Topically Applied Resiquimod versus Imiquimod as a Potential Adjuvant in Melanoma Treatment
Abstract
:1. Introduction
Imiquimod (IMQ) | Resiquimod (RSQ) | |
---|---|---|
Physicochemical properties | ||
Molecular weight (Da) | 240.30 | 314.38 |
Melting point (°C) | 292–294 | 190–193 |
Water solubility (mg/mL) | 0.247 | 0.312 |
LogP (Octanol-water) | 2.83 | 1.55 |
Anti-cancer related properties | ||
Target receptor | Toll-like receptor (TLR)-7 | TLR-7 and TLR-8 |
Pro-inflammatory activity | Yes | Yes (greater than IMQ by 10-fold) |
Tumor-selective direct pro-apoptotic activity in vivo and in vitro | Yes [22] | No [22] |
Effect on plasmacytoid dendritic cells (pDC) | Promotes pDC cytotoxic function against tumor cells [23] | Promotes pDC survival and viability [24] |
Antiangiogenic ability | Yes [23] | No available data |
Available topical (skin) formulation | Cream (Aldara™) | Gel [25] |
Uses in melanoma treatment | ||
Advantages | Has direct anti-cancer properties [22,23] Evidence of successful case reports (see Table 2) Established data on the mechanisms of treatments | More potent immune response activation [24,26,27] Better skin penetration than IMQ [28] Less severe side effects (i.e., safer) |
Disadvantages | Severe side effects reported [11,29] Limited skin penetration [30] Case report of de novo malignant melanoma arising after IMQ treatment [31] | Less known data on the therapeutic mechanism of treatment |
Case | Melanoma Type | Dosing Regimen | Results and Tumor-Free Status | Note | Ref. |
---|---|---|---|---|---|
1 | In situ lentigo malignant melanoma |
|
|
| [11] |
2 | Malignant melanoma (stage III, regional metastasis) |
|
|
| [12] |
3 | Malignant melanoma (stage III, regional metastasis) |
|
|
| [12] |
4 | Superficially spreading malignant melanoma |
|
|
| [6] |
5 | Superficially spreading malignant melanoma |
|
|
| [6] |
6 | Nodular malignant melanoma |
|
|
| [6] |
7 | Malignant melanoma in situ |
|
|
| [29] |
8 | Lentigo maligna melanoma |
|
|
| [13] |
9 | Lentigo maligna melanoma |
|
|
| [13] |
2. Skin Immunity
3. Imiquimod (IMQ)
3.1. General Information and Anti-Cancer Mechanisms
3.2. Case Studies of IMQ Cream in Melanoma Patients
3.3. Drawbacks of IMQ as a Topical Treatment for Melanoma and Future Perspectives
4. Resiquimod (RSQ)
4.1. Resiquimod (RSQ) Versus Imiquimod (IMQ)
4.2. RSQ as a Topical Formulation
4.3. RSQ in Melanoma Treatment: Pre-Clinical Studies
4.4. RSQ in Melanoma Treatment: Clinical Studies
4.5. RSQ in Melanoma Treatment: The Potential of Topical RSQ as a Treatment for Metastatic Melanoma
4.6. RSQ in Melanoma Treatment: Overview
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Cancer Society. Cancer Facts and Figures 2019. 2019. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html (accessed on 9 May 2019).
