Development and Optimization of Cinnamon Oil Nanoemulgel for Enhancement of Solubility and Evaluation of Antibacterial, Antifungal and Analgesic Effects against Oral Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Construction of Pseudoternary Phase Diagram
2.3. Formulation and Optimization of CO Nanoemulsion (CO-NE)
2.3.1. Experimental Design
2.3.2. Evaluation of NE Formulations
Droplet Size
Stability Index
Zone of Inhibition by CO-NE
2.3.3. Optimization of CO-NE Formulation
2.4. Preparation of the Optimized CO-NEG Formulation
2.5. Rheological Evaluation of the HPC Hydrogel Loaded with Optimized CO-NE (NEG1)
2.6. In Vitro Release of CO from HPC Hydrogel Loaded with Optimized CO-NE (NEG1)
2.7. Ex Vivo Mucosal Permeation Studies
2.8. In Vivo Analgesic Activity on Rats
3. Results and Discussion
3.1. Construction of Pseudoternary Phase Diagram
3.2. Formulation and Evaluation of CO Nanoemulsion (CO-NE)
3.2.1. Experimental Design
Droplet Size
Stability Index
Zone of Inhibition
3.2.2. Optimization of CO-NE Formulation
3.3. Rheological Evaluation of the HPC Hydrogel Loaded with Optimized CO-NE (NEG1)
3.4. In Vitro Release of CO from HPC Hydrogel Loaded with Optimized CO-NE (NEG1)
3.5. Ex Vivo Mucosal Permeation Studies
3.6. In Vivo Analgesic Activity on Rats
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgement
Conflicts of Interest
References
- Lee, J.S.; Somerman, M.J. The Importance of Oral Health in Comprehensive Health Care. JAMA 2018, 320, 339–340. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kolltveit, K.M.; Tronstad, L.; Olsen, I. Systemic diseases caused by oral infection. Clin. Microbiol. Rev. 2000, 13, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Bandara, H.M.H.N.; Samaranayake, L.P. Viral, bacterial, and fungal infections of the oral mucosa: Types, incidence, predisposing factors, diagnostic algorithms, and management. Periodontology 2019, 80, 148–176. [Google Scholar] [CrossRef]
- Arweiler, N.B.; Netuschil, L. The Oral Microbiota. Adv. Exp. Med. Biol. 2016, 902, 45–60. [Google Scholar] [PubMed]
- Deo, P.N.; Deshmukh, R. Oral microbiome, Unveiling the fundamentals. JOMFP 2019, 23, 122–128. [Google Scholar]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Irani, S. Orofacial Bacterial Infectious Diseases: An Update. J. Int. Soc. Prev. Community Dent. 2017, 7, S61–S67. [Google Scholar] [CrossRef] [PubMed]
- Rajendra Santosh, A.B.; Muddana, K.; Bakki, S.R. Fungal Infections of Oral Cavity: Diagnosis, Management, and Association with COVID-19. SN Compr. Clin. Med. 2021, 3, 1373–1384. [Google Scholar] [CrossRef]
- Dagli, N.; Dagli, R.; Mahmoud, R.S.; Baroudi, K. Essential oils, their therapeutic properties, and implication in dentistry, A review. J. Int. Soc. Prev. Community Dent. 2015, 5, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Nabavi, S.F.; Di Lorenzo, A.; Izadi, M.; Sobarzo-Sánchez, E.; Daglia, M.; Nabavi, S.M. Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries. Nutrients 2015, 7, 7729–7748. [Google Scholar] [CrossRef]
