State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation
Abstract
:1. Introduction
2. Models of Artificial Neural Networks
2.1. Multilayer Perceptron and Backpropagation Neural Network
2.2. Generalized Regression Neural Network
3. Progress of Applications of ANNs in Pharmaceutical Science
3.1. Prediction of Drug Release Behavior In Vitro
3.2. Selection and Optimization of Formulations
3.3. Establishment of In Vitro–In Vivo Correlation
3.4. Other Applications of Artificial Neural Network
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to machine learning, neural networks, and deep learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar] [CrossRef]
- Avetisyan, B.R.; Druzhinina, N.S.; Daudov, I.M. Neural networks and artificial intelligence as trends for the development of the future. J. Phys. Conf. Ser. 2020, 1582, 012005. [Google Scholar] [CrossRef]
- Ogami, C.; Tsuji, Y.; Seki, H.; Kawano, H.; To, H.; Matsumoto, Y.; Hosono, H. An artificial neural network-pharmacokinetic model and its interpretation using Shapley additive explanations. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 760–768. [Google Scholar] [CrossRef]
- Mak, K.-K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today 2019, 24, 773–780. [Google Scholar] [CrossRef]
- D’Souza, S.; Prema, K.V.; Seetharaman, B. Machine learning models for drug-target interactions: Current knowledge and future directions. Drug Discov. Today 2020, 25, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Fu, J.; Dang, L.; Cheong, Y.; Tan, H.; Wei, H. Prediction of the particle size distribution parameters in a high shear granulation process using a key parameter definition combined artificial neural network model. Ind. Eng. Chem. Res. 2015, 54, 10825–10834. [Google Scholar] [CrossRef]
- Rosenblatt, F. The Perceptron−A Perceiving and Recognizing Automaton; Cornell Aeronautical Laboratory: Ithaca, NY, USA, 1957. [Google Scholar]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.B.Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Patel, J.; Patel, A. Artificial neural networking in controlled drug delivery. In Artificial Neural Network for Drug Design, Delivery and Disposition; Puri, M., Pathak, Y., Sutariya, V.K., Tipparaju, S., Moreno, W., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 195–218. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [Green Version]
- Rumelhart, D.E.H.G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Zhang, Z. From artificial neural networks to deep learning: A research survey. J. Phys. Conf. Ser. 2020, 1576, 012030. [Google Scholar] [CrossRef]
- Ibrić, S.; Djuriš, J.; Parojčić, J.; Djurić, Z. Artificial neural networks in evaluation and optimization of modified release solid dosage forms. Pharmaceutics 2012, 4, 531–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxe, A.; Nelli, S.; Summerfield, C. If deep learning is the answer, what is the question? Nat. Rev. Neurosci. 2021, 22, 55–67. [Google Scholar] [CrossRef]
- Hussain, A.S.; Yu, X.Q.; Johnson, R.D. Application of neural computing in pharmaceutical product development. Pharm. Res. 1991, 8, 1248–1252. [Google Scholar] [CrossRef]
- Hussain, A.S.; Padmaja, S.; Johnson, R.D. Application of neural computing in pharmaceutical product development: Computer aided formulation design. Drug Dev. Ind. Pharm. 1994, 20, 1739–1752. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, Z.; Su, Y.; Zhao, Q.; Li, X.; Ouyang, D. Deep learning for in vitro prediction of pharmaceutical formulations. Acta Pharm. Sin. B 2019, 9, 177–185. [Google Scholar] [CrossRef]
- Hu, Y.; Du, X.L.; Hua, K.; Lu, H.; Zhang, X. Overview on deep learning. CAAI Trans. Intell. Syst. 2019, 14, 1–19. [Google Scholar]
- Ibric, S.; Jovanovic, M.; Djuric, Z.; Parojcic, J.; Solomun, L. The application of generalized regression neural network in the modeling and optimization of aspirin extended release tablets with Eudragit (R) RS PO as matrix substance. J. Control. Release 2002, 82, 213–222. [Google Scholar] [CrossRef]
- Jelena Djuris, S.I.; Djuric, Z. Neural computing in pharmaceutical products and process development. In Computer-Aided Applications in Pharmaceutical Technology; Djuris, J., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 91–175. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, H. Hierarchy neural networks as applied to pharmaceutical problems. Adv. Drug Deliv. Rev. 2003, 55, 1119–1147. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Paluzo-Hidalgo, E.; Gonzalez-Diaz, R.; Gutierrez-Naranjo, M.A. Two-hidden-layer feed-forward networks are universal approximators: A constructive approach. Neural Netw. 2020, 131, 29–36. [Google Scholar] [CrossRef] [PubMed]
- RUMELHART, D.E.; Hinton, G.E.; Williams, R.J. Learning internal representations by error propagation. Cogn. Sci. 1988, 323, 399–421. [Google Scholar]
- Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Renganathan, V. Overview of artificial neural network models in the biomedical domain. Bratisl. Lek. Listy 2019, 120, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Madzarevic, M.; Medarevic, D.; Vulovic, A.; Sustersic, T.; Djuris, J.; Filipovic, N.; Ibric, S. Optimization and prediction of ibuprofen release from 3D DLP printlets using artificial neural networks. Pharmaceutics 2019, 11, 544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Ibric, S.; Jovanović, M.; Djurić, Z.; Parojcić, J.; Solomun, L.; Lucic, B. Generalized regression neural networks in prediction of drug stability. J. Pharm. Pharmacol. 2007, 59, 745–750. [Google Scholar] [CrossRef]
- Ibric, S.; Jovanović, M.; Djurić, Z.; Parojcić, J.; Petrović, S.D.; Solomun, L.; Stupar, B. Artificial neural networks in the modeling and optimization of aspirin extended release tablets with eudragit L 100 as matrix substance. AAPS PharmSciTech 2003, 4, 62–70. [Google Scholar] [CrossRef]
