Orodispersible Film Loaded with Enterococcus faecium CRL183 Presents Anti-Candida albicans Biofilm Activity In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. Orodispersible Films Preparation
2.3. Macroscopic Observations, Color Parameters, Thickness Analysis, pH, and Moisture Content of ODFs
2.4. Probiotic Survival in PF after Drying Process and Storage
2.5. Microbiological Safety of ODFs
2.6. In Vitro Disintegration Time
2.7. Liquid Uptake
2.8. Water Vapor Permeability (WVP)
2.9. Mechanical Properties of ODFs
2.10. Mucoadhesive Force
2.11. Evaluation of the Probiotic Film (PF) Anti-Candida albicans Activity
2.12. Field Emission Gun Scanning Electron Microscopy (FEG-SEM)
2.13. Statistical Analysis
3. Results
3.1. Macroscopic Observations, Color Parameters, Thickness, pH, Moisture, and Water Activity (Aw) of ODFs
3.2. Probiotic Survival and Microbiological Safety
3.3. In Vitro Disintegration Time and Liquid Uptake
3.4. Mechanical Properties, Water Vapor Permeability (WVP), and Mucoadhesive Force
3.5. Evaluation of the Probiotic Film (PF) Anti-Candida albicans Activity
3.6. Field Emission Gun Scanning Electron Microscopy (FEG-SEM)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agricultural Organization of the United Nations); World Health Organization. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. Food and Agricultural Organization of the United Nations. 2002. Available online: ftp://ftp.fao.org/es/n/food/wgreport2.pdf (accessed on 19 March 2021).
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, K.H.; Mayer, M.; Miyazima, T.Y.; Matsubara, V.H.; Silva, E.G.; Paula, C.R.; Campos, T.T.; Nakamae, A.E.M. A Multispecies Probiotic Reduces Oral Candida Colonization in Denture Wearers. J. Prosthodont. 2015, 24, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, V.H.; Bandara, H.; Mayer, M.; Samaranayake, L.P. Probiotics as Antifungals in Mucosal Candidiasis. Clin. Infect. Dis. 2016, 62, 1143–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, M.R.; Kragelund, C.; Jensen, P.Ø.; Keller, M.K.; Twetman, S. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro. J. Oral Microbiol. 2017, 9, 1274582. [Google Scholar] [CrossRef] [PubMed]
- Mailänder-Sanchez, D.; Braunsdorf, C.; Grumaz, C.; Muller, C.; Lorenz, S.; Stevens, P.; Wagener, J.; Hebecker, B.; Hube, B.; Bracher, F.; et al. Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion. PLoS ONE 2017, 12, e0184438. [Google Scholar] [CrossRef] [Green Version]
- Pujia, A.; Costacurta, M.; Fortunato, L.; Merra, G.; Cascapera, S.; Calvani, M.; Gratteri, S. The probiotics in dentistry: A narrative review. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1405–1412. [Google Scholar] [PubMed]
- Fanning, S.; Mitchell, A.P. Fungal Biofilms. PLoS Pathog. 2012, 8, e1002585. [Google Scholar] [CrossRef] [Green Version]
- Shekh, R.M.; Roy, U. Biochemical characterization of an anti-Candida factor produced by Enterococcus faecalis. BMC Microbiol. 2012, 12, 132. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, L. Homemade traditional cheeses for the isolation of probiotic Enterococcus faecium strains. Int. J. Food Microbiol. 2003, 88, 241–245. [Google Scholar] [CrossRef]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns—An Update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef]
- Mason, K.L.; Downward, J.R.; Mason, K.D.; Falkowski, N.R.; Eaton, K.A.; Kao, J.Y.; Young, V.B.; Huffnagle, G.B. Candida albicans and Bacterial Microbiota Interactions in the Cecum during Recolonization following Broad-Spectrum Antibiotic Therapy. Infect. Immun. 2012, 80, 3371–3380. [Google Scholar] [CrossRef] [Green Version]
