Amorphous Drug-Polymer Salts
Abstract
:1. Introduction
2. Polyelectrolyte Coating
3. Amorphous Drug–Polymer Salts in the Bulk
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yu, L. Amorphous pharmaceutical solids: Preparation, characterization and stabilization. Adv. Drug Deliv. Rev. 2001, 48, 27–42. [Google Scholar] [CrossRef]
- Pandi, P.; Bulusu, R.; Kommineni, N.; Khan, W.; Singh, M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int. J. Pharm. 2020, 586, 119560. [Google Scholar] [CrossRef] [PubMed]
- Van den Mooter, G. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov. Today Technol. 2012, 9, e79–e85. [Google Scholar] [CrossRef] [PubMed]
- Levine, H.; Slade, L. Water as a plasticizer: Physico-chemical aspects of low-moisture polymeric systems. Water Sci. Rev. 1988, 3, 79–185. [Google Scholar]
- Andronis, V.; Yoshioka, M.; Zografi, G. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J. Pharm. Sci. 1997, 86, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Krentz, H.B.; Cosman, I.; Lee, K.; Ming, J.M.; Gill, M.J. Pill burden in HIV infection: 20 years of experience. Antivir. Ther. 2012, 17, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Hagendorff, A.; Freytag, S.; Müller, A.; Klebs, S. Pill burden in hypertensive patients treated with single-pill combination therapy—an observational study. Adv. Ther. 2013, 30, 406–419. [Google Scholar] [CrossRef] [Green Version]
- Stahl, P.H.; Wermuth, C.G. (Eds.) Pharmaceutical Salts: Properties, Selection and Use; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Serajuddin, A.T. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 2007, 59, 603–616. [Google Scholar] [CrossRef]
- Sun, C.C. Cocrystallization for successful drug delivery. Expert Opin. Drug Deliv. 2013, 10, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst. Growth Des. 2018, 18, 6370–6387. [Google Scholar] [CrossRef]
- Thakur, B.R.; Singh, R.K.; Handa, A.K.; Rao, M.A. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 1, 47–73. [Google Scholar] [CrossRef]
- Liufu, S.; Xiao, H.; Li, Y. Adsorption of poly (acrylic acid) onto the surface of titanium dioxide and the colloidal stability of aqueous suspension. J. Colloid Interface Sci. 2005, 281, 155–163. [Google Scholar] [CrossRef]
- Sun, S.; Mao, L.-B.; Lei, Z.; Yu, S.-H.; Cölfen, H. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for “Mineral Plastics”. Angew. Chem. Int. Ed. 2016, 39, 11765–11769. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Shao, Z.; Chen, X. Electrical Behavior of a Natural Polyelectrolyte Hydrogel: Chitosan/Carboxymethylcellulose Hydrogel. Biomacromolecules 2008, 4, 1208–1213. [Google Scholar] [CrossRef]
- Tan, C.; Wang, Q. Reversible Terbium Luminescent Polyelectrolyte Hydrogels for Detection of H2PO4−and HSO4−in Water. Inorg. Chem. 2011, 7, 2953–2956. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhuang, X.; He, P.; Xiao, C.; He, C.; Sun, J.; Chen, X.; Jing, X. Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer 2009, 18, 4308–4316. [Google Scholar] [CrossRef]
- Shchukin, D.G.; Sukhorukov, G.B. Selective YF3 nanoparticle formation in polyelectrolyte capsules as microcontainers for yttrium recovery from aqueous solutions. Langmuir 2003, 19, 4427–4431. [Google Scholar] [CrossRef]
- Lvov, Y.; Decher, G.; Moehwald, H. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly (vinyl sulfate) and poly (allylamine). Langmuir 1993, 9, 481–486. [Google Scholar] [CrossRef]
- Polomska, A.; Leroux, J.C.; Brambilla, D. Layer-by-Layer Coating of Solid Drug Cores: A Versatile Method to Improve Stability, Control Release and Tune Surface Properties. Macromol. Biosci. 2017, 17, 1600228. [Google Scholar] [CrossRef]
