blood Press. Control 2019, 12, 43–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichida, K.; Matsuo, H.; Takada, T.; Nakayama, A.; Murakami, K.; Shimizu, T.; Yamanashi, Y.; Kasuga, H.; Nakashima, H.; Nakamura, T.; et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 2012, 3, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Li, C.; Zhou, P.; Jiang, T. Uric acid transporters hiding in the intestine. Pharm. Biol. 2016, 54, 3151–3155. [Google Scholar] [CrossRef]
- Otani, N.; Ouchi, M.; Hayashi, K.; Jutabha, P.; Anzai, N. Roles of organic anion transporters (OATs) in renal proximal tubules and their localization. Anat. Sci. Int. 2017, 92, 200–206. [Google Scholar] [CrossRef]
- Ichida, K.; Hosoyamada, M.; Kimura, H.; Takeda, M.; Utsunomiya, Y.; Hosoya, T.; Endou, H. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 2003, 63, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Bakhiya, A.; Bahn, A.; Burckhardt, G.; Wolff, N. Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2003, 13, 249–256. [Google Scholar] [CrossRef]
- Eraly, S.A.; Vallon, V.; Rieg, T.; Gangoiti, J.A.; Wikoff, W.R.; Siuzdak, G.; Barshop, B.A.; Nigam, S.K. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol. Genom. 2008, 33, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Kanai, M.; Akiyama, M.; Takahashi, A.; Matoba, N.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 2018, 50, 390–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.; Stecula, A.; Gupta, A.; Prasad, B.; Chien, H.C.; Yee, S.W.; Wang, L.; Unadkat, J.D.; Stahl, S.H.; Fenner, K.S.; et al. Molecular Mechanisms for Species Differences in Organic Anion Transporter 1, OAT1: Implications for Renal Drug Toxicity. Mol. Pharmacol. 2018, 94, 689–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henjakovic, M.; Hagos, Y.; Krick, W.; Burckhardt, G.; Burckhardt, B.C. Human organic anion transporter 2 is distinct from organic anion transporters 1 and 3 with respect to transport function. Am. J. Physiol. Ren. Physiol. 2015, 309, F843–F851. [Google Scholar] [CrossRef] [Green Version]
- Oswald, S.; Muller, J.; Neugebauer, U.; Schroter, R.; Herrmann, E.; Pavenstadt, H.; Ciarimboli, G. Protein Abundance of Clinically Relevant Drug Transporters in The Human Kidneys. Int. J. Mol. Sci. 2019, 20, 5303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, I.; Toth, B.; Gaborik, Z.; Erdo, F.; Krajcsi, P. Membrane Transporters in Physiological Barriers of Pharmacological Importance. Curr. Pharm. Des. 2016, 22, 5347–5372. [Google Scholar] [CrossRef]
- Ray, K.K.; Bakris, G.L.; Banach, M.; Catapano, A.; Duell, P.B.; Mancini, G.B.J.; Bloedon, L.; Feng, A.; Gotto, A.M., Jr. Effect of bempedoic acid on uric acid and gout in 3621 patients with hypercholesterolemia: Pooled analyses from phase 3 trials. Eur. Heart J. 2020, 41. [Google Scholar] [CrossRef]
- Matsuo, H.; Takada, T.; Ichida, K.; Nakamura, T.; Nakayama, A.; Ikebuchi, Y.; Ito, K.; Kusanagi, Y.; Chiba, T.; Tadokoro, S.; et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: A function-based genetic analysis in a Japanese population. Sci. Transl. Med. 2009, 1, 5ra11. [Google Scholar] [CrossRef]
- Wada, S.; Matsunaga, N.; Tamai, I. Mathematical modeling analysis of hepatic uric acid disposition using human sandwich-cultured hepatocytes. Drug Metab. Pharmacokinet. 2020, 35, 432–440. [Google Scholar] [CrossRef]
- Ristic, B.; Sikder, M.O.F.; Bhutia, Y.D.; Ganapathy, V. Pharmacologic inducers of the uric acid exporter ABCG2 as potential drugs for treatment of gouty arthritis. Asian J. Pharm. Sci. 2020, 15, 173–180. [Google Scholar] [CrossRef]
- van Aubel, R.A.; Smeets, P.H.; Peters, J.G.; Bindels, R.J.; Russel, F.G. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: Putative efflux pump for urinary cAMP and cGMP. J. Am. Soc. Nephrol. 2002, 13, 595–603. [Google Scholar] [CrossRef]
- Van Aubel, R.A.; Smeets, P.H.; van den Heuvel, J.J.; Russel, F.G. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am. J. Physiol. Ren. Physiol. 2005, 288, F327–F333. [Google Scholar] [CrossRef]