- Mason, K.L.; Downward, J.R.E.; Falkowski, N.R.; Young, V.B.; Kao, J.Y.; Huffnagle, G.B. Interplay between the Gastric Bacterial Microbiota and Candida albicans during Postantibiotic Recolonization and Gastritis. Infect. Immun. 2011, 80, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.R.; Graham, C.; Gagliano, B.C.; Lorenz, M.C.; Garsin, D.A. Enterococcus faecalis Inhibits Hyphal Morphogenesis and Virulence of Candida albicans. Infect. Immun. 2012, 81, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Bachtiar, E.W.; Dewiyani, S.; Akbar, S.M.S.; Bachtiar, B.M. Inhibition of Candida albicans biofilm development by unencapsulated Enterococcus faecalis cps. J. Dent. Sci. 2016, 11, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Graham, C.; Cruz, M.R.; Garsin, D.A.; Lorenz, M.C. Enterococcus faecalisbacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence ofCandida albicans. Proc. Natl. Acad. Sci. USA 2017, 114, 4507–4512. [Google Scholar] [CrossRef] [Green Version]
- Witzler, J.J.P.; Pinto, R.A.; De Valdez, G.F.; De Castro, A.D.; Cavallini, D.C.U. Development of a potential probiotic lozenge containing Enterococcus faecium CRL. LWT 2017, 77, 193–199. [Google Scholar] [CrossRef]
- Heinemann, R.J.; Carvalho, R.A.; Favarotrindade, C.S. Orally disintegrating film (ODF) for delivery of probiotics in the oral cavity—Development of a novel product for oral health. Innov. Food Sci. Emerg. Technol. 2013, 19, 227–232. [Google Scholar] [CrossRef]
- Saha, S.; Tomaro-Duchesneau, C.; Daoud, J.T.; Tabrizian, M.; Prakash, S. Novel probiotic dissolvable carboxymethyl cellulose films as oral health biotherapeutics: In vitro preparation and characterization. Expert Opin. Drug Deliv. 2013, 10, 1471–1482. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, K.; Kim, M.; Choi, D.H.; Jeong, S.H. Orally disintegrating films focusing on formulation, manufacturing process, and characterization. J. Pharm. Investig. 2017, 47, 183–201. [Google Scholar] [CrossRef]
- Dixit, R.P.; Puthli, S.P. Oral strip technology: Overview and future potential. J. Control. Release 2009, 139, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Borges, J.; Silva, A.; Cervi-Bitencourt, C.; Vanin, F.; Carvalho, R. Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: Functional properties. Int. J. Biol. Macromol. 2016, 86, 907–916. [Google Scholar] [CrossRef]
- de Barros, J.M.; Scherer, T.; Charalampopoulos, D.; Khutoryanskiy, V.V.; Edwards, A.D. A Laminated Polymer Film Formulation for Enteric Delivery of Live Vaccine and Probiotic Bacteria. J. Pharm. Sci. 2014, 103, 2022–2032. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, R.J.B.; Vanin, F.M.; De Carvalho, R.A.; Trindade, M.A.; Fávaro-Trindade, C.S. Characterization of low cost orally disintegrating film (ODF). Polímeros 2017, 27, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Nobile, C.J.; Johnson, A.D. Candida albicansBiofilms and Human Disease. Annu. Rev. Microbiol. 2015, 69, 71–92. [Google Scholar] [CrossRef] [Green Version]
- Nalluri, B.N.; Sravani, B.; Anusha, S.; Sribramhini, R.; Maheswari, K.M. Development and Evaluation of Mouth Dissolving Films of Sumatriptan Succinate for Better Therapeutic Efficacy. J. Appl. Pharm. Sci. 2013, 3, 161–166. [Google Scholar] [CrossRef]
- Prezotti, F.G.; Meneguin, A.B.; Evangelista, R.C.; Cury, B.S.F. Preparation and characterization of free films of high amylose/pectin mixtures cross-linked with sodium trimetaphosphate. Drug Dev. Ind. Pharm. 2012, 38, 1354–1359. [Google Scholar] [CrossRef]
- Meneguin, A.B.; Cury, B.; Evangelista, R.C. Films from resistant starch-pectin dispersions intended for colonic drug delivery. Carbohydr. Polym. 2014, 99, 140–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gennadios, A.; Weller, C.; Hanna, M.; Froning, G. Mechanical and Barrier Properties of Egg Albumen Films. J. Food Sci. 1996, 61, 585–589. [Google Scholar] [CrossRef]
