Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Silico Studies
Physicochemical and Biopharmaceutical Properties
2.2. Experimental Studies
2.2.1. Compound, Reagents and Buffer Solutions
2.2.2. Determination of the Dissociation Constant (pKa)
2.2.3. Thermodynamic Solubility Determination
2.2.4. Refinement of Intrinsic and Salt Solubility
2.3. Permeability Determination
2.3.1. Cell Culture and MDCK, MDCK-MDR1 and Caco-2
2.3.2. In Situ Perfusion Method
2.4. Statistical Analysis
3. Results
3.1. In Silico Physicochemical and Biopharmaceutical Properties
3.2. Determination of the Dissociation Constant (pKa)
3.3. Solubility Determination
3.4. Permeability Determination
3.4.1. MDCK, MDCK-MDR1 and Caco-2
3.4.2. In Situ Perfusion Method
3.5. Biopharmaceutical Classification of JM-20
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kesisoglou, F.; Wu, Y. Understanding the effect of API properties on bioavailability through absorption modeling. AAPS J. 2008, 10, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ku, M.S. Use of the Biopharmaceutical Classification System in early drug development. AAPS J. 2008, 10, 208–212. [Google Scholar] [CrossRef] [PubMed]
- CDER/FDA. FDA Guidance for Industry, Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. Center for Drug Evaluation and Research. Available online: https://www.fda.gov/media/70963/download (accessed on 11 November 2020).
- EMA. EMA/CHMP: Guidelines on the Investigation of Bioequivalence; EMA: London, UK, 2010. [Google Scholar]
- Lennernäs, H. Human intestinal permeability. J. Pharm. Sci. 1998, 87, 403–410. [Google Scholar] [CrossRef]
- Kim, J.S.; Mitchell, S.; Kijek, P.; Tsume, Y.; Hilfinger, J.; Amidon, G.L. The suitability of an in situ perfusion model for permeability determinations: Utility for BCS class I biowaiver requests. Mol. Pharm. 2006, 3, 686–694. [Google Scholar] [CrossRef]
- Artursson, P. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 1990, 79, 476–482. [Google Scholar] [CrossRef]
- Irvine, J.D.; Takahashi, L.; Lockhart, K.; Cheong, J.; Tolan, J.W.; Selick, H.E.; Grove, J.R.; Rove, J.R.U.G. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 1999, 88, 28–33. [Google Scholar] [CrossRef]
- Cabrera-Pérez, M.Á.; Pham-The, H.; Cervera, M.F.; Hernández-Armengol, R.; Miranda-Pérez de Alejo, C.; Brito-Ferrer, Y. Integrating theoretical and experimental permeability estimations for provisional biopharmaceutical classification: Application to the WHO essential medicines. Biopharm. Drug Dispos. 2018, 39, 354–368. [Google Scholar] [CrossRef]
- Nuñez-Figueredo, Y.; Ramírez-Sánchez, J.; Delgado-Hernández, R.; Porto-Verdecia, M.; Ochoa-Rodríguez, E.; Verdecia-Reyes, Y.; Marin-Prida, J.; González-Durruthy, M.; Uyemura, S.A.; Rodrigues, F.P.; et al. JM-20, a novel benzodiazepine–dihydropyridine hybrid molecule, protects mitochondria and prevents ischemic insult-mediated neural cell death in vitro. Eur. J. Pharmacol. 2014, 726, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Nuñez-Figueredo, Y.; Ramírez-Sánchez, J.; Hansel, G.; Simões Pires, E.N.; Merino, N.; Valdes, O.; Delgado-Hernández, R.; Parra, A.L.; Ochoa-Rodríguez, E.; Verdecia-Reyes, Y.; et al. A novel multi-target ligand (JM-20) protects mitochondrial integrity, inhibits brain excitatory amino acid release and reduces cerebral ischemia injury in vitro and in vivo. Neuropharmacology 2014, 85, 517–527. [Google Scholar] [CrossRef]