- Tanner, C.; Boocock, J.; Stahl, E.A.; Dobbyn, A.; Mandal, A.K.; Cadzow, M.; Phipps-Green, A.J.; Topless, R.K.; Hindmarsh, J.H.; Stamp, L.K.; et al. Population-Specific Resequencing Associates the ATP-Binding Cassette Subfamily C Member 4 Gene With Gout in New Zealand Maori and Pacific Men. Arthritis Rheumatol. 2017, 69, 1461–1469. [Google Scholar] [CrossRef]
- Reimer, R.J.; Edwards, R.H. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflug. Arch. Eur. J. Physiol. 2004, 447, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Iharada, M.; Miyaji, T.; Fujimoto, T.; Hiasa, M.; Anzai, N.; Omote, H.; Moriyama, Y. Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl(-)-dependent urate exporter. J. Biol. Chem. 2010, 285, 26107–26113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jutabha, P.; Anzai, N.; Wempe, M.F.; Wakui, S.; Endou, H.; Sakurai, H. Apical voltage-driven urate efflux transporter NPT4 in renal proximal tubule. Nucleosidesnucleotides Nucleic Acids 2011, 30, 1302–1311. [Google Scholar] [CrossRef] [PubMed]
- Sakiyama, M.; Matsuo, H.; Nagamori, S.; Ling, W.; Kawamura, Y.; Nakayama, A.; Higashino, T.; Chiba, T.; Ichida, K.; Kanai, Y.; et al. Expression of a human NPT1/SLC17A1 missense variant which increases urate export. Nucleosides Nucleotides Nucleic Acids 2016, 35, 536–542. [Google Scholar] [CrossRef]
- Chiba, T.; Matsuo, H.; Kawamura, Y.; Nagamori, S.; Nishiyama, T.; Wei, L.; Nakayama, A.; Nakamura, T.; Sakiyama, M.; Takada, T.; et al. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol. 2015, 67, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Ichida, K.; Hosoyamada, M.; Hisatome, I.; Enomoto, A.; Hikita, M.; Endou, H.; Hosoya, T. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 2004, 15, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Komoda, F.; Sekine, T.; Inatomi, J.; Enomoto, A.; Endou, H.; Ota, T.; Matsuyama, T.; Ogata, T.; Ikeda, M.; Awazu, M.; et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatric Nephrol. 2004, 19, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Hosoyamada, M.; Takiue, Y.; Morisaki, H.; Cheng, J.; Ikawa, M.; Okabe, M.; Morisaki, T.; Ichida, K.; Hosoya, T.; Shibasaki, T. Establishment and analysis of SLC22A12 (URAT1) knockout mouse. Nucleosidesnucleotides Nucleic Acids 2010, 29, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Nigam, S.K. The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 663–687. [Google Scholar] [CrossRef]
- Hagos, Y.; Stein, D.; Ugele, B.; Burckhardt, G.; Bahn, A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J. Am. Soc. Nephrol. 2007, 18, 430–439. [Google Scholar] [CrossRef]
- Bahn, A.; Hagos, Y.; Reuter, S.; Balen, D.; Brzica, H.; Krick, W.; Burckhardt, B.C.; Sabolic, I.; Burckhardt, G. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J. Biol. Chem. 2008, 283, 16332–16341. [Google Scholar] [CrossRef] [Green Version]
- Sakiyama, M.; Matsuo, H.; Shimizu, S.; Nakashima, H.; Nakayama, A.; Chiba, T.; Naito, M.; Takada, T.; Suzuki, H.; Hamajima, N.; et al. A common variant of organic anion transporter 4 (OAT4/SLC22A11) gene is associated with renal underexcretion type gout. Drug Metab. Pharmacokinet. 2014, 29, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Higashino, T.; Morimoto, K.; Nakaoka, H.; Toyoda, Y.; Kawamura, Y.; Shimizu, S.; Nakamura, T.; Hosomichi, K.; Nakayama, A.; Ooyama, K.; et al. Dysfunctional missense variant of OAT10/SLC22A13 decreases gout risk and serum uric acid levels. Ann. Rheum. Dis. 2020, 79, 164–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caulfield, M.J.; Munroe, P.B.; O’Neill, D.; Witkowska, K.; Charchar, F.J.; Doblado, M.; Evans, S.; Eyheramendy, S.; Onipinla, A.; Howard, P.; et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008, 5, e197. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.F.; Rudan, I.; Hastie, N.D.; Campbell, H. A ‘complexity’ of urate transporters. Kidney Int. 2010, 78, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Anzai, N.; Ichida, K.; Jutabha, P.; Kimura, T.; Babu, E.; Jin, C.J.; Srivastava, S.; Kitamura, K.; Hisatome, I.; Endou, H.; et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J. Biol. Chem. 2008, 283, 26834–26838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Major, T.J.; Dalbeth, N.; Stahl, E.A.; Merriman, T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2018, 14, 341–353. [Google Scholar] [CrossRef]