- Meneguin, A.B.; Cury, B.S.F.; dos Santos, A.M.; Franco, D.F.; Barud, H.S.; Filho, E.C.D.S. Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr. Polym. 2017, 157, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.L.; Jones, D.S.; Panzeri, H.; Gremião, M.P.; de Freitas, O.; Lara, E.H. Semisolid Systems Containing Propolis for the Treatment of Periodontal Disease: In Vitro Release Kinetics, Syringeability, Rheological, Textural, and Mucoadhesive Properties. J. Pharm. Sci. 2007, 96, 2074–2089. [Google Scholar] [CrossRef]
- Fontana, C.R.; Abernethy, A.D.; Som, S.; Ruggiero, K.; Doucette, S.; Marcantonio, R.A.; Boussios, C.I.; Kent, R.; Goodson, J.M.; Tanner, A.C.R.; et al. The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J. Periodontal Res. 2009, 44, 751–759. [Google Scholar] [CrossRef]
- Zago, C.E.; Silva, S.; Sanitá, P.V.; Barbugli, P.; Dias, C.M.I.; Lordello, V.B.; Vergani, C.E. Dynamics of Biofilm Formation and the Interaction between Candida albicans and Methicillin-Susceptible (MSSA) and -Resistant Staphylococcus aureus (MRSA). PLoS ONE 2015, 10, e0123206. [Google Scholar] [CrossRef] [Green Version]
- Ochwoto, M.; Muita, L.; Talaam, K.; Wanjala, C.; Ogeto, F.; Wachira, F.; Osman, S.; Kimotho, J.; Ndegwa, L. Anti-bacterial efficacy of alcoholic hand rubs in the Kenyan market. Antimicrob. Resist. Infect. Control 2017, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallini, D.C.; Bedani, R.; Bomdespacho, L.Q.; Vendramini, R.C.; Rossi, E.A. Effects of probiotic bacteria, isoflavones and simvastatin on lipid profile and atherosclerosis in cholesterol-fed rabbits: A randomized double-blind study. Lipids Health Dis. 2009, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallini, D.C.; Suzuki, J.Y.; Abdalla, D.S.; Vendramini, R.C.; Pauly-Silveira, N.D.; Roselino, M.N.; Pinto, R.A.; Rossi, E.A. Influence of a probiotic soy product on fecal microbiota and its association with cardiovascular risk factors in an animal model. Lipids Health Dis. 2011, 10, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celiberto, L.; Bedani, R.; Dejani, N.N.; De Medeiros, A.I.; Zuanon, J.A.S.; Spolidorio, L.C.; Adorno, M.A.T.; Varesche, M.B.A.; Galvão, F.C.; Valentini, S.R.; et al. Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis. PLoS ONE 2017, 12, e0175935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchesin, J.D.C.; Celiberto, L.S.; Orlando, A.B.; de Medeiros, A.I.; Pinto, R.A.; Zuanon, J.A.S.; Spolidorio, L.C.; dos Santos, A.; Taranto, M.P.; Cavallini, D.C.U. A soy-based probiotic drink modulates the microbiota and reduces body weight gain in diet-induced obese mice. J. Funct. Foods 2018, 48, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Stanton, C.; Fitzgerald, G.; Daly, C.; Ross, R. Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem. 2008, 106, 1406–1416. [Google Scholar] [CrossRef]
- Celiberto, L.S.; Bedani, R.; Rossi, E.A.; Cavallini, D.C.U. Probiotics: The Scientific Evidence in the Context of Inflammatory Bowel Disease. Crit. Rev. Food Sci. Nutr. 2015, 57, 1759–1768. [Google Scholar] [CrossRef]
- Garsuch, V.; Breitkreutz, J. Comparative investigations on different polymers for the preparation of fast-dissolving oral films. J. Pharm. Pharmacol. 2010, 62, 539–545. [Google Scholar] [CrossRef]
- European Pharmacopoeia Commission. Oromucosal preparations. In European Pharmacopoeia, 8th ed.; European Directorate for the Quality of Medicines (EDQM): Strasbourg, France, 2013; pp. 793–796. [Google Scholar]