- Petrovi, J.; Chansanroj, K.; Meier, B.; Ibri, S.; Betz, G. Analysis of fluidized bed granulation process using conventional and novel modeling techniques. Eur. J. Pharm. Sci. 2011, 44, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Ivic, B.; Ibric, S.; Betz, G.; Djuric, Z. Optimization of drug release from compressed multi unit particle system (MUPS) using generalized regression neural network (GRNN). Arch. Pharm. Res. 2010, 33, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Dowell, J.A.; Hussain, A.; Devane, J.; Young, D. Artificial neural networks applied to the in vitro in vivo correlation of an extended-release formulation: Initial trials and experience. J. Pharm. Sci. 1999, 88, 154–160. [Google Scholar] [CrossRef]
- Djekic, L.; Ibric, S.; Primorac, M. The application of artificial neural networks in the prediction of microemulsion phase boundaries in PEG-8 caprylic/capric glycerides based systems. Int. J. Pharm. 2008, 361, 41–46. [Google Scholar] [CrossRef]
- Stanojevic, G.; Medarevic, D.; Adamov, I.; Pesic, N.; Kovacevic, J.; Ibric, S. Tailoring atomoxetine release rate from DLP 3D-printed tablets using artificial neural networks: Influence of tablet thickness and drug loading. Molecules 2021, 26, 111. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, S.S.; Prakasvudhisarn, C.; Klocker, J.; Wolschann, P.; Viernstein, H. Comparison between two types of artificial neural networks used for validation of pharmaceutical processes. Powder Technol. 2009, 195, 150–157. [Google Scholar] [CrossRef]
- Simoes, M.F.; Silva, G.; Pinto, A.C.; Fonseca, M.; Silva, N.E.; Pinto, R.M.A.; Simoes, S. Artificial neural networks applied to quality-by-design: From formulation development to clinical outcome. Eur. J. Pharm. Biopharm. 2020, 152, 282–295. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Gijsen, M.; Filtjens, B.; Annaert, P.; Armoudjian, Y.; Debaveye, Y.; Wauters, J.; Slaets, P.; Spriet, I. Meropenem Stability in Human Plasma at -20 °C: Detailed Assessment of Degradation. Antibiotics 2021, 10, 449. [Google Scholar] [CrossRef] [PubMed]
- Baharifar, H.; Amani, A. Size, loading efficiency, and cytotoxicity of albumin-loaded chitosan nanoparticles: An artificial neural networks study. J. Pharm. Sci. 2017, 106, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Attia, K.A.; Nassar, M.W.; El-Zeiny, M.B.; Serag, A. Effect of genetic algorithm as a variable selection method on different chemometric models applied for the analysis of binary mixture of amoxicillin and flucloxacillin: A comparative study. Spectrochim. Acta Part A 2016, 156, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Galata, D.L.; Farkas, A.; Könyves, Z.; Mészáros, L.A.; Szabó, E.; Csontos, I.; Pálos, A.; Marosi, G.; Nagy, Z.K.; Nagy, B. Fast, spectroscopy-based prediction of in vitro dissolution profile of extended release tablets using artificial neural networks. Pharmaceutics 2019, 11, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett-Lenane, H.; O’Shea, J.P.; Murray, J.D.; Ilie, A.R.; Holm, R.; Kuentz, M.; Griffin, B.T. Artificial Neural Networks to Predict the Apparent Degree of Supersaturation in Supersaturated Lipid-Based Formulations: A Pilot Study. Pharmaceutics 2021, 13, 1398. [Google Scholar] [CrossRef]
- Behzadi, S.S.; Klocker, J.; Hüttlin, H.; Wolschann, P.; Viernstein, H. Validation of fluid bed granulation utilizing artificial neural network. Int. J. Pharm. 2005, 291, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Alade, O.S.; Mahmoud, M.; Al Shehri, D.A.; Sultan, A.S. Rapid determination of emulsion stability using turbidity measurement incorporating artificial neural network (ANN): Experimental validation using video/optical microscopy and kinetic modeling. ACS Omega 2021, 6, 5910–5920. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Yang, Y.; Li, X.; Ouyang, D. Predicting oral disintegrating tablet formulations by neural network techniques. Asian J. Pharm. Sci. 2018, 13, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Korteby, Y.; Mahdi, Y.; Azizou, A.; Daoud, K.; Regdon, G., Jr. Implementation of an artificial neural network as a PAT tool for the prediction of temperature distribution within a pharmaceutical fluidized bed granulator. Eur. J. Pharm. Sci. 2016, 88, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Elkomy, M.H.; Elmenshawe, S.F.; Eid, H.M.; Ali, A.M. Topical ketoprofen nanogel: Artificial neural network optimization, clustered bootstrap validation, and in vivo activity evaluation based on longitudinal dose response modeling. Drug Deliv. 2016, 23, 3294–3306. [Google Scholar] [CrossRef]
- Szlek, J.; Paclawski, A.; Lau, R.; Jachowicz, R.; Mendyk, A. Heuristic modeling of macromolecule release from PLGA microspheres. Int. J. Nanomed. 2013, 8, 4601–4611. [Google Scholar] [CrossRef] [Green Version]
- Khalid, M.H.; Kazemi, P.; Perez-Gandarillas, L.; Michrafy, A.; Szlęk, J.; Jachowicz, R.; Mendyk, A. Computational intelligence models to predict porosity of tablets using minimum features. Drug Des. Dev. Ther. 2017, 11, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Samson, S.; Basri, M.; Fard Masoumi, H.R.; Abdul Malek, E.; Abedi Karjiban, R. An artificial neural network based analysis of factors controlling particle size in a virgin coconut oil-based nanoemulsion system containing copper peptide. PLoS ONE 2016, 11, e0157737. [Google Scholar] [CrossRef] [Green Version]
- Nezhadali, A.; Motlagh, M.O.; Sadeghzadeh, S. Spectrophotometric determination of fluoxetine by molecularly imprinted polypyrrole and optimization by experimental design, artificial neural network and genetic algorithm. Spectrochim. Acta Part A 2018, 190, 181–187. [Google Scholar] [CrossRef]
- Parikh, K.J.; Sawant, K.K. Comparative study for optimization of pharmaceutical self-emulsifying pre-concentrate by design of experiment and artificial neural network. AAPS PharmSciTech 2018, 19, 3311–3321. [Google Scholar] [CrossRef]
- Galata, D.L.; Könyves, Z.; Nagy, B.; Novák, M.; Mészáros, L.A.; Szabó, E.; Farkas, A.; Marosi, G.; Nagy, Z.K. Real-time release testing of dissolution based on surrogate models developed by machine learning algorithms using NIR spectra, compression force and particle size distribution as input data. Int. J. Pharm. 2021, 597, 120338. [Google Scholar] [CrossRef]