- Preitner, F.; Bonny, O.; Laverriere, A.; Rotman, S.; Firsov, D.; Da Costa, A.; Metref, S.; Thorens, B. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc. Natl. Acad. Sci. USA 2009, 106, 15501–15506. [Google Scholar] [CrossRef] [Green Version]
- Ebner, T.; Ishiguro, N.; Taub, M.E. The Use of Transporter Probe Drug Cocktails for the Assessment of Transporter-Based Drug-Drug Interactions in a Clinical Setting-Proposal of a Four Component Transporter Cocktail. J. Pharm. Sci. 2015, 104, 3220–3228. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.K.; Mercado, A.; Foster, A.; Zandi-Nejad, K.; Mount, D.B. Uricosuric targets of tranilast. Pharmacol. Res. Perspect. 2017, 5, e00291. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Ashizawa, N.; Matsumoto, K.; Saito, R.; Motoki, K.; Sakai, M.; Chikamatsu, N.; Hagihara, C.; Hashiba, M.; Iwanaga, T. Pharmacological Evaluation of Dotinurad, a Selective Urate Reabsorption Inhibitor. J. Pharmacol. Exp. Ther. 2019, 371, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, V.; Beery, E.; Nagy, Z.; Bui, A.; Molnar, E.; Zolnerciks, J.K.; Magnan, R.; Jani, M.; Krajcsi, P. Chlorothiazide is a substrate for the human uptake transporters OAT1 and OAT3. J. Pharm. Sci. 2013, 102, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh, A.A.; van den Heuvel, J.J.; Koenderink, J.B.; Russel, F.G. Effect of hypouricaemic and hyperuricaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4. Br. J. Pharmacol. 2008, 155, 1066–1075. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Kusuhara, H.; Adachi, M.; Schuetz, J.D.; Takeuchi, K.; Sugiyama, Y. Multidrug resistance-associated protein 4 is involved in the urinary excretion of hydrochlorothiazide and furosemide. J. Am. Soc. Nephrol. 2007, 18, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Poirier, A.; Portmann, R.; Cascais, A.C.; Bader, U.; Walter, I.; Ullah, M.; Funk, C. The need for human breast cancer resistance protein substrate and inhibition evaluation in drug discovery and development: Why, when, and how? Drug Metab. Dispos. Biol. Fate Chem. 2014, 42, 1466–1477. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.; Sauer, A.; Divac, N.; Herzog, M.; Schwedhelm, E.; Boger, R.H.; Haefeli, W.E.; Benndorf, R.A. Interaction of angiotensin receptor type 1 blockers with ATP-binding cassette transporters. Biopharm. Drug Dispos. 2010, 31, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Apiwattanakul, N.; Sekine, T.; Chairoungdua, A.; Kanai, Y.; Nakajima, N.; Sophasan, S.; Endou, H. Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Mol. Pharmacol. 1999, 55, 847–854. [Google Scholar]
- Otani, N.; Ouchi, M.; Kudo, H.; Tsuruoka, S.; Hisatome, I.; Anzai, N. Recent approaches to gout drug discovery: An update. Expert Opin. Drug Discov. 2020, 15, 943–954. [Google Scholar] [CrossRef]
- Diaz-Torne, C.; Perez-Herrero, N.; Perez-Ruiz, F. New medications in development for the treatment of hyperuricemia of gout. Curr. Opin. Rheumatol. 2015, 27, 164–169. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, N.; Dong, X.; Fan, N.; Wang, L.; Xu, Y.; Chen, H.; Duan, W. Uricase-deficient rat is generated with CRISPR/Cas9 technique. PeerJ 2020, 8, e8971. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Li, Q.; Deng, Y.; Liu, X.; Du, W.; Jiang, X. Construction and expression of recombinant uricaseexpressing genetically engineered bacteria and its application in rat model of hyperuricemia. Int. J. Mol. Med. 2020, 45, 1488–1500. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, H.H.; Leverger, G.; Patte, C.; Harvey, E.; Lascombes, F. Advances in the management of malignancy-associated hyperuricaemia. Br. J. Cancer 1998, 77 (Suppl. 4), 18–20. [Google Scholar] [CrossRef] [PubMed]
- Pui, C.H. Urate oxidase in the prophylaxis or treatment of hyperuricemia: The United States experience. Semin. Hematol. 2001, 38, 13–21. [Google Scholar] [CrossRef]