- Liu, Y.; Sheikh, M.S. Melanoma: Molecular pathogenesis and therapeutic management. Mol. Cell. Pharmacol. 2014, 6, 228. [Google Scholar] [PubMed]
- Greene, M.H. The genetics of hereditary melanoma and nevi. Cancer 1999, 86 (Suppl. 11), 2464–2477. [Google Scholar] [CrossRef]
- Balch, C.M.; Soong, S.-J.; Gershenwald, J.E.; Thompson, J.F.; Reintgen, D.S.; Urist, N.C.; McMasters, K.M.; Ross, M.I.; Kirkwood, J.M.; Atkins, M.B.; et al. Prognostic factors analysis of 17,600 melanoma patients: Validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol. 2001, 19, 3622–3634. [Google Scholar] [CrossRef]
- Barth, A.; Wanek, L.A.; Morton, D.L. Prognostic factors in 1,521 melanoma patients with distant metastases. J. Am. Coll. Surg. 1995, 181, 193–201. [Google Scholar]
- Bong, A.B.; Bonnekoh, B.; Franke, I.; Schön, M.P.; Ulrich, J.; Gollnick, H. Imiquimod, a topical immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology 2002, 205, 135–138. [Google Scholar] [CrossRef]
- Redondo, P.; del Olmo, J.; de Cerio, A.L.; Inoges, S.; Marquina, M.; Melero, I.; Bendandi, M. Imiquimod enhances the systemic immunity attained by local cryosurgery destruction of melanoma lesions. J. Investig. Dermatol. 2007, 127, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Van Zeijl, M.C.; Van Zeijl, M.C.; Van Den Eertwegh, A.J.; Haanen, J.B.; Wouters, M.W. (Neo) adjuvant systemic therapy for melanoma. Eur. J. Surg. Oncol. (EJSO) 2017, 43, 534–543. [Google Scholar] [CrossRef]
- Austin, E.; Mamalis, A.; Ho, D.; Jagdeo, J. Laser and light-based therapy for cutaneous and soft-tissue metastases of malignant melanoma: A systematic review. Arch. Dermatol. Res. 2017, 309, 229–242. [Google Scholar] [CrossRef]
- Najar, H.M.; Dutz, J.P. Topical TLR9 agonists induce more efficient cross-presentation of injected protein antigen than parenteral TLR9 agonists do. Eur. J. Immunol. 2007, 37, 2242–2256. [Google Scholar] [CrossRef]
- Michalopoulos, P.; Yawalkar, N.; Brönnimann, M.; Kappeler, A.; Braathen, L.R. Characterization of the cellular infiltrate during successful topical treatment of lentigo maligna with imiquimod. Br. J. Dermatol. 2004, 151, 903–906. [Google Scholar] [CrossRef]
- Wolf, I.H.; Smolle, J.; Binder, B.; Cerroni, L.; Richtig, E.; Kerl, H. Topical imiquimod in the treatment of metastatic melanoma to skin. Arch. Dermatol. 2003, 139, 273–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, A.M.; Russell-Jones, R. Amelanotic lentigo maligna managed with topical imiquimod as immunotherapy. J. Am. Acad. Dermatol. 2004, 50, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, J.M.; KiIbrahim, J.G.; Sosman, J.A.; Sondak, V.K.; Agarwala, S.S.; Ernstoff, M.S.; Rao, U. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: Results of intergroup trial E1694/S9512/C509801. J. Clin. Oncol. 2001, 19, 2370–2380. [Google Scholar] [CrossRef] [PubMed]
- Hoos, A.; Ibrahim, R.; Korman, A.; Abdallah, K.; Berman, D.; Shahabi, V.; Chin, K.; Canetta, R.; Humphrey, R. Development of Ipilimumab: Contribution to a New Paradigm for Cancer Immunotherapy. Semin. Oncol. 2010, 37, 533–546. [Google Scholar] [CrossRef]
- Specenier, P. Nivolumab in melanoma. Expert Rev. Anticancer Ther. 2016, 16, 1247–1261. [Google Scholar] [CrossRef]
- Sabado, R.L.; Pavlick, A.C.; Gnjatic, S.; Cruz, C.M.; Vengco, I.; Hasan, F.; Darvishian, F.; Chiriboga, L.; Holman, R.M.; Escalon, J.; et al. Phase I/II study of Resiquimod as an immunologic for NY-ESO-1 protein vaccination in patients with melanoma. J. Immunother. Cancer 2013, 1, P272. [Google Scholar] [CrossRef]