- Ilić, M.; Ðuriš, J.; Kovačević, I.; Ibrić, S.; Parojčić, J. In vitro–in silico–in vivo drug absorption model development based on mechanistic gastrointestinal simulation and artificial neural networks: Nifedipine osmotic release tablets case study. Eur. J. Pharm. Sci. 2014, 62, 212–218. [Google Scholar] [CrossRef]
- Rahman, S.N.R.; Katari, O.; Pawde, D.M.; Boddeda, G.S.B.; Goswami, A.; Mutheneni, S.R.; Shunmugaperumal, T. Application of design of experiments® approach-driven artificial intelligence and machine learning for systematic optimization of reverse phase high performance liquid chromatography method to analyze simultaneously two drugs (cyclosporin A and etodolac) in solution, human plasma, nanocapsules, and emulsions. AAPS PharmSciTech 2021, 22, 155. [Google Scholar] [CrossRef] [PubMed]
- El Menshawe, S.F.; Aboud, H.M.; Elkomy, M.H.; Kharshoum, R.M.; Abdeltwab, A.M. A novel nanogel loaded with chitosan decorated bilosomes for transdermal delivery of terbutaline sulfate: Artificial neural network optimization, in vitro characterization and in vivo evaluation. Drug Deliv. Transl. Res. 2020, 10, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Hathout, R.M.; Gad, H.A.; Metwally, A.A. Gelatinized-core liposomes: Toward a more robust carrier for hydrophilic molecules. J. Biomed. Mater. Res. Part A 2017, 105, 3086–3092. [Google Scholar] [CrossRef] [PubMed]
- Muddle, J.; Kirton, S.B.; Parisini, I.; Muddle, A.; Murnane, D.; Ali, J.; Brown, M.; Page, C.; Forbes, B. Predicting the fine particle fraction of dry powder inhalers using artificial neural networks. J. Pharm. Sci. 2017, 106, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Kanwal, U.; Bukhari, N.I.; Rana, N.F.; Rehman, M.; Hussain, K.; Abbas, N.; Mehmood, A.; Raza, A. Doxorubicin-loaded quaternary ammonium palmitoyl glycol chitosan polymeric nanoformulation: Uptake by cells and organs. Int. J. Nanomed. 2019, 14, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melamane, S.; Walker, R.B.; Khamanga, S.M.M. Formulation optimization of smart thermosetting lamotrigine loaded hydrogels using response surface methodology, box benhken design and artificial neural networks. Drug Dev. Ind. Pharm. 2020, 46, 1402–1415. [Google Scholar] [CrossRef]
- Attia, K.A.M.; El-Abasawi, N.M.; El-Olemy, A.; Abdelazim, A.H.; Goda, A.I.; Shahin, M.; Zeid, A.M. Simultaneous spectrophotometric quantitative analysis of velpatasvir and sofosbuvir in recently approved FDA pharmaceutical preparation using artificial neural networks and genetic algorithm artificial neural networks. Spectrochim. Acta Part A 2021, 251, 119465. [Google Scholar] [CrossRef] [PubMed]
- Barmpalexis, P.; Grypioti, A.; Eleftheriadis, G.K.; Fatouros, D.G. Development of a new aprepitant liquisolid formulation with the aid of artificial neural networks and genetic programming. AAPS PharmSciTech 2018, 19, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Seyedhassantehrani, N.; Karimi, R.; Tavoosidana, G.; Amani, A. Concurrent study of stability and cytotoxicity of a novel nanoemulsion system—An artificial neural networks approach. Pharm. Dev. Technol. 2017, 22, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Lu, J.; Jin, X.; Wang, Z.; Sun, Y.; Gao, D.; Li, X.; Liu, R. Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: Characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation. Colloids Surf. B 2018, 172, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Mendyk, A.; Güres, S.; Jachowicz, R.; Szlęk, J.; Polak, S.; Wiśniowska, B.; Kleinebudde, P. From heuristic to mathematical modeling of drugs dissolution profiles: Application of artificial neural networks and genetic programming. Comput. Math. Methods Med. 2015, 2015, 863874. [Google Scholar] [CrossRef] [PubMed]
- Barmpalexis, P.; Karagianni, A.; Karasavvaides, G.; Kachrimanis, K. Comparison of multi-linear regression, particle swarm optimization artificial neural networks and genetic programming in the development of mini-tablets. Int. J. Pharm. 2018, 551, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Hashad, R.A.; Ishak, R.A.; Fahmy, S.; Mansour, S.; Geneidi, A.S. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. Int. J. Biol. Macromol. 2016, 86, 50–58. [Google Scholar] [CrossRef]
- de Matas, M.; Shao, Q.; Silkstone, V.L.; Chrystyn, H. Evaluation of an in vitro in vivo correlation for nebulizer delivery using artificial neural networks. J. Pharm. Sci. 2007, 96, 3293–3303. [Google Scholar] [CrossRef]
- Parojcic, J.; Ibric, S.; Djuric, Z.; Jovanovic, M.; Corrigan, O.I. An investigation into the usefulness of generalized regression neural network analysis in the development of level A in vitro-in vivo correlation. Eur. J. Pharm. Sci. 2007, 30, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Manda, A.; Walker, R.B.; Khamanga, S.M.M. An artificial neural network approach to predict the effects of formulation and process variables on prednisone release from a multipartite system. Pharmaceutics 2019, 11, 109. [Google Scholar] [CrossRef] [Green Version]
- Khani, S.; Abbasi, S.; Keyhanfar, F.; Amani, A. Use of artificial neural networks for analysis of the factors affecting particle size in mebudipine nanoemulsion. J. Biomol. Struct. Dyn. 2019, 37, 3162–3167. [Google Scholar] [CrossRef]
- Arabzadeh, V.; Sohrabi, M.R.; Goudarzi, N.; Davallo, M. Using artificial neural network and multivariate calibration methods for simultaneous spectrophotometric analysis of Emtricitabine and Tenofovir alafenamide fumarate in pharmaceutical formulation of HIV drug. Spectrochim. Acta Part A 2019, 215, 266–275. [Google Scholar] [CrossRef]
- Zawbaa, H.M.; Szlek, J.; Grosan, C.; Jachowicz, R.; Mendyk, A. Computational intelligence modeling of the macromolecules release from PLGA microspheres-focus on feature selection. PLoS ONE 2016, 11, e0157610. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.R.; Varshosaz, J.; Fathi, M. Preparation of agar nanospheres: Comparison of response surface and artificial neural network modeling by a genetic algorithm approach. Carbohydr. Polym. 2015, 122, 314–320. [Google Scholar] [CrossRef]