- Bayol, A.; Capdevielle, J.; Malazzi, P.; Buzy, A.; Claude Bonnet, M.; Colloc’h, N.; Mornon, J.P.; Loyaux, D.; Ferrara, P. Modification of a reactive cysteine explains differences between rasburicase and Uricozyme, a natural Aspergillus flavus uricase. Biotechnol. Appl. Biochem. 2002, 36, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.C.; Champlain, A.H.; Cotliar, J.A.; Belknap, S.M.; West, D.P.; Mehta, J.; Trifilio, S.M. Risk of anaphylaxis with repeated courses of rasburicase: A Research on Adverse Drug Events and Reports (RADAR) project. Drug Saf. 2015, 38, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Cunha, R.N.; Aguiar, R.; Farinha, F. Impact of pegloticase on patient outcomes in refractory gout: Current perspectives. Open Access Rheumatol. Res. Rev. 2018, 10, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.S.; Zhang, D.H.; Shi, Y.; Lin, C.J.; Lin, J.Y. Efficacy and safety of urate-lowering treatments in patients with hyperuricemia: A comprehensive network meta-analysis of randomized controlled trials. J. Clin. Pharm. Ther. 2020, 45, 729–742. [Google Scholar] [CrossRef]
- Carr, A. Pharmacologic Treatment of Gout Now and in the Future. Pharmanote 2016, 31, 1–5. [Google Scholar]
- Becker, M.A.; Hollister, A.S.; Terkeltaub, R.; Waugh, A.; Flynt, A.; Fitz-Patrick, D.; Sheridan, W. FRI0367BCX4208 added to allopurinol increases response rates in patients with GOUT who fail to reach goal range serum uric acid on allopurinol alone: A randomized, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 2013, 71, 438. [Google Scholar] [CrossRef]
- Hollister, A.S.; Dobo, S.; Maetzel, A.; Becker, M.A.; Terkeltaub, R.; Fitz-Patrick, D.; Smith, V.; Sheridan, W. FRI0380 Long-term safety of BCX4208 added to allopurinol in the chronic management of GOUT: Results of a phase 2 24-week blinded safety extension and vaccine challenge study. Ann. Rheum. Dis. 2013, 71, 442–443. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, T.; Ai, W.; Zalloum, W.A.; Kang, D.; Wu, T.; Liu, X.; Zhan, P. Novel urate transporter 1 (URAT1) inhibitors: A review of recent patent literature (2016–2019). Expert Opin. Ther. Pat. 2019, 29, 871–879. [Google Scholar] [CrossRef]
- Benn, C.L.; Dua, P.; Gurrell, R.; Loudon, P.; Pike, A.; Storer, R.I.; Vangjeli, C. Physiology of Hyperuricemia and Urate-Lowering Treatments. Front. Med. 2018, 5, 160. [Google Scholar] [CrossRef] [Green Version]
- Uchida, S.; Shimada, K.; Misaka, S.; Imai, H.; Katoh, Y.; Inui, N.; Takeuchi, K.; Ishizaki, T.; Yamada, S.; Ohashi, K.; et al. Benzbromarone pharmacokinetics and pharmacodynamics in different cytochrome P450 2C9 genotypes. Drug Metab. Pharmacokinet. 2010, 25, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Selen, A.; Amidon, G.L.; Welling, P.G. Pharmacokinetics of probenecid following oral doses to human volunteers. J. Pharm. Sci. 1982, 71, 1238–1242. [Google Scholar] [CrossRef]
- Pea, F. Pharmacology of drugs for hyperuricemia. Mechanisms, kinetics and interactions. Contrib. Nephrol. 2005, 147, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Miner, J.N.; Tan, P.K.; Hyndman, D.; Liu, S.; Iverson, C.; Nanavati, P.; Hagerty, D.T.; Manhard, K.; Shen, Z.; Girardet, J.L.; et al. Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney. Arthritis Res. Ther. 2016, 18, 214. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Yeh, L.T.; Wallach, K.; Zhu, N.; Kerr, B.; Gillen, M. In Vitro and In Vivo Interaction Studies Between Lesinurad, a Selective Urate Reabsorption Inhibitor, and Major Liver or Kidney Transporters. Clin. Drug Investig. 2016, 36, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.A.; Yang, C.; Shah, V.; Shen, Z.; Wilson, D.M.; Ostertag, T.M.; Girardet, J.L.; Hall, J.; Gillen, M. Metabolism and Disposition of Verinurad, a Uric Acid Reabsorption Inhibitor, in Humans. Drug Metab. Dispos. Biol. Fate Chem. 2018, 46, 532–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinberg, A.S.; Vince, B.D.; Choi, Y.J.; Martin, R.L.; McWherter, C.A.; Boudes, P.F. The Pharmacodynamics, Pharmacokinetics, and Safety of Arhalofenate in Combination with Febuxostat When Treating Hyperuricemia Associated with Gout. J. Rheumatol. 