- Preis, M.; Gronkowsky, D.; Grytzan, D.; Breitkreutz, J. Comparative study on novel test systems to determine disintegration time of orodispersible films. J. Pharm. Pharmacol. 2014, 66, 1102–1111. [Google Scholar] [CrossRef]
- Welch, K.; Strømme, M. Simultaneous Measurement of Drug Release and Liquid Uptake in Pharmaceutical Tablets. J. Pharm. Sci. 2003, 92, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.E. Models for the Permeability of Filled Polymer Systems. J. Macromol. Sci. Part A Chem. 1967, 1, 929–942. [Google Scholar] [CrossRef]
- Santos, T.C.; Rescignano, N.; Boff, L.; Reginatto, F.H.; Simões, C.M.O.; de Campos, A.M.; Mijangos, C.U. Manufacture and characterization of chitosan/PLGA nanoparticles nanocomposite buccal films. Carbohydr. Polym. 2017, 173, 638–644. [Google Scholar] [CrossRef]
- Carvalho, F.C.; Bruschi, M.L.; Evangelista, R.C.; Gremião, M.P.D. Mucoadhesive drug delivery systems. Braz. J. Pharm. Sci. 2010, 46, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Vilela, S.F.; Barbosa, J.O.; Rossoni, R.D.; Santos, J.D.; Prata, M.C.; Anbinder, A.L.; Jorge, A.O.; Junqueira, J.C. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 2014, 6, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, V.H.; Wang, Y.; Bandara, H.; Mayer, M.; Samaranayake, L.P. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl. Microbiol. Biotechnol. 2016, 100, 6415–6426. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, F.; De Barros, P.; Rossoni, R.; Junqueira, J.; Jorge, A. Lactobacillus rhamnosusinhibitsCandida albicansvirulence factorsin vitroand modulates immune system inGalleria mellonella. J. Appl. Microbiol. 2016, 122, 201–211. [Google Scholar] [CrossRef]
- Davis, D. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr. Genet. 2003, 44, 1–7. [Google Scholar] [CrossRef]
Thickness (mm) | Color (L*, a*, b*) | Moisture (%) | pH | Aw | |
---|---|---|---|---|---|
CF | 0.080 ± 0.001 A | L* = 33.53 ± 1.67 a* = −0.24 ± 0.13 b* = −0.49 ± 0.26 a | 12.57 ± 0.14 A | 6.94 ± 0.003 A | 0.378 ± 0.04 A |
PF | 0.100 ± 0.001 B | L* = 34.28 ± 1.12 a* = −0.22 ± 0.04 b* = +0.80 ± 0.16 b | 15.41 ± 0.26 B | 6.91 ± 0.005 B | 0.404 ± 0.05 B |
Films | WVP (×10−5 g mm m−2 h−1 Pa−1) | Ps (MPa) | Eb (%) | FMA (n) |
---|---|---|---|---|
CF | 1.27 ± 0.1 A | 25.61 ± 2.2 A | 4.13 ± 0.87 A | 0.060 ± 0.01 A |
PF | 1.93 ± 0.2 B | 25.92 ± 2.9 A | 9.40 ± 0.95 B | 0.064 ± 0.011 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lordello, V.B.; Meneguin, A.B.; de Annunzio, S.R.; Taranto, M.P.; Chorilli, M.; Fontana, C.R.; Cavallini, D.C.U. Orodispersible Film Loaded with Enterococcus faecium CRL183 Presents Anti-Candida albicans Biofilm Activity In Vitro. Pharmaceutics 2021, 13, 998. https://doi.org/10.3390/pharmaceutics13070998
Lordello VB, Meneguin AB, de Annunzio SR, Taranto MP, Chorilli M, Fontana CR, Cavallini DCU. Orodispersible Film Loaded with Enterococcus faecium CRL183 Presents Anti-Candida albicans Biofilm Activity In Vitro. Pharmaceutics. 2021; 13(7):998. https://doi.org/10.3390/pharmaceutics13070998
Chicago/Turabian StyleLordello, Virgínia Barreto, Andréia Bagliotti Meneguin, Sarah Raquel de Annunzio, Maria Pía Taranto, Marlus Chorilli, Carla Raquel Fontana, and Daniela Cardoso Umbelino Cavallini. 2021. "Orodispersible Film Loaded with Enterococcus faecium CRL183 Presents Anti-Candida albicans Biofilm Activity In Vitro" Pharmaceutics 13, no. 7: 998. https://doi.org/10.3390/pharmaceutics13070998
APA StyleLordello, V. B., Meneguin, A. B., de Annunzio, S. R., Taranto, M. P., Chorilli, M., Fontana, C. R., & Cavallini, D. C. U. (2021). Orodispersible Film Loaded with Enterococcus faecium CRL183 Presents Anti-Candida albicans Biofilm Activity In Vitro. Pharmaceutics, 13(7), 998. https://doi.org/10.3390/pharmaceutics13070998