- Barmpalexis, P.; Kachrimanis, K.; Malamataris, S. Statistical moments in modelling of swelling, erosion and drug release of hydrophilic matrix-tablets. Int. J. Pharm. 2018, 540, 1–10. [Google Scholar] [CrossRef]
- Saad, A.S.; AlAlamein, A.M.A.; Galal, M.M.; Zaazaa, H.E. Traditional versus advanced chemometric models for the impurity profiling of paracetamol and chlorzoxazone: Application to pure and pharmaceutical dosage forms. Spectrochim. Acta Part A 2018, 205, 376–380. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Atyabi, F.; Dinarvand, R. The significance of artificial intelligence in drug delivery system design. Adv. Drug Deliv. Rev. 2019, 151, 169–190. [Google Scholar] [CrossRef]
- Reis, M.A.A.; Sinisterra, R.D.; Belchior, J.C. An alternative approach based on artificial neural networks to study controlled drug release. J. Pharm. Sci. 2004, 93, 418–430. [Google Scholar] [CrossRef]
- Leane, M.M.; Cumming, I.; Corrigan, O.I. The use of artificial neural networks for the selection of the most appropriate formulation and processing variables in order to predict the in vitro dissolution of sustained release minitablets. AAPS PharmSciTech 2003, 4, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Sophocleous, A.M.; Desai, K.-G.H.; Mazzara, J.M.; Tong, L.; Cheng, J.-X.; Olsen, K.F.; Schwendeman, S.P. The nature of peptide interactions with acid end-group PLGAs and facile aqueous-based microencapsulation of therapeutic peptides. J. Control. Release 2013, 172, 662–670. [Google Scholar] [CrossRef] [Green Version]
- Andhariya, J.V.; Jog, R.; Shen, J.; Choi, S.; Burgess, D.J. Development of Level A in vitro-in vivo correlations for peptide loaded PLGA microspheres. J. Control. Release 2019, 308, 13. [Google Scholar] [CrossRef]
- Pishnamazi, M.; Ismail, H.Y.; Shirazian, S.; Iqbal, J.; Walker, G.M.; Collins, M.N. Application of lignin in controlled release: Development of predictive model based on artificial neural network for API release. Cellulose 2019, 26, 6165–6178. [Google Scholar] [CrossRef]
- Takahara, J.; Takayama, K.; Nagai, T. Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations. J. Control. Release 1997, 49, 11–20. [Google Scholar] [CrossRef]
- Gueres, S.; Mendyk, A.; Jachowicz, R.; Dorozynski, P.; Kleinebudde, P. Application of artificial neural networks (ANNs) and genetic programming (GP) for prediction of drug release from solid lipid matrices. Int. J. Pharm. 2012, 436, 877–879. [Google Scholar] [CrossRef]
- Chansanroj, K.; Petrovic, J.; Ibric, S.; Betz, G. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks. Eur. J. Pharm. Sci. 2011, 44, 321–331. [Google Scholar] [CrossRef]
- Aktas, E.; Eroglu, H.; Kockan, U.; Oner, L. Systematic development of pH-independent controlled release tablets of carvedilol using central composite design and artificial neural networks. Drug Dev. Ind. Pharm. 2013, 39, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Shirazian, S.; Kuhs, M.; Darwish, S.; Croker, D.; Walker, G.M. Artificial neural network modelling of continuous wet granulation using a twin-screw extruder. Int. J. Pharm. 2017, 521, 102–109. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Dong, H.-Y.; Peng, B.; Liu, H.-F.; Li, C.-L.; Liang, M.; Pan, W.-S. Design of an expert system for the development and formulation of push-pull osmotic pump tablets containing poorly water-soluble drugs. Int. J. Pharm. 2011, 410, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Lefnaoui, S.; Rebouh, S.; Bouhedda, M.; Yahoum, M.M.; Hanini, S. Artificial neural network modeling of sustained antihypertensive drug delivery using polyelectrolyte complex based on carboxymethyl-kappa-carrageenan and chitosan as prospective carriers. In Proceedings of the 2018 International Conference on Applied Smart Systems (ICASS), Medea, Algeria, 24–25 November 2018. [Google Scholar]
- Peh, K.K.; Lim, C.P.; Quek, S.S.; Khoh, K.H. Use of artificial neural networks to predict drug dissolution profiles and evaluation of network performance using similarity factor. Pharm. Res. 2000, 17, 1384–1388. [Google Scholar] [CrossRef] [PubMed]
- Mircioiu, C.; Voicu, V.; Anuta, V.; Tudose, A.; Celia, C.; Paolino, D.; Fresta, M.; Sandulovici, R.; Mircioiu, I. Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics 2019, 11, 140. [Google Scholar] [CrossRef] [Green Version]
- Nagy, B.; Petra, D.; Galata, D.L.; Démuth, B.; Borbás, E.; Marosi, G.; Nagy, Z.K.; Farkas, A. Application of artificial neural networks for process analytical technology-based dissolution testing. Int. J. Pharm. 2019, 567, 118464. [Google Scholar] [CrossRef]
- Obeid, S.; Madzarevic, M.; Krkobabic, M.; Ibric, S. Predicting drug release from diazepam FDM printed tablets using deep learning approach: Influence of process parameters and tablet surface/volume ratio. Int. J. Pharm. 2021, 601, 120507. [Google Scholar] [CrossRef]
- Brahima, S.; Boztepe, C.; Kunkul, A.; Yuceer, M. Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm-co-AAc) IPN hydrogels using response surface methodology and artificial neural networks. Mater. Sci. Eng. C 2017, 75, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Goh, W.Y.; Lim, C.P.; Peh, K.K. Predicting drug dissolution profiles with an ensemble of boosted neural networks: A time series approach. IEEE Trans. Neural Netw. 2003, 14, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, J.; Ibric, S.; Betz, G.; Parojcic, J.; Duric, Z. Application of dynamic neural networks in the modeling of drug release from polyethylene oxide matrix tablets. Eur. J. Pharm. Sci. 2009, 38, 172–180. [Google Scholar] [CrossRef]
- Goh, W.Y.; Lim, C.P.; Peh, K.K.; Subari, K. Application of a recurrent neural network to prediction of drug dissolution profiles. Neural Computi. Appl. 2002, 10, 311–317. [Google Scholar] [CrossRef]
- Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Petrović, J.; Ibrić, S.; Betz, G.; Đurić, Z. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees. Int. J. Pharm. 2012, 428, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Husseini, G.A.; Mjalli, F.S.; Pitt, W.G.; Abdel-Jabbar, N.M. Using artificial neural networks and model predictive control to optimize acoustically assisted doxorubicin release from polymeric micelles. Technol. Cancer Res. Treat. 2009, 8, 479–488. [Google Scholar] [CrossRef]
- Moussa, H.G.; Husseini, G.A.; Abel-Jabbar, N.; Ahmad, S.E. Use of model predictive control and artificial neural networks to optimize the ultrasonic release of a model drug from liposomes. IEEE Trans. Nanobiosci. 2017, 16, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Amasya, G.; Aksu, B.; Badilli, U.; Onay-Besikci, A.; Tarimci, N. QbD guided early pharmaceutical development study: Production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int. J. Pharm. 2019, 563, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, H.; Bernick, J.; Prasad, D.; Masand, V. The role of artificial neural networks on target validation in drug discovery and development. In Artificial Neural Network for Drug Design, Delivery and Disposition; Puri, M., Pathak, Y., Sutariya, V.K., Tipparaju, S., Moreno, W., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 15–27. [Google Scholar] [CrossRef]
- Li, Y.; Abbaspour, M.R.; Grootendorst, P.V.; Rauth, A.M.; Wu, X.Y. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology. Eur. J. Pharm. Biopharm. 2015, 94, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Takayama, K.; Fujikawa, M.; Obata, Y.; Morishita, M. Neural network based optimization of drug formulations. Adv. Drug Deliv. Rev. 2003, 55, 1217–1231. [Google Scholar] [CrossRef]
- Huang, J.; Kaul, G.; Cai, C.; Chatlapalli, R.; Hernandez-Abad, P.; Ghosh, K.; Nagi, A. Quality by design case study: An integrated multivariate approach to drug product and process development. Int. J. Pharm. 2009, 382, 23–32. [Google Scholar] [CrossRef]
- Elbadawi, M.; Muniz Castro, B.; Gavins, F.K.H.; Ong, J.J.; Gaisford, S.; Perez, G.; Basit, A.W.; Cabalar, P.; Goyanes, A. M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines. Int. J. Pharm. 2020, 590, 119837. [Google Scholar] [CrossRef]
- Barmpalexis, P.; Kanaze, F.I.; Kachrimanis, K.; Georgarakis, E. Artificial neural networks in the optimization of a nimodipine controlled release tablet formulation. Eur. J. Pharm. Biopharm. 2010, 74, 316–323. [Google Scholar] [CrossRef]
- Martarelli, D.; Casettari, L.; Shalaby, K.S.; Soliman, M.E.; Cespi, M.; Bonacucina, G.; Fagioli, L.; Perinelli, D.R.; Lam, J.K.W.; Palmieri, G.F. Optimization of melatonin dissolution from extended release matrices using artificial neural networking. Curr. Drug Deliv. 2016, 13, 565–573. [Google Scholar] [CrossRef]
- Khan, A.M.; Hanif, M.; Bukhari, N.I.; Shamim, R.; Rasool, F.; Rasul, S.; Shafique, S. Artificial neural network (ANN) approach to predict an optimized pH-dependent mesalamine matrix tablet. Drug Des. Dev. Ther. 2020, 14, 2435–2448. [Google Scholar] [CrossRef] [PubMed]
- Chaibva, F.; Burton, M.; Walker, R.B. Optimization of salbutamol sulfate dissolution from sustained release matrix formulations using an artificial neural network. Pharmaceutics 2010, 2, 182–198. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, N.; Yajnik, A.; Murthy, R.S. Artificial neural network as an alternative to multiple regression analysis in optimizing formulation parameters of cytarabine liposomes. AAPS PharmSciTech 2004, 5, E4. [Google Scholar] [CrossRef] [PubMed]
- Hussein, R.R.S.; Ali, A.M.A.; Salem, H.F.; Abdelrahman, M.M.; Said, A.S.A.; Abdelrahim, M.E.A. In vitro/in vivo correlation and modeling of emitted dose and lung deposition of inhaled salbutamol from metered dose inhalers with different types of spacers in noninvasively ventilated patients. Pharm. Dev. Technol. 2017, 22, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Amasya, G.; Badilli, U.; Aksu, B.; Tarimci, N. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion—Solvent evaporation method. Eur. J. Pharm. Sci. 2016, 84, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Koletti, A.E.; Tsarouchi, E.; Kapourani, A.; Kontogiannopoulos, K.N.; Assimopoulou, A.N.; Barmpalexis, P. Gelatin nanoparticles for NSAID systemic administration: Quality by design and artificial neural networks implementation. Int. J. Pharm. 2020, 578, 119118. [Google Scholar] [CrossRef] [PubMed]
- Sansare, S.; Duran, T.; Mohammadiarani, H.; Goyal, M.; Yenduri, G.; Costa, A.; Xu, X.; O’Connor, T.; Burgess, D.; Chaudhuri, B. Artificial neural networks in tandem with molecular descriptors as predictive tools for continuous liposome manufacturing. Int. J. Pharm. 2021, 603, 120713. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Dorado, R.; Landin, M.; Altai, A.; Russo, P.; Aquino, R.P.; Del Gaudio, P. A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools. Int. J. Pharm. 2018, 538, 97–104. [Google Scholar] [CrossRef]
- Tijana Mihajlovic, S.I.; Mladenovic, A. Application of design of experiments and multilayer perceptron neural network in optimization of the spray-drying process. Dry. Technol. 2011, 29, 1638–1647. [Google Scholar] [CrossRef]
- Djuriš, J.; Medarević, D.; Krstić, M.; Vasiljević, I.; Mašić, I.; Ibrić, S. Design space approach in optimization of fluid bed granulation and tablets compression process. Sci. World J. 2012, 2012, 185085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Garcia, I.; Mangas-Sanjuan, V.; Merino-Sanjuan, M.; Bermejo, M. In vitro-in vivo correlations: General concepts, methodologies and regulatory applications. Drug Dev. Ind. Pharm. 2015, 41, 1935–1947. [Google Scholar] [CrossRef]
- Davanço, M.G.; Campos, D.R.; Carvalho, P.O. In vitro–In vivo correlation in the development of oral drug formulation: A screenshot of the last two decades. Int. J. Pharm. 2020, 580, 119210. [Google Scholar] [CrossRef]
- US FDA. Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlations; Center for Drug Evaluation and Research: Rockville, MD, USA, 1997.