- Goel, N.; Rohilla, H.; Singh, G.; Punia, P. Antifungal Activity of Cinnamon Oil and Olive Oil against Candida Spp. Isolated from Blood Stream Infections. J. Clin. Diagn. Res. 2016, 10, DC09–DC11. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Behbahani, B.; Falah, F.; Lavi Arab, F.; Vasiee, M.; Tabatabaee Yazdi, F. Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomumzeylanicum Bark Essential Oil. Evid. Based Complement. Altern. Med. 2020, 2020, 5190603. [Google Scholar] [CrossRef]
- Shahina, Z.; El-Ganiny, A.M.; Minion, J.; Whiteway, M.; Sultana, T.; Dahms, T.E.S. Cinnamomumzeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans. Fungal Biol. Biotechnol. 2018, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.V.; Gan, S.H. Cinnamon: A multifaceted medicinal plant. Evid. Based Complement Alternat. Med. 2014, 2014, 642942. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumari, R.; Mishra, S. Pharmacological properties and their medicinal uses of Cinnamomum: A review. J. Pharm. Pharmacol. 2019, 71, 1735–1761. [Google Scholar] [CrossRef] [Green Version]
- Barradas, T.N.; Silva, K.G.D.H. Nanoemulsions of essential oils to improve solubility, stability and permeability: A review. Environ. Chem. Lett. 2021, 19, 1153–1171. [Google Scholar] [CrossRef]
- Hosny, K.M.; Alhakamy, N.A.; Sindi, A.M.; Khallaf, R.A. Coconut Oil Nanoemulsion Loaded with a Statin Hypolipidemic Drug for Management of Burns: Formulation and In Vivo Evaluation. Pharmaceutics 2020, 12, 1061. [Google Scholar] [CrossRef]
- Aithal, G.C.; Narayan, R.; Nayak, U.Y. Nanoemulgel: A Promising Phase in Drug Delivery. Curr. Pharm. Des. 2020, 26, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Aslani, A.; Zolfaghari, B.; Davoodvandi, F. Design, Formulation and Evaluation of an Oral Gel from Punica Granatum Flower Extract for the Treatment of Recurrent Aphthous Stomatitis. Adv. Pharm. Bull. 2016, 6, 391–398. [Google Scholar] [CrossRef]
- Hosny, K.M.; Sindi, A.M.; Bakhaidar, R.B.; Zaki, R.M.; Abualsunun, W.A.; Alkhalidi, H.M.; Hassan, A.H. Formulation and optimization of neomycin Sulfate–Thioctic acid loaded in a eucalyptus oil self-nanoemulsion to enhance the beneficial activity of the substances and limit the side effects associated with the treatment of hepatic coma. J. Drug Deliv. Sci. Technol. 2021, 61, 102108. [Google Scholar] [CrossRef]
- Politis, S.N.; Colombo, P.; Colombo, G.; MRekkas, D. Design of experiments (DoE) in pharmaceutical development. Drug Dev. Ind. Pharm. 2017, 43, 889–901. [Google Scholar] [CrossRef]
- Hosny, K.M.; Aldawsari, H.M.; Bahmdan, R.H.; Sindi, A.M.; Kurakula, M.; Alrobaian, M.M.; El Sisi, A.M. Preparation, optimization, and evaluation of hyaluronic acid-based hydrogel loaded with miconazole self-nanoemulsion for the treatment of oral thrush. AAPS Pharm. Sci. Tech. 2019, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hong, I.K.; Kim, S.I.; Lee, S.B. Effects of HLB value on oil-in-water emulsions, Droplet size, rheological behavior, zeta-potential, and creaming index. J. Ind. Eng. Chem. 2018, 67, 123–131. [Google Scholar] [CrossRef]