- Donatan, S.; Yashchenok, A.; Khan, N.; Parakhonskiy, B.; Cocquyt, M.; Pinchasik, B.E.; Khalenkow, D.; Möhwald, H.; Konrad, M.; Skirtach, A. Loading capacity versus enzyme activity in anisotropic and spherical calcium carbonate microparticles. ACS Appl. Mater. Interfaces 2016, 8, 14284–14292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, A.J.; Flessner, R.M.; Gellman, S.H.; Lynn, D.M.; Palecek, S.P. Polyelectrolyte multilayers fabricated from antifungal β-peptides: Design of surfaces that exhibit antifungal activity against Candida albicans. Biomacromolecules 2010, 11, 2321–2328. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Yu, L. Surface crystallization of indomethacin below Tg. Pharm. Res. 2006, 23, 2350–2355. [Google Scholar] [CrossRef]
- Zhu, L.; Wong, L.; Yu, L. Surface-enhanced crystallization of amorphous nifedipine. Mol. Pharm. 2008, 5, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Jona, J.; Nagapudi, K.; Wu, T. Fast surface crystallization of amorphous griseofulvin below Tg. Pharm. Res. 2010, 27, 1558–1567. [Google Scholar] [CrossRef]
- Gunn, E.M.; Guzei, I.A.; Yu, L. Does crystal density control fast surface crystal growth in glasses? A study with polymorphs. Cryst. Growth Des. 2011, 11, 3979–3984. [Google Scholar] [CrossRef]
- Kestur, U.S.; Taylor, L.S. Evaluation of the crystal growth rate of felodipine polymorphs in the presence and absence of additives as a function of temperature. Cryst. Growth Des. 2013, 13, 4349–4354. [Google Scholar] [CrossRef]
- Hasebe, M.; Musumeci, D.; Powell, C.T.; Cai, T.; Gunn, E.; Zhu, L.; Yu, L. Fast surface crystal growth on molecular glasses and its termination by the onset of fluidity. J. Phys. Chem B 2014, 118, 7638–7646. [Google Scholar] [CrossRef]
- Zhu, L.; Brian, C.W.; Swallen, S.F.; Straus, P.T.; Ediger, M.D.; Yu, L. Surface self-diffusion of an organic glass. Phys. Rev. Lett. 2011, 106, 256103. [Google Scholar] [CrossRef] [Green Version]
- Brian, C.W.; Yu, L. Surface self-diffusion of organic glasses. J. Phys. Chem. A 2013, 117, 13303–13309. [Google Scholar] [CrossRef]
- Zhang, W.; Brian, C.W.; Yu, L. Fast surface diffusion of amorphous o-terphenyl and its competition with viscous flow in surface evolution. J. Phys. Chem. B 2015, 119, 5071–5078. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Laventure, A.; Lebel, O.; Ediger, M.D.; Yu, L. Influence of hydrogen bonding on the surface diffusion of molecular glasses: Comparison of three triazines. J. Phys. Chem. B 2017, 121, 7221–7227. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, W.; Bishop, C.; Huang, C.; Ediger, M.D.; Yu, L. Surface diffusion in glasses of rod-like molecules posaconazole and itraconazole: Effect of interfacial molecular alignment and bulk penetration. Soft Matter 2020, 16, 5062–5070. [Google Scholar] [CrossRef]
- Yu, L. Surface mobility of molecular glasses and its importance in physical stability. Adv. Drug Del. Rev. 2016, 100, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Ruan, S.; Cai, T.; Yu, L. Fast surface diffusion and crystallization of amorphous griseofulvin. J. Phys. Chem. B 2017, 121, 9463–9468. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, L.; Kearns, K.L.; Ediger, M.D.; Yu, L. Glasses crystallize rapidly at free surfaces by growing crystals upward. Proc. Natl. Acad. Sci. USA 2011, 108, 5990–5995. [Google Scholar] [CrossRef] [Green Version]
- Hasebe, M.; Musumeci, D.; Yu, L. Fast surface crystallization of molecular glasses: Creation of depletion zones by surface diffusion and crystallization flux. J. Phys. Chem. B 2015, 119, 3304–3311. [Google Scholar] [CrossRef]
- Wu, T.; Sun, Y.; Li, N.; De Villiers, M.M.; Yu, L. Inhibiting surface crystallization of amorphous indomethacin by nanocoating. Langmuir 2007, 23, 5148–5153. [Google Scholar] [CrossRef]
- Priemel, P.A.; Laitinen, R.; Barthold, S.; Grohganz, H.; Lehto, V.P.; Rades, T.; Strachan, C.J. Inhibition of surface crystallisation of amorphous indomethacin particles in physical drug–polymer mixtures. Int. J. Pharm. 2013, 456, 301–306. [Google Scholar] [CrossRef]