- Fatouros, D.G.; Nielsen, F.S.; Douroumis, D.; Hadjileontiadis, L.J.; Mullertz, A. In vitro-in vivo correlations of self-emulsifying drug delivery systems combining the dynamic lipolysis model and neuro-fuzzy networks. Eur. J. Pharm. Biopharm. 2008, 69, 887–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; McCall, T.W.; Baichwal, A.R.; Meyer, M.C. The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms. J. Control. Release 1999, 59, 33–41. [Google Scholar] [CrossRef]
- de Matas, M.; Shao, Q.; Richardson, C.H.; Chrystyn, H. Evaluation of in vitro in vivo correlations for dry powder inhaler delivery using artificial neural networks. Eur. J. Pharm. Sci. 2008, 33, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Brier, M.E.; Zurada, J.M.; Aronoff, G.R. Neural network predicted peak and trough gentamicin concentrations. Pharm. Res. 1995, 12, 406–412. [Google Scholar] [CrossRef]
- Brier, M.E.; Aronoff, G.R. Application of artificial neural networks to clinical pharmacology. Int. J. Clin. Pharmacol. Ther. 1996, 34, 510–514. [Google Scholar] [CrossRef]
- Veng-Pedersen, P.; Modi, N.B. Application of neural networks to pharmacodynamics. J. Pharm. Sci. 1993, 82, 918–926. [Google Scholar] [CrossRef]
- Iwata, H.; Matsuo, T.; Mamada, H.; Motomura, T.; Matsushita, M.; Fujiwara, T.; Kazuya, M.; Handa, K. Prediction of total drug clearance in humans using animal data: Proposal of a multimodal learning method based on deep learning. J. Pharm. Sci. 2021, 110, 1834–1841. [Google Scholar] [CrossRef]
- Hussain, A.S.; Johnson, R.D.; Vachharajani, N.N.; Ritschel, W.A. Feasibility of developing a neural network for prediction of human pharmacokinetic parameters from animal data. Pharm. Res. 1993, 10, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.; Thatai, P.; Sapra, B. Surging footprints of mathematical modeling for prediction of transdermal permeability. Asian J. Pharm. Sci. 2017, 12, 299–325. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, F.; Hashida, M. Mechanistic and empirical modeling of skin permeation of drugs. Adv. Drug Deliv. Rev. 2003, 55, 1185–1199. [Google Scholar] [CrossRef]
- Lee, Y.; Khemka, A.; Yoo, F.-W.; Lee, C.H. Assessment of diffusion coefficient from mucoadhesive barrier devices using artificial neural networks. Int. J. Pharm. 2008, 351, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Amani, A.; York, P.; Chrystyn, H.; Clark, B.J.; Do, D.Q. Determination of factors controlling the particle size in nanoemulsions using Artificial Neural Networks. Eur. J. Pharm. Sci. 2008, 35, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Mendyk, A.; Kleinebudde, P.; Thommes, M.; Yoo, A.; Szlek, J.; Jachowicz, R. Analysis of pellet properties with use of artificial neural networks. Eur. J. Pharm. Sci. 2010, 41, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Jara, M.O.; Catalan-Figueroa, J.; Landin, M.; Morales, J.O. Finding key nanoprecipitation variables for achieving uniform polymeric nanoparticles using neurofuzzy logic technology. Drug Deliv. Transl. Res. 2018, 8, 1797–1806. [Google Scholar] [CrossRef] [PubMed]
- Louis, B.; Agrawal, V.K.; Khadikar, P.V. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses. Eur. J. Med. Chem. 2010, 45, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Lu, S.; Ni, B.; Zeng, X.; Tan, Y.; Chen, Y.D.; Zhao, H. Improved prediction of aqueous solubility of novel compounds by going deeper with deep learning. Front. Oncol. 2020, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Ajdarić, J.; Ibrić, S.; Pavlović, A.; Ignjatović, L.; Ivković, B. Prediction of drug stability using deep learning approach: Case study of esomeprazole 40 mg freeze-dried powder for solution. Pharmaceutics 2021, 13, 829. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Xiong, H.; Ye, Z.; Yang, Y.; Huang, T.; Jing, Q.; Lu, J.; Pan, H.; Ren, F.; Ouyang, D. Predicting physical stability of solid dispersions by machine learning techniques. J. Control. Release 2019, 311, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Gentiluomo, L.; Roessner, D.; Frieß, W. Application of machine learning to predict monomer retention of therapeutic proteins after long term storage. Int. J. Pharm. 2020, 577, 119039. [Google Scholar] [CrossRef]
- Ebube, N.K.; Owusu-Ababio, G.; Adeyeye, C.M. Preformulation studies and characterization of the physicochemical properties of amorphous polymers using artificial neural networks. Int. J. Pharm. 2000, 196, 27–35. [Google Scholar] [CrossRef]
- Akbari Hasanjani, H.R.; Sohrabi, M.R. Artificial neural networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid. Iran. J. Pharm. Res. 2017, 16, 478–489. [Google Scholar]
- Agatonovic-Kustrin, S.; Glass, B.D.; Wisch, M.H.; Alany, R.G. Prediction of a stable microemulsion formulation for the oral delivery of a combination of antitubercular drugs using ANN methodology. Pharm. Res. 2003, 20, 1760–1765. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Alany, R.G. Role of genetic algorithms and artificial neural networks in predicting the phase behavior of colloidal delivery systems. Pharm. Res. 2001, 18, 1049–1055. [Google Scholar] [CrossRef]
- Richardson, C.J.; Mbanefo, A.; Aboofazeli, R.; Lawrence, M.J.; Barlow, D.J. Prediction of phase behavior in microemulsion systems using artificial neural networks. J. Colloid Interface Sci. 1997, 187, 296–303. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Morton, D.W.; Singh, R. Hybrid neural networks as tools for predicting the phase behavior of colloidal systems. Colloids Surf. A 2012, 415, 59–67. [Google Scholar] [CrossRef]