- Khorasani, R.; Pourmahdian, S. Synthesis and Characterization of Hydrogel Nanoparticles through Inverse Microemulsion Polymerization of 2-Acrylamido-2-methyl-1-propanesulfonic Acid. J. Macromol. Sci. Part A 2014, 51, 240–248. [Google Scholar] [CrossRef]
- Sarheed, O.; Dibi, M.; Ramesh, K.V. Studies on the Effect of Oil and Surfactant on the Formation of Alginate-Based O/W LidocaineNanocarriers Using Nanoemulsion Template. Pharmaceutics 2020, 12, 1223. [Google Scholar] [CrossRef]
- Zänker, K.S.; Blümel, G. Terpene-induced lowering of surface tension in vitro: A rationale for surfactant substitution. Res. Exp. Med. 1983, 182, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Gupta, C.; Kumari, A.; Garg, A.P.; Catanzaro, R.; Marotta, F. Comparative study of cinnamon oil and clove oil on some oral microbiota. Acta Biomed. 2011, 82, 197–199. [Google Scholar] [PubMed]
- Anestopoulos, I.; Kiousi, D.E.; Klavaris, A.; Galanis, A.; Salek, K.; Euston, S.R.; Pappa, A.; Panayiotidis, M.I. Surface Active Agents and Their Health-Promoting Properties: Molecules of Multifunctional Significance. Pharmaceutics 2020, 12, 688. [Google Scholar] [CrossRef]
- Yildirim, S.T.; Oztop, M.H.; Soyer, Y. Cinnamon oil nanoemulsions by spontaneous emulsification: Formulation, characterization and antimicrobial activity. LWT 2017, 84, 122–128. [Google Scholar] [CrossRef]
- Ramachandran, S.; Chen, S.; Etzler, F. Rheological characterization of hydroxypropylcellulose gels. Drug Dev. Ind. Pharm. 1999, 25, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Padamwar, M.N.; Pokharkar, V.B. Development of vitamin loaded topical liposomal formulation using factorial design approach: Drug deposition and stability. Int. J. Pharm. 2006, 320, 37–44. [Google Scholar] [CrossRef]
- Kattige, A.; Rowley, G. The Effect of Poloxamer Viscosity on Liquid-Filling of Solid Dispersions in Hard Gelatin Capsules. Drug Dev. Ind. Pharm. 2006, 32, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, G.L. An overview of the basic rheological behavior of polymer fluids with an emphasis on polymer melts. J. Chem. Educ. 1981, 58, 880. [Google Scholar] [CrossRef] [Green Version]
- Sutradhar, K.B.; Amin, M.L. Nanoemulsions: Increasing possibilities in drug delivery. Eur. J. Nanomed. 2013, 5, 97–110. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Pigera, S.; Premakumara, G.A.S.; Galappaththy, P.; Constantine, G.R.; Katulanda, P. Medicinal properties of “true” cinnamon (Cinnamomumzeylanicum): A systematic review. BMC Complement. Altern. Med. 2013, 13, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, B. Surfactant substitution: Experimental models and clinical applications. Lung 1980, 158, 57–68. [Google Scholar] [CrossRef]
- Chaudhari, L.K.; Jawale, B.A.; Sharma, S.; Sharma, H.; Kumar, C.D.; Kulkarni, P.A. Antimicrobial activity of commercially available essential oils against Streptococcus mutans. J. Contemp. Dent. Pract. 2012, 13, 71–74. [Google Scholar]
- Falk, N.A. Surfactants as Antimicrobials: A Brief Overview of Microbial Interfacial Chemistry and Surfactant Antimicrobial Activity. J. Surfactants Deterg. 2019, 22, 1119–1127. [Google Scholar] [CrossRef]