2017, 44, 374–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsby, R.; Martin, P.; Surry, D.; Sharma, P.; Fenner, K. Solitary Inhibition of the Breast Cancer Resistance Protein Efflux Transporter Results in a Clinically Significant Drug-Drug Interaction with Rosuvastatin by Causing up to a 2-Fold Increase in Statin Exposure. Drug Metab. Dispos. Biol. Fate Chem. 2016, 44, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, M.; Li, B.; Louie, S.W.; Pudvah, N.T.; Stocco, R.; Wong, W.; Abramovitz, M.; Demartis, A.; Laufer, R.; Hochman, J.H.; et al. Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2- and P-glycoprotein-mediated transport. Xenobiotica 2005, 35, 737–753. [Google Scholar] [CrossRef] [PubMed]
- Charng, M.-J.; Ding, P.Y.-A.; Chuang, M.-H.; Lo, C.-Y.; Chiang, P.-S.; Pao, L.-H. Pharmacokinetic properties of tranilast in Chinese people. J. Food Drug Anal. 2002, 10, 135–138. [Google Scholar] [CrossRef]
- Sato, M.; Iwanaga, T.; Mamada, H.; Ogihara, T.; Yabuuchi, H.; Maeda, T.; Tamai, I. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm. Res. 2008, 25, 639–646. [Google Scholar] [CrossRef]
- Vaidyanathan, J.; Yoshida, K.; Arya, V.; Zhang, L. Comparing Various In Vitro Prediction Criteria to Assess the Potential of a New Molecular Entity to Inhibit Organic Anion Transporting Polypeptide 1B1. J. Clin. Pharmacol. 2016, 56 (Suppl. 7), S59–S72. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.F.; Gutman, A.B. Study of the paradoxical effects of salicylate in low, intermediate and high dosage on the renal mechanisms for excretion of urate in man. J. Clin. Investig. 1959, 38, 1298–1315. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Ohya, K.; Shimada, S.; Anzai, N.; Tamai, I. Functional cooperation of URAT1 (SLC22A12) and URATv1 (SLC2A9) in renal reabsorption of urate. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2013, 28, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.O.; Ohtomo, S.; Kiyokawa, J.; Nakagawa, T.; Yamane, M.; Lee, K.J.; Kim, K.H.; Kim, B.H.; Tanaka, J.; Kawabe, Y.; et al. Stronger Uricosuric Effects of the Novel Selective URAT1 Inhibitor UR-1102 Lowered Plasma Urate in Tufted Capuchin Monkeys to a Greater Extent than Benzbromarone. J. Pharmacol. Exp. Ther. 2016, 357, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holazo, A.A.; Colburn, W.A.; Gustafson, J.H.; Young, R.L.; Parsonnet, M. Pharmacokinetics of bumetanide following intravenous, intramuscular, and oral administrations to normal subjects. J. Pharm. Sci. 1984, 73, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.J.; Lee, M.G.; Lee, M.H. Factors influencing the protein binding of bumetanide using an equilibrium dialysis technique. J. Clin. Pharm. Ther. 1991, 16, 467–476. [Google Scholar] [CrossRef] [PubMed]
- FDA. LASIX®. 2012. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/016273s066lbl.pdf (accessed on 10 March 2021).
- FDA. Demadex. 2010. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/020136s023lbl.pdf (accessed on 10 March 2021).
- Knauf, H.; Mutschler, E. Clinical pharmacokinetics and pharmacodynamics of torasemide. Clin. Pharmacokinet. 1998, 34, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.B.; Patel, U.R.; Rogge, M.C.; Shah, V.P.; Prasad, V.K.; Selen, A.; Welling, P.G. Bioavailability of hydrochlorothiazide from tablets and suspensions. J. Pharm. Sci. 1984, 73, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Welling, P.G. Pharmacokinetics of the thiazide diuretics. Biopharm. Drug Dispos. 1986, 7, 501–535. [Google Scholar] [CrossRef]
- Beermann, B.; Groschinsky-Grind, M.; Lindstrom, B. Pharmacokinetics of bendroflumethiazide. Clin. Pharmacol. Ther. 1977, 22, 385–388. [Google Scholar] [CrossRef]
- Harmon, R.C. Pyrazinamide. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–5. [Google Scholar]
- FDA. NEORAL®. 2009. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/050715s027,050716s028lbl.pdf (accessed on 12 March 2021).