- McKinley, D.; Patel, S.K.; Regev, G.; Rohan, L.C.; Akil, A. Delineating the effects of hot-melt extrusion on the performance of a polymeric film using artificial neural networks and an evolutionary algorithm. Int. J. Pharm. 2019, 571, 118715. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Chung, J.I.; Kiang, Y.H.; Xiao, L.Y.; Hageman, M.J. The application of machine learning algorithms in understanding the effect of core/shell technique on improving powder compactability. Int. J. Pharm. 2019, 555, 368–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidovič, S.; Horvat, M.; Bizjak, A.; Planinšek, O.; Petek, B.; Burjak, M.; Peternel, L.; Parojčić, J.; Đuriš, J.; Ibrić, S.; et al. Elucidating molecular properties of kappa-carrageenan as critical material attributes contributing to drug dissolution from pellets with a multivariate approach. Int. J. Pharm. 2019, 566, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Damiati, S.A.; Martini, L.G.; Smith, N.W.; Lawrence, M.J.; Barlow, D.J. Application of machine learning in prediction of hydrotrope-enhanced solubilisation of indomethacin. Int. J. Pharm. 2017, 530, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Chiappini, F.A.; Teglia, C.M.; Forno, A.G.; Goicoechea, H.C. Modelling of bioprocess non-linear fluorescence data for at-line prediction of etanercept based on artificial neural networks optimized by response surface methodology. Talanta 2020, 210, 120664. [Google Scholar] [CrossRef] [PubMed]
- Sarmadi, M.; Behrens, A.M.; McHugh, K.J.; Contreras, H.T.M.; Tochka, Z.L.; Lu, X.; Langer, R.; Jaklenec, A. Modeling, design, and machine learning-based framework for optimal injectability of microparticle-based drug formulations. Sci. Adv. 2020, 6, eabb6594. [Google Scholar] [CrossRef]
- Labouta, H.I.; El-Khordagui, L.K.; Molokhia, A.M.; Ghaly, G.M. Multivariate modeling of encapsulation and release of an ionizable drug from polymer microspheres. J. Pharm. Sci. 2009, 98, 4603–4615. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, N.; Turkoglu, M.; Baykara, T. Modelling of the solvent evaporation method for the preparation of controlled release acrylic microspheres using neural networks. J. Microencapsul. 2000, 17, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, K.S.; Soliman, M.E.; Casettari, L.; Bonacucina, G.; Cespi, M.; Palmieri, G.F.; Sammour, O.A.; El Shamy, A.A. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int. J. Nanomed. 2014, 9, 4953–4964. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.J.; Wieslander, H.; Sabirsh, A.; Karlsson, J.; Malmsjö, V.; Hellander, A.; Wählby, C.; Spjuth, O. Deep-learning models for lipid nanoparticle-based drug delivery. Nanomedicine 2021, 16, 1097–1110. [Google Scholar] [CrossRef]
- Elbadawi, M.; McCoubrey, L.E.; Gavins, F.K.H.; Ong, J.J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv. Drug Deliv. Rev. 2021, 175, 113805. [Google Scholar] [CrossRef] [PubMed]
- Elbadawi, M.; McCoubrey, L.E.; Gavins, F.K.H.; Ong, J.J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Disrupting 3D printing of medicines with machine learning. Trends Pharmacol. Sci. 2021, 42, 745–757. [Google Scholar] [CrossRef]
- Youshia, J.; Ali, M.E.; Lamprecht, A. Artificial neural network based particle size prediction of polymeric nanoparticles. Eur. J. Pharm. Biopharm. 2017, 119, 333–342. [Google Scholar] [CrossRef]
- Kazemi, P.; Khalid, M.H.; Szlek, J.; Mirtic, A.; Reynolds, G.K.; Jachowicz, R.; Mendyk, A. Computational intelligence modeling of granule size distribution for oscillating milling. Powder Technol. 2016, 301, 1252–1258. [Google Scholar] [CrossRef]
- Damiati, S.A.; Rossi, D.; Joensson, H.N.; Damiati, S. Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics. Sci. Rep. 2020, 10, 19517. [Google Scholar] [CrossRef]
- Boso, D.P.; Lee, S.-Y.; Ferrari, M.; Schrefler, B.A.; Decuzzi, P. Optimizing particle size for targeting diseased microvasculature: From experiments to artificial neural networks. Int. J. Nanomed. 2011, 6, 1517–1526. [Google Scholar] [CrossRef] [Green Version]
Neural Network | Training Algorithm | Optimization Algorithm | Architecture (Input–Hidden–Output Layer) | Application | Reference |
---|---|---|---|---|---|
MLP | BP | BFGS | 2 input variables, 1 output variable | To assess the stability of meropenem in human plasma at −20 °C. | [42] |
MLP | BP | N/A | 4-4-3 | To investigate the correlation of various process variables affecting the properties of albumin-loaded chitosan nanoparticles. | [43] |
MLP | BP | /(best) | 101-7-1, 101-10-1 | To quantitatively analyze amoxicillin and flucloxacillin in the binary mixtures. | [44] |
MLP | BP | BR (best) | 3-5-53 | To predict the dissolution curve of extended release drotaverine tablets. | [45] |
MLP | BP | SCG | 15-5-1, 11-8-1 | To predict the apparent degree of supersaturation in two supersaturated lipid-based formulations. | [46] |
GRNN | N/A | N/A | 7-45-6-5 | To determine the key properties affecting granule size in the fluidized bed granulation process and to predict granule characteristics. | [47] |
MLP | BP | LM | 2-10-1 | To predict turbidity for determining particle size and the stability of emulsions. | [48] |
MLP | BP | GD | 3-4-1 | To predict the disintegration time of disintegrating oral tablets. | [49] |
GRNN | K-means | N/A | 2-9-5-4 | To predict the drug stability and shelf life of aspirin tablets at different storage temperatures (30 °C, 40 °C, 50 °C and 60 °C). | [32] |