- Ramírez-Sánchez, J.; Simões Pires, E.N.; Nuñez-Figueredo, Y.; Pardo-Andreu, G.L.; Fonseca-Fonseca, L.A.; Ruiz-Reyes, A.; Ochoa-Rodríguez, E.; Verdecia-Reyes, Y.; Delgado-Hernández, R.; Souza, D.O.; et al. Neuroprotection by JM-20 against oxygen-glucose deprivation in rat hippocampal slices: Involvement of the Akt/GSK-3β pathway. Neurochem. Int. 2015, 90, 215–223. [Google Scholar] [CrossRef]
- Nuñez-Figueredo, Y.; Pardo-Andreu, G.L.; Ramírez-Sánchez, J.; Delgado-Hernández, R.; Ochoa-Rodríguez, E.; Verdecia-Reyes, Y.; Naal, Z.; Muller, A.P.; Portela, L.V.; Souza, D.O. Antioxidant effects of JM-20 on rat brain mitochondria and synaptosomes: Mitoprotection against Ca2+-induced mitochondrial impairment. Brain Res. Bull. 2014, 109, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Nuñez-Figueredo, Y.; Pardo Andreu, G.L.; Oliveira Loureiro, S.; Ganzella, M.; Ramírez-Sánchez, J.; Ochoa-Rodríguez, E.; Verdecia-Reyes, Y.; Delgado-Hernández, R.; Souza, D.O. The effects of JM-20 on the glutamatergic system in synaptic vesicles, synaptosomes and neural cells cultured from rat brain. Neurochem. Int. 2015, 81, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Nuñez-Figueredo, Y.; Ramírez-Sánchez, J.; Pardo Andreu, G.L.; Ochoa-Rodríguez, E.; Verdecia-Reyes, Y.; Souza, D.O. Multi-targeting effects of a new synthetic molecule (JM-20) in experimental models of cerebral ischemia. Pharmacol. Reports 2018, 70, 699–704. [Google Scholar] [CrossRef]
- Fonseca-Fonseca, L.A.; da Silva, V.D.A.; Wong-Guerra, M.; Ramírez-Sánchez, J.; Yaquis, A.S.P.; Ochoa-Rodríguez, E.; Verdecia-Reyes, Y.; de Araújo, F.M.; Santana, R.C.; Outeiro, T.F.; et al. JM-20 protects against 6-hydroxydopamine-induced neurotoxicity in models of Parkinson’s disease: Mitochondrial protection and antioxidant properties. Neurotoxicology 2021, 82, 89–98. [Google Scholar] [CrossRef]
- Wong-Guerra, M.; Montano-Peguero, Y.; Ramírez-Sánchez, J.; Jiménez-Martin, J.; Fonseca-Fonseca, L.A.; Hernández-Enseñat, D.; Nonose, Y.; Valdés, O.; Mondelo-Rodriguez, A.; Ortiz-Miranda, Y.; et al. JM-20 treatment prevents neuronal damage and memory impairment induced by aluminum chloride in rats. Neurotoxicology 2021, 87. [Google Scholar] [CrossRef]
- Wong-Guerra, M.; Jiménez-Martin, J.; Fonseca-Fonseca, L.A.; Ramírez-Sánchez, J.; Montano-Peguero, Y.; Rocha, J.B.; D’Avila, F.; de Assis, A.M.; Souza, D.O.; Pardo-Andreu, G.L.; et al. JM-20 protects memory acquisition and consolidation on scopolamine model of cognitive impairment. Neurol. Res. 2019, 41. [Google Scholar] [CrossRef]
- ChemAxon MarvinSketch 5.3.7, ChemAxon Ltd. Budapest, Hungary. Available online: http://www.chemaxon.com (accessed on 5 January 2021).