- Teerakapibal, R.; Gui, Y.; Yu, L. Gelatin nano-coating for inhibiting surface crystallization of amorphous drugs. Pharm. Res. 2018, 35, 1–7. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J.; Hu, S.; Chen, Z.; Sacchetti, M.; Sun, C.C.; Yu, L. Polymer nanocoating of amorphous drugs for improving stability, dissolution, powder flow, and tabletability: The case of chitosan-coated indomethacin. Mol. Pharm. 2019, 16, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Gui, Y.; Chen, Y.; Chen, Z.; Jones, K.J.; Yu, L. Improving stability and dissolution of amorphous clofazimine by polymer nano-coating. Pharm. Res. 2019, 36, 1–7. [Google Scholar] [CrossRef]
- Zeng, A.; Yao, X.; Gui, Y.; Li, Y.; Jones, K.J.; Yu, L. Inhibiting surface crystallization and improving dissolution of amorphous loratadine by dextran sulfate nanocoating. J. Sharm. Sci. 2019, 108, 2391–2396. [Google Scholar] [CrossRef] [PubMed]
- Strydom, S.; Liebenberg, W.; Yu, L.; De Villiers, M. The effect of temperature and moisture on the amorphous-to-crystalline transformation of stavudine. Int. J. Pharm. 2009, 379, 72–81. [Google Scholar] [CrossRef]
- Puri, V.; Dantuluri, A.K.; Bansal, A.K. Barrier coated drug layered particles for enhanced performance of amorphous solid dispersion dosage form. Int. J. Pharm. Sci. 2012, 101, 342–353. [Google Scholar] [CrossRef]
- Kawakami, K. Surface effects on the crystallization of ritonavir glass. Int. J. Pharm. Sci. 2015, 104, 276–279. [Google Scholar] [CrossRef]
- Hellrup, J.; Alderborn, G.; Mahlin, D. Inhibition of recrystallization of amorphous lactose in nanocomposites formed by spray-drying. Int. J. Pharm. Sci. 2015, 104, 3760–3769. [Google Scholar] [CrossRef] [PubMed]
- Novakovic, D.; Peltonen, L.; Isomäki, A.; Fraser-Miller, S.J.; Nielsen, L.H.; Laaksonen, T.; Strachan, C.J. Surface stabilization and dissolution rate improvement of amorphous compacts with thin polymer coatings: Can we have it all? Mol. Pharm. 2020, 17, 1248–1260. [Google Scholar] [CrossRef]
- Capece, M.; Davé, R. Enhanced physical stability of amorphous drug formulations via dry polymer coating. J. Pharm. Sci. 2015, 104, 2076–2084. [Google Scholar] [CrossRef]
- Chen, L.; Ding, X.; He, Z.; Fan, S.; Kunnath, K.T.; Zheng, K.; Davé, R.N. Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties. Int. J. Pharm. 2018, 546, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Bannow, J.; Koren, L.; Salar-Behzadi, S.; Löbmann, K.; Zimmer, A.; Rades, T. Hot melt coating of amorphous carvedilol. Pharmaceutics 2020, 12, 519. [Google Scholar] [CrossRef]
- Bosselmann, S.; Owens III, D.E.; Kennedy, R.L.; Herpin, M.J.; Williams III, R.O. Plasma deposited stability enhancement coating for amorphous ketoprofen. Eur. J. Pharm. Biopharm. 2011, 78, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Powell, C.T.; Xi, H.; Sun, Y.; Gunn, E.; Chen, Y.; Ediger, M.D.; Yu, L. Fast crystal growth in o-terphenyl glasses: A possible role for fracture and surface mobility. J. Phys. Chem. B 2015, 119, 10124–10130. [Google Scholar] [CrossRef]
- Kestur, U.S.; Lee, H.; Santiago, D.; Rinaldi, C.; Won, Y.Y.; Taylor, L.S. Effects of the molecular weight and concentration of polymer additives, and temperature on the melt crystallization kinetics of a small drug molecule. Cryst. Growth Des. 2010, 10, 3585–3595. [Google Scholar] [CrossRef]
- Kothari, K.; Ragoonanan, V.; Suryanarayanan, R. The role of drug–polymer hydrogen bonding interactions on the molecular mobility and physical stability of nifedipine solid dispersions. Mol. Pharm. 2015, 12, 162–170. [Google Scholar] [CrossRef]