- Nguyen, T.H.; Guedj, J.; Anglaret, X.; Laouenan, C.; Madelain, V.; Taburet, A.M.; Baize, S.; Sissoko, D.; Pastorino, B.; Rodallec, A.; et al. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Negl. Trop. Dis. 2017, 11, e0005389. [Google Scholar] [CrossRef] [Green Version]
- Evaluation and Licensing Division, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare. Report on the Deliberation Results. 2014. Available online: https://www.pmda.go.jp/files/000210319.pdf (accessed on 12 March 2021).
- Wu, T.; Chen, J.; Dong, S.; Li, H.; Cao, Y.; Tian, Y.; Fu, W.; Zhou, P.; Xi, B.; Pang, J. Identification and characterization of a potent and selective inhibitor of human urate transporter 1. Pharmacol. Rep. 2017, 69, 1103–1112. [Google Scholar] [CrossRef]
- Lavan, B.E.; McWherter, C.; Choi, Y.-J. FRI0403 Arhalofenate, a novel uricosuric agent, is an inhibitor of human URIC acid transporters. Ann. Rheum. Dis. 2013, 71, 450–451. [Google Scholar] [CrossRef]
- Tan, P.K.; Liu, S.; Gunic, E.; Miner, J.N. Discovery and characterization of verinurad, a potent and specific inhibitor of URAT1 for the treatment of hyperuricemia and gout. Sci. Rep. 2017, 7, 665. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.Y.; Bleasby, K.; Yabut, J.; Cai, X.; Chan, G.H.; Hafey, M.J.; Xu, S.; Bergman, A.J.; Braun, M.P.; Dean, D.C.; et al. Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance P-glycoprotein. J. Pharmacol. Exp. Ther. 2007, 321, 673–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uetake, D.; Ohno, I.; Ichida, K.; Yamaguchi, Y.; Saikawa, H.; Endou, H.; Hosoya, T. Effect of fenofibrate on uric acid metabolism and urate transporter 1. Intern. Med. 2010, 49, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Bibert, S.; Hess, S.K.; Firsov, D.; Thorens, B.; Geering, K.; Horisberger, J.D.; Bonny, O. Mouse GLUT9: Evidences for a urate uniporter. Am. J. Physiol. Ren. Physiol. 2009, 297, F612–F619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.J.; Takeda, M.; Enomoto, A.; Fujimura, M.; Miyazaki, H.; Anzai, N.; Endou, H. Interactions of urate transporter URAT1 in human kidney with uricosuric drugs. Nephrology 2011, 16, 156–162. [Google Scholar] [CrossRef]
- Ohtsu, N.; Anzai, N.; Fukutomi, T.; Kimura, T.; Sakurai, H.; Endou, H. Human renal urate transpoter URAT1 mediates the transport of salicylate. Nihon Jinzo Gakkai Shi 2010, 52, 499–504. [Google Scholar] [PubMed]
- Lee, M.H.; Graham, G.G.; Williams, K.M.; Day, R.O. A benefit-risk assessment of benzbromarone in the treatment of gout. Was its withdrawal from the market in the best interest of patients? Drug Saf. 2008, 31, 643–665. [Google Scholar] [CrossRef] [PubMed]
- Persellin, R.H.; Schmid, F.R. The use of sulfinpyrazone in the treatment of gout. JAMA 1961, 175, 971–975. [Google Scholar] [CrossRef]
- Hamada, T.; Ichida, K.; Hosoyamada, M.; Mizuta, E.; Yanagihara, K.; Sonoyama, K.; Sugihara, S.; Igawa, O.; Hosoya, T.; Ohtahara, A.; et al. Uricosuric action of losartan via the inhibition of urate transporter 1 (URAT 1) in hypertensive patients. Am. J. Hypertens. 2008, 21, 1157–1162. [Google Scholar] [CrossRef] [Green Version]
- FDA. In Vitro Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions (accessed on 5 April 2021).