- Falcón-Cano, G.; Molina, C.; Cabrera-Pérez, M.Á. ADME prediction with KNIME: In silico aqueous solubility consensus model based on supervised recursive random forest approaches. Admet Dmpk 2020, 8, 1–23. [Google Scholar]
- Falcón-Cano, G.; Molina, C.; Cabrera-Pérez, M.Á. ADME Prediction with KNIME: Development and Validation of a Publicly Available Workflow for the Prediction of Human Oral Bioavailability. J. Chem. Inf. Model. 2020, 60, 2660–2667. [Google Scholar] [CrossRef]
- Figueredo, Y.N.; Rodríguez, E.O.; Reyes, Y.V.; Domínguez, C.C.; Parra, A.L.; Sánchez, J.R.; Hernández, R.D.; Verdecia, M.P.; Pardo Andreu, G.L. Characterization of the anxiolytic and sedative profile of JM-20: A novel benzodiazepine-dihydropyridine hybrid molecule. Neurol. Res. 2013, 35, 804–812. [Google Scholar] [CrossRef]
- Martínez, C.H.R.; Dardonville, C. Rapid Determination of Ionization Constants (p K a ) by UV Spectroscopy Using 96-Well Microtiter Plates. ACS Med. Chem. Lett. 2013, 4, 142–145. [Google Scholar] [CrossRef] [Green Version]
- Formulary, U.S.P.N. United States Pharmacopeia and National Formulary (USP 38-NF 33). In Proceedings of the United States Pharmacopeia Convention; The United States Pharmacopeial Convention: North Bethesda, MD, USA, 2015. [Google Scholar]
- Salgado, L.E.V.; Vargas-Hernández, C. Spectrophotometric Determination of the pKa, Isosbestic Point and Equation of Absorbance vs. pH for a Universal pH Indicator. Am. J. Anal. Chem. 2014, 05, 1290–1301. [Google Scholar] [CrossRef] [Green Version]
- WHO. Multisource (Generic) Pharmaceutical Products: Guidelines on Registration Requirements to Establish Interchangeability Annex 6, WHO Technical Report Series, No. 1003; WHO: Geneva, Switzerland, 2017; pp. 181–236. [Google Scholar]
- Baka, E.; Comer, J.E.A.; Takács-Novák, K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J. Pharm. Biomed. Anal. 2008, 46, 335–341. [Google Scholar] [CrossRef]
- Avdeef, A.; Fuguet, E.; Llinàs, A.; Ràfols, C.; Bosch, E.; Völgyi, G.; Verbić, T.; Boldyreva, E.; Novák, K.T. Equilibrium solubility measurement of ionizable drugs—Consensus recommendations for improving data quality. Admet Dmpk 2016, 4, 117–178. [Google Scholar] [CrossRef] [Green Version]
- pDISOL-X Software|in-ADME Research. Available online: https://www.in-adme.com/pdisol_x.html (accessed on 5 January 2021).
- Völgyi, G.; Marosi, A.; Novák, K.T.; Avdeef, A. Salt Solubility Products of Diprenorphine Hydrochloride, Codeine and Lidocaine Hydrochlorides and Phosphates—Novel Method of Data Analysis Not Dependent on Explicit Solubility Equations. Admet Dmpk 2013, 1, 48–62. [Google Scholar] [CrossRef]
- Mangas-Sanjuan, V.; Gonzalez, I.; Gonzalez, M.; Casabo, V.G.; Bermejo, M. Modified Nonsink Equation for Permeability Estimation in Cell Monolayers: Comparison with Standard Methods. Mol. Pharm. 2014, 11, 1403–1414. [Google Scholar] [CrossRef]
- Doluisio, J.T.; Billups, N.F.; Dittert, L.W.; Sugita, E.T.; Swintosky, J. V Drug Absorption I: An in situ Rat Gut Technique Yielding Realistic Absorption Rates. J. Pharm. Sci. 1969, 58, 1196–1200. [Google Scholar] [CrossRef]
- Saitoh, H.; Hatakeyama, M.; Eguchi, O.; Oda, M.; Takada, M. Involvement of intestinal P-glycoprotein in the restricted absorption of methylprednisolone from rat small intestine. J. Pharm. Sci. 1998, 87, 73–75. [Google Scholar] [CrossRef]
- Casabo, V.G.; Nunez-Benito, E.; Martinez-Coscolla, A.; Miralles-Loyola, E.; Martin-Villodre, A.; Pla-Delfina, J.M. Studies on the reliability of a bihyperbolic functional absorption model. II. Phenylalkylamines. J. Pharm. Biopharm. 1987, 15, 633–643. [Google Scholar] [CrossRef]
- Ferrando, R.; Garrigues, T.M.; Bermejo, M.V.; Martin-Algarra, R.; Merino, V.; Polache, A. Effects of ethanol on intestinal absorption of drugs: In situ studies with ciprofloxacin analogs in acute and chronic alcohol-fed rats. Alcohol. Clin. Exp. Res. 1999, 23, 1403–1408. [Google Scholar] [CrossRef]
- Bermejo, M.; Merino, V.; Garrigues, T.M.; Pla Delfina, J.M.; Mulet, A.; Vizet, P.; Trouiller, G.; Mercier, C. Validation of a biophysical drug absorption model by the PATQSAR system. J. Pharm. Sci. 1999, 88, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Garcia, A.; Bermejo, M.; Merino, V.; Sanchez-Castano, G.; Freixas, J.; Garrigues, T.M. Pharmacokinetics, bioavailability and absorption of flumequine in the rat. Eur. J. Pharm. Biopharm. 1999, 48, 253–258. [Google Scholar] [CrossRef]
- Gomes de Souza, D.; Batista Calixto, J.; Siqueira Junior, J.; Heller, M.; Cristina Schwanke, R.; Avila Silveira, F. Desenvolvimento e Validação Simplificada de Método Analítico para a Substância Teste 079. Available online: https://repositorio.unesp.br/bitstream/handle/11449/155536/000885540.pdf?sequence=1&isAllowed=y (accessed on 5 January 2021).