- Huang, C.; Powell, C.T.; Sun, Y.; Cai, T.; Yu, L. Effect of low-concentration polymers on crystal growth in molecular glasses: A controlling role for polymer segmental mobility relative to host dynamics. J. Phys. Chem. B 2017, 121, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Kindermann, C.; Matthée, K.; Strohmeyer, J.; Sievert, F.; Breitkreutz, J. Tailor-made release triggering from hot-melt extruded complexes of basic polyelectrolyte and poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2011, 79, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Higashi, K.; Suzuki, T.; Tomono, K.; Moribe, K.; Yamamoto, K. Stabilization of a supersaturated solution of mefenamic acid from a solid dispersion with EUDRAGIT® EPO. Pharm. Res. 2012, 29, 2777–2791. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zemlyanov, D.; Chen, X.; Nie, H.; Su, Z.; Fang, K.; Yang, X.; Smith, D.; Byrn, S.; Lubach, J.W. Acid–base interactions of polystyrene sulfonic acid in amorphous solid dispersions using a combined UV/FTIR/XPS/ssNMR study. Mol. Pharm. 2016, 13, 483–492. [Google Scholar] [CrossRef]
- Xie, T.; Gao, W.; Taylor, L.S. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. Int. J. Pharm. 2017, 531, 313–323. [Google Scholar] [CrossRef]
- Duggirala, N.K.; Li, J.; Kumar, N.K.; Gopinath, T.; Suryanarayanan, R. A supramolecular synthon approach to design amorphous solid dispersions with exceptional physical stability. ChemComm 2019, 55, 5551–5554. [Google Scholar] [CrossRef]
- Trasi, N.S.; Bhujbal, S.V.; Zemlyanov, D.Y.; Zhou, Q.T.; Taylor, L.S. Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. Int. J. Pharm. X 2020, 2, 100052. [Google Scholar] [CrossRef]
- Nie, H.; Su, Y.; Zhang, M.; Song, Y.; Leone, A.; Taylor, L.S.; Marsac, P.J.; Li, T.; Byrn, S.R. Solid-state spectroscopic investigation of molecular interactions between clofazimine and hypromellose phthalate in amorphous solid dispersions. Mol. Pharm. 2016, 13, 3964–3975. [Google Scholar] [CrossRef] [PubMed]
- Gui, Y.; McCann, E.C.; Yao, X.; Li, Y.; Jones, K.J.; Yu, L. Amorphous Drug–Polymer Salt with High Stability under Tropical Conditions and Fast Dissolution: The Case of Clofazimine and Poly (acrylic acid). Mol. Pharm. 2021, 18, 1364–1372. [Google Scholar] [CrossRef]
- Yao, X.; Kim, S.; Gui, Y.; Chen, Z.; Yu, J.; Jones, K.J.; Yu, L. Amorphous drug-polymer salt with high stability under tropical conditions and fast dissolution: The challenging case of lumefantrine-PAA. J. Pharm. Sci. 2021. [Google Scholar] [CrossRef]
- Mesallati, H.; Umerska, A.; Paluch, K.J.; Tajber, L. Amorphous Polymeric Drug Salts as Ionic Solid Dispersion Forms of Ciprofloxacin. Mol. Pharm. 2017, 7, 2209–2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheow, W.S.; Hadinoto, K. Self-assembled amorphous drug–polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility. J. Colloid Interface Sci. 2012, 1, 518–526. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Ho, H.-O.; Chiou, J.-D.; Sheu, M.-T. Physical and dissolution characterization of cilostazol solid dispersions prepared by hot melt granulation (HMG) and thermal adhesion granulation (TAG) methods. Int. J. Pharm. 2014, 1–2, 458–468. [Google Scholar] [CrossRef]
- Caron, V.; Hu, Y.; Tajber, L.; Erxleben, A.; Corrigan, O.I.; McArdle, P.; Healy, A.M. Amorphous solid dispersions of sulfonamide/Soluplus® and sulfonamide/PVP prepared by ball milling. AAPS Pharmscitech 2013, 14, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Szafraniec, J.; Antosik, A.; Knapik-Kowalczuk, J.; Gawlak, K.; Kurek, M.; Szlęk, J.; Jamróz, W.; Paluch, M.; Jachowicz, R. Molecular Disorder of Bicalutamide—Amorphous Solid Dispersions Obtained by Solvent Methods. Pharmaceutics 2018, 10, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puttipipatkhachorn, S.; Nunthanid, J.; Yamamoto, K.; Peck, G.E. Drug physical state and drug–polymer interaction on drug release from chitosan matrix films. J. Control. Release 2001, 75, 143–153. [Google Scholar] [CrossRef]
- Ko, J.A.; Park, H.J.; Hwang, S.J.; Park, J.B.; Lee, J.S. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int. J. Pharm. 2002, 249, 165–174. [Google Scholar] [CrossRef]