- Darakhshan, S.; Pour, A.B. Tranilast: A review of its therapeutic applications. Pharmacol. Res. 2015, 91, 15–28. [Google Scholar] [CrossRef]
- Sharpe, M.; Ormrod, D.; Jarvis, B. Micronized fenofibrate in dyslipidemia: A focus on plasma high-density lipoprotein cholesterol (HDL-C) levels. Am. J. Cardiovasc. Drugs 2002, 2, 125–132; discussion 124–133. [Google Scholar] [CrossRef]
- Lee, H.A.; Yu, K.S.; Park, S.I.; Yoon, S.; Onohara, M.; Ahn, Y.; Lee, H. URC102, a potent and selective inhibitor of hURAT1, reduced serum uric acid in healthy volunteers. Rheumatology 2019, 58, 1976–1984. [Google Scholar] [CrossRef]
- Flamenbaum, W.; Friedman, R. Pharmacology, therapeutic efficacy, and adverse effects of bumetanide, a new “loop” diuretic. Pharmacotherapy 1982, 2, 213–222. [Google Scholar] [CrossRef]
- Lowe, J.; Gray, J.; Henry, D.A.; Lawson, D.H. Adverse reactions to frusemide in hospital inpatients. Br. Med. J. 1979, 2, 360–362. [Google Scholar] [CrossRef] [Green Version]
- Freeman, R.B.; Duncan, G.G. Chlorothiazide-induced hyperuricemia: Report of two cases. Metab. Clin. Exp. 1960, 9, 1107–1110. [Google Scholar]
- Aronoff, A. Acute gouty arthritis precipitated by chlorothiazide. N. Engl. J. Med. 1960, 262, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Vandell, A.G.; McDonough, C.W.; Gong, Y.; Langaee, T.Y.; Lucas, A.M.; Chapman, A.B.; Gums, J.G.; Beitelshees, A.L.; Bailey, K.R.; Johnson, R.J.; et al. Hydrochlorothiazide-induced hyperuricaemia in the pharmacogenomic evaluation of antihypertensive responses study. J. Intern. Med. 2014, 276, 486–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obel, A.O.; Koech, D.K. Potassium supplementation versus bendrofluazide in mildly to moderately hypertensive Kenyans. J. Cardiovasc. Pharmacol. 1991, 17, 504–507. [Google Scholar] [CrossRef]
- Brater, D.C. Benefits and risks of torasemide in congestive heart failure and essential hypertension. Drug Saf. 1996, 14, 104–120. [Google Scholar] [CrossRef] [PubMed]
- Wile, D. Diuretics: A review. Ann. Clin. Biochem. 2012, 49, 419–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamada, T.; Kuwabara, M.; Watanabe, A.; Mizuta, E.; Ohtahara, A.; Omodani, H.; Watanabe, M.; Nakamura, H.; Hirota, Y.; Miyazaki, S.; et al. A comparative study on the effectiveness of losartan/hydrochlorothiazide and telmisartan/hydrochlorothiazide in patients with hypertension. Clin. Exp. Hypertens. 2014, 36, 251–257. [Google Scholar] [CrossRef]
- Onitsuka, H.; Koyama, S.; Ideguchi, T.; Ishikawa, T.; Kitamura, K.; Nagamachi, S. Impact of short-acting loop diuretic doses and cardiac sympathetic nerve abnormalities on outcomes of patients with reduced left ventricular function. Medicine 2019, 98, e14657. [Google Scholar] [CrossRef]
- Hisatake, S.; Nanjo, S.; Fujimoto, S.; Yamashina, S.; Yuzawa, H.; Namiki, A.; Nakano, H.; Yamazaki, J. Comparative analysis of the therapeutic effects of long-acting and short-acting loop diuretics in the treatment of chronic heart failure using (123)I-metaiodobenzylguanidine scintigraphy. Eur. J. Heart Fail. 2011, 13, 892–898. [Google Scholar] [CrossRef]
- Stevens, V.A.; Saad, S.; Poronnik, P.; Fenton-Lee, C.A.; Polhill, T.S.; Pollock, C.A. The role of SGK-1 in angiotensin II-mediated sodium reabsorption in human proximal tubular cells. Nephrol. Dial. Transplant. 2008, 23, 1834–1843. [Google Scholar] [CrossRef] [Green Version]
- Mishima, E.; Anzai, N.; Miyazaki, M.; Abe, T. Uric Acid Elevation by Favipiravir, an Antiviral Drug. Tohoku J. Exp. Med. 2020, 251, 87–90. [Google Scholar] [CrossRef]
- Hagos, Y.; Bahn, A.; Vormfelde, S.V.; Brockmoller, J.; Burckhardt, G. Torasemide transport by organic anion transporters contributes to hyperuricemia. J. Am. Soc. Nephrol. 2007, 18, 3101–3109. [Google Scholar] [CrossRef] [Green Version]
- Uwai, Y.; Saito, H.; Hashimoto, Y.; Inui, K.I. Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1. J. Pharmacol. Exp. Ther. 2000, 295, 261–265. [Google Scholar]