- Tuğcu-Demiröz, F.; Gonzalez-Alvarez, I.; Gonzalez-Alvarez, M.; Bermejo, M. Validation of phenol red versus gravimetric method for water reabsorption correction and study of gender differences in Doluisio’s absorption technique. Eur. J. Pharm. Sci. 2014, 62, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Martin-Villodre, A.; Pla-Delfina, J.M.; Moreno, J.; Pérez-Buendía, D.; Miralles, J.; Collado, E.F.; Sánchez-Moyano, E.; del Pozo, A. Studies on the Reliability of a Bihyperbolic Functional Absorption Model. I.Ring-Substituted Anilines. J. Pharmacokinet. Biopharm. 1986, 14, 615–633. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Martínez Alvarez, L.; Alejo Cisneros, P.L.; Forte Mesa, R.F.; Quiñones Hinojosa, L.; Mondelo Rodríguez, A.; García Borges, L.; Guerra Menéndez, H.; Tuero Iglesias, A.; Ochoa Rodríguez, E.; Cabrera-Pérez, M.A.; et al. Solubilidad de equilibrio usando el método de agitación de matraces saturados de JM-20: Molécula sintética con acción neuroprotectora. J. Pharm. Pharmacogn. Res. 2020, 8, 117–126. [Google Scholar]
- Kasim, N.A.; Whitehouse, M.; Ramachandran, C.; Bermejo Sanz, M.; Lennernäs, H.; Hussain, A.S.; Junginger, H.E.; Stavchansky, S.A.; Midha, K.K.; Shah, V.P.; et al. Molecular Properties of WHO Essential Drugs and Provisional Biopharmaceutical Classification. Mol. Pharm. 2004, 1, 85–96. [Google Scholar] [CrossRef]
- Butler, J.M.; Dressman, J.B. The developability classification system: Application of biopharmaceutics concepts to formulation development. J. Pharm. Sci. 2010, 99, 4940–4954. [Google Scholar] [CrossRef]
- Wu, C.Y.; Benet, L.Z. Predicting drug disposition via application of BCS: Transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 2005, 22, 11–23. [Google Scholar] [CrossRef]
- Pham-The, H.; Garrigues, T.; Bermejo, M.; González-Álvarez, I.; Monteagudo, M.C.; Cabrera-Pérez, M.Á. Provisional Classification and in Silico Study of Biopharmaceutical System Based on Caco-2 Cell Permeability and Dose Number. Mol. Pharm. 2013, 10, 2445–2461. [Google Scholar] [CrossRef]
- Dahan, A.; Wolk, O.; Kim, Y.H.; Ramachandran, C.; Crippen, G.M.; Takagi, T.; Bermejo, M.; Amidon, G.L. Purely in Silico BCS Classification: Science Based Quality Standards for the World’s Drugs. Mol. Pharm. 2013, 10, 4378–4390. [Google Scholar] [CrossRef]
- Lozoya-Agullo, I.; González-Álvarez, I.; González-Álvarez, M.; Merino-Sanjuán, M.; Bermejo, M. In Situ Perfusion Model in Rat Colon for Drug Absorption Studies: Comparison with Small Intestine and Caco-2 Cell Model. J. Pharm. Sci. 2015, 104, 3136–3145. [Google Scholar] [CrossRef]
- Avdeef, A. Physicochemical Profiling (Solubility, Permeability and Charge State). Front. Med. Chem. 2004, 1, 409–475. [Google Scholar] [CrossRef] [Green Version]
- Egan, W.J.; Merz, K.M., Jr.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Waring, M.J. Defining optimum lipophilicity and molecular weight ranges for drug candidates-Molecular weight dependent lower logD limits based on permeability. Bioorg. Med. Chem. Lett. 2009, 19, 2844–2851. [Google Scholar] [CrossRef]