Drug | Polymer | Stability against Crystallization | Other Benefits | Reference |
---|---|---|---|---|
Acids | ||||
Indomethacin | PDDA | Stable at 40 °C/dry for 20 d, while uncoated sample fully crystallized | Improved flowability | [38] |
Indomethacin | Eudragit EPO (dry coating) | Improved stability at 30 °C/23% or 42% RH, outperforming neutral polymer Soluplus | No tests performed | [39] |
Indomethacin | Gelatin A and B | Inhibited surface crystal growth at 40 °C/dry | No tests performed | [40] |
Indomethacin | Chitosan, gelatin A and B | Improved stability at 40 °C/dry, 40 °C/75% RH, and 30 °C/75% RH; chitosan outperformed gelatins | Improved powder flow, tabletability, and wetting and dissolution | [41] |
Bases | ||||
Clofazimine | Alginic acid | Stable at 90 °C/dry for 60 d, while the uncoated particles fully crystallized. Improved stability at 40 °C/75% RH | Improved wetting and dissolution | [42] |
Nifedipine | Gelatin A and B | Inhibited surface crystal growth at 40 °C/dry | No tests performed | [40] |
Loratadine | Dextran sulfate (DTS) | Improved stability at 40 °C/dry | No tests performed | [43] |
Drug, % Loading | Polymer | Synthesis Method | Physical Stability | Other Benefits | Reference |
---|---|---|---|---|---|
Acids | |||||
Naproxen, 42% | Eudragit EPO | Hot melt extrusion | Stable at 20 °C/60% RH for 12 mo. | Drug release triggered by inorganic salts | [57] |
Mefenamic acid, 24% | Eudragit EPO, Eudragit L100 | Cryogenic grinding | Stable at 25 °C/75% RH for 10 mo. | Extended supersaturation, enhanced dissolution | [58] |
Lapatinib, 40% Gefitinib, 40% | PSSA | Solvent evaporation, cryogenic grinding | Stable at 40 °C/75% RH for 6 mo. | Faster dissolution than crystalline form | [59] |
Indomethacin, 30% | Eudragit EPO | Solvent evaporation, cryogenic grinding | Stable at 40 °C/75% RH for 100 d. Neutral ADSs less stable | Enhanced dissolution | [60] |
Bases | |||||
Pyrimethamine, Lamotrigine, Trimethoprim, <65% | Polyacrylic acid (PAA) | Melt quench | Stable at 40 °C/75% RH for 6 mo. Pure drugs, neutral ASDs less stable | Fast dissolution relative to the crystalline and persisting supersaturation | [61] |
Lumefantrine, 40% | CAP, HPMCP, Eudragit L100 | Solvent evaporation | Stable at 40 °C/75% RH for 6 mo. Neutral ASDs less stable | CAP dispersion shows slow dissolution; others perform better | [62] |
Clofazimine, 33–57% | HPMCP | Solvent evaporation | Not performed | Not performed | [63] |
Clofazimine, 75% | PAA | Slurry conversion | Stable at 40 °C/75% RH for 6 mo. Neutral ASDs less stable | Improved flow, tabletability, wetting, and dissolution | [64] |
Lumefantrine, 50% | PAA | Slurry conversion | Stable at 40 °C/75% RH for 18 mo. Neutral ASDs less stable | Improved flow, tabletability, and dissolution | [65] |
Ciprofloxacin, 40% | Eudragit L | Ball milling | Stable at 25 °C/90% RH for 90 min. Improved stability over pure drug at 40 °C/75% RH | Improved solubility and drug permeability, persistent supersaturation | [66] |
Ciprofloxacin, 80% | DTS | Precipitation by mixing drug and polymer solutions | Stable at 25 °C/55% RH for 1 mo. | Improved dissolution and supersaturation | [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Neusaenger, A.L.; Yu, L. Amorphous Drug-Polymer Salts. Pharmaceutics 2021, 13, 1271. https://doi.org/10.3390/pharmaceutics13081271
Yao X, Neusaenger AL, Yu L. Amorphous Drug-Polymer Salts. Pharmaceutics. 2021; 13(8):1271. https://doi.org/10.3390/pharmaceutics13081271
Chicago/Turabian StyleYao, Xin, Amy Lan Neusaenger, and Lian Yu. 2021. "Amorphous Drug-Polymer Salts" Pharmaceutics 13, no. 8: 1271. https://doi.org/10.3390/pharmaceutics13081271
APA StyleYao, X., Neusaenger, A. L., & Yu, L. (2021). Amorphous Drug-Polymer Salts. Pharmaceutics, 13(8), 1271. https://doi.org/10.3390/pharmaceutics13081271