MLP | BP | GD | 4-12-12-1 | To predict the temperature distribution of the fluidized bed for controlling the granulation step. | [50] |
MLP | Resilient BP | N/A | 3-3-3 | To optimize ketoprofen solid lipid nanoparticles gel for topical delivery. | [51] |
MLP | BP | N/A | 11-8-6-5 | To describe PLGA microsphere release profiles. | [52] |
MLP | BP | N/A | 3-13-11-1 | To predict whether tablet porosity is composed of microcrystalline cellulose and lactose. | [53] |
MLP | BP | GA | 4-11-1 | To predict the particle size of the nanoemulsion system and to investigate the factors influencing particle size. | [54] |
GRNN | K-means | N/A | 2-10-6-5 | To optimize the drug release behavior of extended release diclofenac sodium pellets in vitro. | [35] |
MLP | BP | GA | 3-4-1 | To determinate fluoxetine concentration using the UV spectrophotometric method. | [55] |
MLP | BP | LM | 3-10-1 | To improve the key parameters affecting the size of a self-emulsifying drug delivery system (DDS). | [56] |
MLP | BP | BR | (4-103)-6-53 (best) | To predict the release profile of sustained release tablets in real time. | [57] |
MLP | BP | Step rule | 2-6-2 | To establish the IVIVC for osmotic release nifedipine tablets. | [58] |
GRNN | K-means | N/A | 2-27-2-1 | To predict the microemulsion phase boundaries in the quaternary system. | [37] |
MLP | BP | LM | 3-10-4 | To optimize the HPLC method to simultaneously analyze cyclosporin A and etodolac in solution, human plasma, nanocapsules and emulsions. | [59] |
MLP | BP | N/A | 3-5-3 | To select terbutaline sulfate nanogel formulation for transdermal delivery. | [60] |
DNN | BP | BGD | 10 layers (50 hidden neurons on each layer), 9 layers (30 hidden neurons on each layer) | To predict the dissolution/release characteristics of two formulations (fast disintegrating films and sustained release matrix tablets). | [19] |
MLP | BP | N/A | 2-3-1 | To capture the effects of gelatin and cholesterol incorporation in the sodium salicylate liposomes on EE. | [61] |
MLP | BP | GD | 9-50-50-50-50-1 (best) | To predict the impact of the structure and properties of inhaled dry powder components on fine particle fraction. | [62] |
MLP | BP | N/A | 4-8-8 | To optimize doxorubicin amphiphilic polymeric nanoformulations. | [63] |
MLP | BP | BFGS | 3-3-7 (best) | To optimize lamotrigine hydrogel formulation. | [64] |
MLP | BP | / and GA | 181-7-1, 181-10-1 and 72-3-1, 36-3-1 | To quantitatively analyze velpatasvir and sofosbuvir in the binary mixture. | [65] |
MLP | BP | SCGD | 2-4-2 | To study the impact of aprepitant liquisolid formulation variables on dissolution performances. | [66] |
MLP | BP | N/A | 3-5-2 | To investigate the effects of changes in nanoemulsion formulation on stability and cells viability. | [67] |
MLP | BP | GA | 3-9-1 | To optimize ophthalmic pilocarpine hydrochloride flexible nano-liposomes. | [68] |
MLP | BP | N/A | 2-20-10-1 | To select the crucial variables affecting drug dissolution in the solid lipid extrudates. | [69] |
MLP | PSO (best) | N/A | 7-4-8 | To develop mini-tablets preformulation. | [70] |
MLP | BP | LM | 3-7-1 | To determinate the parameters controlling sodium tripolyphosphate nanoparticles size and yield. | [71] |
MLP | BP | N/A | 3-2-1 | To model the IVIVC for inhaled salbutamol administered via nebulizer. | [72] |
GRNN | N/A | N/A | 8-8-16-15 | To model the IVIVC for a sustained release paracetamol matrix tablet. | [73] |
GRNN | K-means | N/A | 2-10-7-6 | To predict the release behavior of extended release aspirin tablets in vitro | [21] |
MLP | BP | BFGS | 4-6-6 | To evaluate the influence of various factors on the release behavior of a prednisone multiple-unit pellet system. | [74] |
MLP | BP | N/A | 3-1-1 | To determine the key elements influencing the particle size of mebudipine nanoemulsion. | [75] |
MLP | BP | LM (best) | N/A | To predict the concentrations of emtricitabine and tenofovir alafenamide fumarate using a spectrophotometry technique. | [76] |
Monmlp, DNN | N/A | LASSO | N/A | To screen the critical quality attributes of PLGA and minimize the prediction error of PLGA microspheres release profiles. | [77] |
MLP | BP | GA | 4 input variables, 5 output variables | To optimize the manufacturing process of Bupropione HCl-loaded agar nanospheres. | [78] |
MLP | BP | SCGD | 4-4-5, 4-4-3 | To predict the swelling and erosion steps of nimodipine hydrophilic matrix tablets using a conventional model and statistical moment model. | [79] |
MLP | BP | LM (best) | 106-8-7 | To determinate paracetamol and chlorzoxazone concentrations with their five process-related impurities using a UV-spectrophotometer. | [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Di, J.; Wang, D.; Dai, X.; Hua, Y.; Gao, X.; Zheng, A.; Gao, J. State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation. Pharmaceutics 2022, 14, 183. https://doi.org/10.3390/pharmaceutics14010183
Wang S, Di J, Wang D, Dai X, Hua Y, Gao X, Zheng A, Gao J. State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation. Pharmaceutics. 2022; 14(1):183. https://doi.org/10.3390/pharmaceutics14010183
Chicago/Turabian StyleWang, Shan, Jinwei Di, Dan Wang, Xudong Dai, Yabing Hua, Xiang Gao, Aiping Zheng, and Jing Gao. 2022. "State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation" Pharmaceutics 14, no. 1: 183. https://doi.org/10.3390/pharmaceutics14010183
APA StyleWang, S., Di, J., Wang, D., Dai, X., Hua, Y., Gao, X., Zheng, A., & Gao, J. (2022). State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation. Pharmaceutics, 14(1), 183. https://doi.org/10.3390/pharmaceutics14010183