- Hasannejad, H.; Takeda, M.; Taki, K.; Shin, H.J.; Babu, E.; Jutabha, P.; Khamdang, S.; Aleboyeh, M.; Onozato, M.L.; Tojo, A.; et al. Interactions of human organic anion transporters with diuretics. J. Pharmacol. Exp. Ther. 2004, 308, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Kamiie, J.; Ohtsuki, S.; Terasaki, T. Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm. Res. 2007, 24, 2281–2296. [Google Scholar] [CrossRef]
- Beery, E.; Rajnai, Z.; Abonyi, T.; Makai, I.; Bansaghi, S.; Erdo, F.; Sziraki, I.; Heredi-Szabo, K.; Kis, E.; Jani, M.; et al. ABCG2 modulates chlorothiazide permeability--in vitro-characterization of its interactions. Drug Metab. Pharmacokinet. 2012, 27, 349–353. [Google Scholar] [CrossRef]
- Yin, J.; Wagner, D.J.; Prasad, B.; Isoherranen, N.; Thummel, K.E.; Wang, J. Renal secretion of hydrochlorothiazide involves organic anion transporter 1/3, organic cation transporter 2, and multidrug and toxin extrusion protein 2-K. Am. J. Physiol. Ren. Physiol. 2019, 317, F805–F814. [Google Scholar] [CrossRef]
- Vallon, V.; Rieg, T.; Ahn, S.Y.; Wu, W.; Eraly, S.A.; Nigam, S.K. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am. J. Physiol. Ren. Physiol. 2008, 294, F867–F873. [Google Scholar] [CrossRef] [Green Version]
- El-Sheikh, A.A.; Greupink, R.; Wortelboer, H.M.; van den Heuvel, J.J.; Schreurs, M.; Koenderink, J.B.; Masereeuw, R.; Russel, F.G. Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. Transl. Res. J. Lab. Clin. Med. 2013, 162, 398–409. [Google Scholar] [CrossRef]
- Sekiya, M.; Matsuda, T.; Yamamoto, Y.; Furuta, Y.; Ohyama, M.; Murayama, Y.; Sugano, Y.; Ohsaki, Y.; Iwasaki, H.; Yahagi, N.; et al. Deciphering genetic signatures by whole exome sequencing in a case of co-prevalence of severe renal hypouricemia and diabetes with impaired insulin secretion. BMC Med. Genet. 2020, 21, 91. [Google Scholar] [CrossRef]
- Bhatnagar, V.; Richard, E.L.; Wu, W.; Nievergelt, C.M.; Lipkowitz, M.S.; Jeff, J.; Maihofer, A.X.; Nigam, S.K. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: Potential role of remote sensing and signaling. Clin. Kidney J. 2016, 9, 444–453. [Google Scholar] [CrossRef] [Green Version]
Transporter Common Name/Gene Symbol | Known Genetic Association with SU | Localization in the PTC | Cellular Direction of Transport | Function in Urate Disposition | Probe Substrates Other than Urate Used in In Vitro Interaction Assays |
---|---|---|---|---|---|
OAT1/SLC22A6 | Y | basolateral | uptake | secretion | PAH, 6-CF, chlorothiazide, MTX |
OAT2/SLC22A7 | Y | basolateral | uptake | secretion | - |
OAT3/SLC22A8 | N | basolateral | uptake | secretion | PAH, E3S, 5-CF, MTX |
BCRP/ABCG2 | Y | apical | efflux | secretion | genistein, PhA, E3S, MTX, rosuvastatin |
MRP4/ABCC4 | Y | apical | efflux | secretion | DHEAS, MTX |
NPT1/SLC17A1 | Y | apical | efflux | secretion | - |
NPT4/SLC17A3 | Y | apical | efflux | secretion | - |
URAT1/SLC22A12 | Y | apical | uptake | reabsorption | - |
OAT4/SLC22A11 | Y | apical | uptake | reabsorption | E3S |
OAT10/SLC22A13 | N | apical | uptake | reabsorption | - |
GLUT9/SLC2A9 | Y | basolateral | efflux | reabsorption | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tátrai, P.; Erdő, F.; Dörnyei, G.; Krajcsi, P. Modulation of Urate Transport by Drugs. Pharmaceutics 2021, 13, 899. https://doi.org/10.3390/pharmaceutics13060899
Tátrai P, Erdő F, Dörnyei G, Krajcsi P. Modulation of Urate Transport by Drugs. Pharmaceutics. 2021; 13(6):899. https://doi.org/10.3390/pharmaceutics13060899
Chicago/Turabian StyleTátrai, Péter, Franciska Erdő, Gabriella Dörnyei, and Péter Krajcsi. 2021. "Modulation of Urate Transport by Drugs" Pharmaceutics 13, no. 6: 899. https://doi.org/10.3390/pharmaceutics13060899
APA StyleTátrai, P., Erdő, F., Dörnyei, G., & Krajcsi, P. (2021). Modulation of Urate Transport by Drugs. Pharmaceutics, 13(6), 899. https://doi.org/10.3390/pharmaceutics13060899