- Pham-The, H.; González-Álvarez, I.; Bermejo, M.; Garrigues, T.; Le-Thi-Thu, H.; Cabrera-Pérez, M.Á. The use of rule-based and QSPR approaches in ADME profiling: A case study on caco-2 permeability. Mol. Inform. 2013, 32, 459–479. [Google Scholar] [CrossRef]
- Sun, N.; Avdeef, A. Biorelevant p K a (37 °C) predicted from the 2D structure of the molecule and its pKa at 25 °C. J. Pharm. Biomed. Anal. 2011, 56, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.O., III; Watts, A.B.; Miller, D.A. Formulating Poorly Water Soluble Drugs; Springer: Berlin/Heidelberg, Germany, 2012; Volume 22, ISBN 9781461411437. [Google Scholar]
- Rodriguez-Aller, M.; Guillarme, D.; Veuthey, J.L.; Gurny, R. Strategies for formulating and delivering poorly water-soluble drugs. J. Drug Deliv. Sci. Technol. 2015, 30, 342–351. [Google Scholar] [CrossRef]
- Miyake, M.; Koga, T.; Kondo, S.; Yoda, N.; Emoto, C.; Mukai, T.; Toguchi, H. Prediction of drug intestinal absorption in human using the Ussing chamber system: A comparison of intestinal tissues from animals and humans. Eur. J. Pharm. Sci. 2017, 96. [Google Scholar] [CrossRef]
- Hubatsch, I.; Ragnarsson, E.G.E.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007, 2, 2111–2119. [Google Scholar] [CrossRef]
- Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int. J. Pharm. 2011, 420, 1–10. [Google Scholar] [CrossRef]
- Vemula, V.R.; Lagishetty, V.; Lingala, S. Solubility enhancement techniques. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 41–51. [Google Scholar]
- Singh, A.; Worku, Z.A.; Van Den Mooter, G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin. Drug Deliv. 2011, 8, 1361–1378. [Google Scholar] [CrossRef]
- Volpe, D.A.; Faustino, P.J.; Ciavarella, A.B.; Asafu-Adjaye, E.B.; Ellison, C.D.; Yu, L.X.; Hussain, A.S. Classification of drug permeability with a Caco-2 cell monolayer assay. Clin. Res. Regul. Aff. 2007, 24, 39–47. [Google Scholar] [CrossRef]
- Lozoya-Agullo, I.; Zur, M.; Beig, A.; Fine, N.; Cohen, Y.; González-Álvarez, M.; Merino-Sanjuán, M.; González-Álvarez, I.; Bermejo, M.; Dahan, A. Segmental-dependent permeability throughout the small intestine following oral drug administration: Single-pass vs. Doluisio approach to in-situ rat perfusion. Int. J. Pharm. 2016, 515, 201–208. [Google Scholar] [CrossRef]
- Lozoya-Agullo, I.; Zur, M.; Wolk, O.; Beig, A.; González-Álvarez, I.; González-Álvarez, M.; Merino-Sanjuán, M.; Bermejo, M.; Dahan, A. In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination: Investigation of the single-pass vs. the Doluisio experimental approaches. Int. J. Pharm. 2015, 480, 1–7. [Google Scholar] [CrossRef]
- Cao, X.; Gibbs, S.T.; Fang, L.; Miller, H.A.; Landowski, C.P.; Shin, H.-C.C.; Lennernäs, H.; Zhong, Y.; Amidon, G.L.; Yu, L.X.; et al. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 2006, 23, 1675–1686. [Google Scholar] [CrossRef] [PubMed]
- Zakeri-Milani, P.; Valizadeh, H.; Tajerzadeh, H.; Azarmi, Y.; Islambolchilar, Z.; Barzegar, S.; Barzegar-Jalali, M. Predicting human intestinal permeability using single-pass intestinal perfusion to rat. J. Pharm. Pharm. Sci. 2007, 10, 368–379. [Google Scholar] [PubMed]