- Ciolacu, D.E.; Nicu, R.; Ciolacu, F. Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. Materials 2020, 13, 5270. [Google Scholar] [CrossRef]
- Dannert, C.; Stokke, B.T.; Dias, R.S. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers 2019, 11, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuliano, E.; Paolino, D.; Fresta, M.; Cosco, D. Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics 2018, 10, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghica, M.V.; Hîrjău, M.; Lupuleasa, D.; Dinu-Pîrvu, C.E. Flow and Thixotropic Parameters for Rheological Characterization of Hydrogels. Molecules 2016, 21, 786. [Google Scholar] [CrossRef] [PubMed]
- Chyzy, A.; Tomczykowa, M.; Plonska-Brzezinska, M.E. Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery. Materials 2020, 13, 188. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, X.; Ma, L.; Dong, L.; Zhang, X.; Chen, J.; Fu, X. Anti-inflammatory, antinociceptive activity of an essential oil recipe consisting of the supercritical fluid CO2 extract of white pepper, long pepper, cinnamon, saffron and myrrh in vivo. J. Oleo Sci. 2014, 63, 1251–1260. [Google Scholar] [CrossRef] [Green Version]
Factors and Responses | Goal | Lower Limit | Upper Limit | |
---|---|---|---|---|
Factor A | Cinnamon oil percent | is in range | 12% | 20% |
Factor B | Smix percent | is in range | 30% | 40% |
Factor C | HLB value | is in range | 10 | 14 |
Response 1 | Droplet size | minimize | 89 nm | 191 nm |
Response 2 | Stability index | maximize | 65% | 96% |
Response 3 | Zone of inhibition | maximize | 7 mm | 24 mm |
Formulation | Composition |
---|---|
NEG1 | HPC hydrogel loaded with optimized CO-NE |
NEG2 | HPC hydrogel loaded with NE formulated with oleic acid instead of CO |
G3 | Aqueous dispersion of CO-NE without HPC gel base |
G4 | HPC hydrogel (plain) |
Run | Factor A | Factor B | Factor C | Response 1 | Response 2 | Response 3 | |||
---|---|---|---|---|---|---|---|---|---|
Cinnamon Oil (%) | Smix (%) | HLB | Droplet Size (nm) | Stability Index (%) | Zone of Inhibition (mm) | ||||
Observed | Predicted | Observed | Predicted | Observed | Predicted | ||||
1 | 15.8 | 34.818 | 10 | 160 | 163.04 | 70 | 69.86 | 13 | 12.88 |
2 | 20 | 34.05 | 12.62 | 119 | 117.45 | 82 | 83.36 | 22 | 22.81 |
3 | 20 | 30 | 10.22 | 174 | 171.95 | 69 | 68.12 | 19 | 18.51 |
4 | 19.12 | 38.9 | 12.02 | 115 | 117.14 | 84 | 83.54 | 21 | 20.18 |
5 | 19.72 | 35.1 | 10.6129 | 146 | 147.48 | 74 | 73.68 | 20 | 20.56 |
6 | 15.24 | 40 | 12.68 | 110 | 108.46 | 85 | 87.28 | 12 | 12.80 |
7 | 20 | 40 | 14 | 89 | 90.68 | 96 | 94.65 | 24 | 23.25 |
8 | 12 | 36.15 | 14 | 95 | 97.90 | 93 | 91.05 | 11 | 10.57 |
9 | 20 | 40 | 10 | 140 | 138.08 | 74 | 73.95 | 20 | 20.52 |
10 | 12 | 36.5 | 11.82 | 134 | 131.63 | 78 | 80.02 | 10 | 10.02 |
11 | 12 | 40 | 10.26 | 140 | 141.17 | 76 | 74.39 | 9 | 8.84 |
12 | 17 | 30 | 14 | 100 | 100.53 | 88 | 87.33 | 16 | 15.97 |
13 | 12 | 30 | 12.32 | 142 | 140.93 | 80 | 78.07 | 9 | 8.82 |
14 | 16 | 35 | 12 | 125 | 129.36 | 79 | 80.36 | 15 | 14.46 |