- Dahan, A.; Miller, J.M.; Hilfinger, J.M.; Yamashita, S.; Yu, L.X.; Lennernäs, H.; Amidon, G.L. High-permeability criterion for BCS classification: Segmental/pH dependent permeability considerations. Mol. Pharm. 2010, 7, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Kou, D.; Zhang, C.; Yiu, H.; Ng, T.; Lubach, J.W.; Janson, M.; Mao, C.; Durk, M.; Chinn, L.; Winter, H.; et al. In Vitro, In Silico, and In Vivo Assessments of Intestinal Precipitation and Its Impact on Bioavailability of a BCS Class 2 Basic Compound. Mol. Pharm. 2018, 15, 1607–1617. [Google Scholar] [CrossRef]
Property | Predicted Value |
---|---|
Molecular weight (MW) | 404.4 |
n-Octanol/water partition coefficient (log P) | 3.46 |
Polar Surface Area (PSA) | 105.86 |
Number of Rotatable Bonds (RBN) | 5 |
Hydrogen Bond Donors (HBD) | 2 |
Hydrogen Bond Acceptors (HBA) | 6 |
Dissociation Constant (pKa) | 5.05; 11.5 |
Aqueous solubility (pH 7.4, 37 °C) | 2.54 µg/mL |
Caco-2 permeability | 7.34 × 10−6 cm/s |
Human oral bioavailability (F%) | <50 |
Buffer Solution | Solubility a ± SD (μg/mL) | Do b | Solubility c (μg/mL) | So d (μg/mL) |
---|---|---|---|---|
1.2 | 9.18 ± 0.16 | 61.00 | 3.3 | 12.0 |
3.5 | 12.72 ± 0.83 | 44.03 | 14.3 | |
4.0 | 25.38 ± 0.66 | 22.06 | 18.9 | |
4.5 | 30.84 ± 1.29 | 18.16 | 74.9 | |
6.8 | 11.30 ± 0.69 | 49.56 | 12.5 | |
7.4 | 12.64 ± 0.36 | 44.30 | 11.9 |
Cell Line | Papp(A-B) (×10−5 cm/s) | Papp(B-A) (×10−5 cm/s) |
---|---|---|
MDCK-MDR1 | 2.17 ± 0.22 | 0.96 ± 0.05 |
MDCK | 2.46 ± 0.11 | 0.28 ± 0.71 |
Caco-2 | 3.83 ± 0.18 | 0.85 ± 0.24 |
Compound | Peff ± SD (×10−5 cm/s) | ||
---|---|---|---|
Duodenum | Jejunum | Ileum | |
JM-20 | 9.20 ± 0.89 | 6.63 ± 1.30 | 6.82 ± 1.44 |
Metoprolol | - | 6.23 | 9.5 |
Compound | D0 a | BCSlogP b [45] | BCSClogP c [45] | BCSMDCK | BCSCaco-2 | BCSQSPeR [48] | BCSrat | BCSGlobal |
---|---|---|---|---|---|---|---|---|
JM-20 | 61 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, C.; Ruiz-Picazo, A.; Pomares, P.; Gonzalez-Alvarez, I.; Bermejo, M.; Gonzalez-Alvarez, M.; Avdeef, A.; Cabrera-Pérez, M.-Á. Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development. Pharmaceutics 2022, 14, 182. https://doi.org/10.3390/pharmaceutics14010182
Miranda C, Ruiz-Picazo A, Pomares P, Gonzalez-Alvarez I, Bermejo M, Gonzalez-Alvarez M, Avdeef A, Cabrera-Pérez M-Á. Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development. Pharmaceutics. 2022; 14(1):182. https://doi.org/10.3390/pharmaceutics14010182
Chicago/Turabian StyleMiranda, Claudia, Alejandro Ruiz-Picazo, Paula Pomares, Isabel Gonzalez-Alvarez, Marival Bermejo, Marta Gonzalez-Alvarez, Alex Avdeef, and Miguel-Ángel Cabrera-Pérez. 2022. "Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development" Pharmaceutics 14, no. 1: 182. https://doi.org/10.3390/pharmaceutics14010182
APA StyleMiranda, C., Ruiz-Picazo, A., Pomares, P., Gonzalez-Alvarez, I., Bermejo, M., Gonzalez-Alvarez, M., Avdeef, A., & Cabrera-Pérez, M. -Á. (2022). Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development. Pharmaceutics, 14(1), 182. https://doi.org/10.3390/pharmaceutics14010182