15 | 15.8 | 34.818 | 10 | 161 | 163.04 | 70 | 69.86 | 13 | 12.88 |
16 | 12 | 30 | 10 | 191 | 189.24 | 65 | 66.07 | 7 | 7.57 |
17 | 16.153 | 35.15 | 11.804 | 130 | 132.01 | 77 | 79.47 | 15 | 14.59 |
18 | 16.08 | 39.75 | 10.66 | 137 | 133.98 | 79 | 76.75 | 14 | 13.35 |
19 | 15.24 | 40 | 12.68 | 111 | 108.46 | 86 | 87.28 | 12 | 12.80 |
20 | 17 | 30 | 14 | 101 | 100.53 | 87 | 87.33 | 16 | 15.97 |
21 | 17.16 | 36.05 | 14 | 98 | 94.97 | 92 | 91.57 | 17 | 17.66 |
Independent Factors | ||
---|---|---|
Factor | Name | Value |
A | Cinnamon oil Percent | 20% |
B | Smix percent | 40% |
C | HLB of Smix | 14. |
Responses | Predicted value | Observed value |
Droplet size (nm) | 90.7 | 92.0 ± 3 |
Stability index (%) | 94.6 | 95.0 ± 2 |
Zone of inhibition (mm) | 23.3 | 23.0 ± 1.5 |
Sample | Latency Reaction Time (sec) Observed after Different Time Intervals | ||||
---|---|---|---|---|---|
5 min | 15 min | 30 min | 45 min | 60 min | |
NEG1 | 18.5 ± 1.5 | 23.5 ± 2.5 | 31.0 ± 2.0 | 17.5 ± 1.5 | 8.5 ± 1.5 |
NEG2 | 9.5 ± 1.0 | 10.5 ± 1.5 | 8.5 ± 1.5 | 8.0 ± 1.0 | 8.0 ± 1.0 |
G3 | 14.5 ± 1.0 | 22.0 ± 2.0 | 19.5 ± 1.0 | 9.0 ± 1.5 | 7.5 ± 0.5 |
G4 (control gel) | 8.0 ± 0.5 | 8.5 ± 0.5 | 8.0 ± 0.5 | 7.0 ± 0.5 | 7.5 ± 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosny, K.M.; Khallaf, R.A.; Asfour, H.Z.; Rizg, W.Y.; Alhakamy, N.A.; Sindi, A.M.; Alkhalidi, H.M.; Abualsunun, W.A.; Bakhaidar, R.B.; Almehmady, A.M.; et al. Development and Optimization of Cinnamon Oil Nanoemulgel for Enhancement of Solubility and Evaluation of Antibacterial, Antifungal and Analgesic Effects against Oral Microbiota. Pharmaceutics 2021, 13, 1008. https://doi.org/10.3390/pharmaceutics13071008
Hosny KM, Khallaf RA, Asfour HZ, Rizg WY, Alhakamy NA, Sindi AM, Alkhalidi HM, Abualsunun WA, Bakhaidar RB, Almehmady AM, et al. Development and Optimization of Cinnamon Oil Nanoemulgel for Enhancement of Solubility and Evaluation of Antibacterial, Antifungal and Analgesic Effects against Oral Microbiota. Pharmaceutics. 2021; 13(7):1008. https://doi.org/10.3390/pharmaceutics13071008
Chicago/Turabian StyleHosny, Khaled M., Rasha A. Khallaf, Hani Z. Asfour, Waleed Y. Rizg, Nabil A. Alhakamy, Amal M. Sindi, Hala M. Alkhalidi, Walaa A. Abualsunun, Rana B. Bakhaidar, Alshaimaa M. Almehmady, and et al. 2021. "Development and Optimization of Cinnamon Oil Nanoemulgel for Enhancement of Solubility and Evaluation of Antibacterial, Antifungal and Analgesic Effects against Oral Microbiota" Pharmaceutics 13, no. 7: 1008. https://doi.org/10.3390/pharmaceutics13071008
APA StyleHosny, K. M., Khallaf, R. A., Asfour, H. Z., Rizg, W. Y., Alhakamy, N. A., Sindi, A. M., Alkhalidi, H. M., Abualsunun, W. A., Bakhaidar, R. B., Almehmady, A. M., Abdulaal, W. H., Bakhrebah, M. A., Alsuabeyl, M. S., K. Kammoun, A., Alghaith, A. F., & Alshehri, S. (2021). Development and Optimization of Cinnamon Oil Nanoemulgel for Enhancement of Solubility and Evaluation of Antibacterial, Antifungal and Analgesic Effects against Oral Microbiota. Pharmaceutics, 13(7), 1008. https://doi.org/10.3390/pharmaceutics13071008