- Magnusson, B.M.; Anissimov, Y.G.; Cross, S.E.; Roberts, M.S. Molecular size as the main determinant of solute maximum flux across the skin. J. Investig. Dermatol. 2004, 122, 993–999. [Google Scholar] [CrossRef]
- Chandrashekar, N.; Rani, R.S. Physicochemical and pharmacokinetic parameters in drug selection and loading for transdermal drug delivery. Indian J. Pharm. Sci. 2008, 70, 94. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; et al. Phase I study of single-agent anti–programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 2010, 28, 3167. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef]
- Schön, M.P.; Wienrich, B.G.; Drewniok, C.; Bong, A.B.; Eberle, J.; Geilen, C.C.; Gollnick, H.; Schön, M. Death receptor-independent apoptosis in malignant melanoma induced by small-molecule immune response modifier imiquimod. J. Investig. Dermatol. 2004, 122, 1266–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aspord, C.; Tramcourt, L.; Leloup, C.; Molens, J.P.; Leccia, M.T.; Charles, J.; Plumas, J. Imiquimod inhibits melanoma development by promoting pDC cytotoxic functions and impeding tumor vascularization. J. Investig. Dermatol. 2014, 134, 2551–2561. [Google Scholar] [CrossRef] [PubMed]
- Gibson, S.J.; Lindh, J.M.; Riter, T.R.; Gleason, R.M.; Rogers, L.M.; Fuller, A.E.; Oesterich, J.L.; Gorden, K.B.; Qiu, X.; McKane, S.W.; et al. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell. Immunol. 2002, 218, 74–86. [Google Scholar] [CrossRef]
- Chang, B.A.; Chang, B.A.; Cross, J.L.; Najar, H.M.; Dutz, J.P. Topical resiquimod promotes priming of CTL to parenteral antigens. Vaccine 2009, 27, 5791–5799. [Google Scholar] [CrossRef] [PubMed]
- Caisová, V.; Vieru, A.; Kumžáková, Z.; Glaserová, S.; Husníková, H.; Vácová, N.; Krejčová, G.; Paďouková, L.; Jochmanová, I.; Wolf, K.I.; et al. Innate immunity based cancer immunotherapy: B16-F10 murine melanoma model. BMC Cancer 2016, 16, 940. [Google Scholar] [CrossRef]
- Xu, S.; Xu, S.; Koldovsky, U.; Xu, M.; Wang, D.; Fitzpatrick, E.; Son, G.; Koski, G.; Czerniecki, B.J. High-avidity antitumor T-cell generation by toll receptor 8–primed, myeloid-derived dendritic cells is mediated by IL-12 production. Surgery 2006, 140, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Sauder, D.N.; Smith, M.H.; Senta-McMillian, T.; Soria, I.; Meng, T.C. Randomized, single-blind, placebo-controlled study of topical application of the immune response modulator resiquimod in healthy adults. Antimicrob. Agents Chemother. 2003, 47, 3846–3852. [Google Scholar] [CrossRef] [PubMed]
- Ray, C.M.; Kluk, M.; Grin, C.M.; Grant-Kels, J.M. Successful treatment of malignant melanoma in situ with topical 5% imiquimod cream. Int. J. Dermatol. 2005, 44, 428–434. [Google Scholar] [CrossRef]
- Telò, I.; Pescina, S.; Padula, C.; Santi, P.; Nicoli, S. Mechanisms of imiquimod skin penetration. Int. J. Pharm. 2016, 511, 516–523. [Google Scholar] [CrossRef]
- Paul, S.P. Melanoma arising after imiquimod use. Case Rep. Med. 2014, 2014, 1–4. [Google Scholar] [CrossRef]
- Gibson, S.J.; Imbertson, L.M.; Wagner, T.L.; Testerman, T.L.; Reiter, M.J.; Miller, R.L.; Tomai, M.A. Cellular requirements for cytokine production in response to the immunomodulators imiquimod and S-27609. J. Interferon Cytokine Res. 1995, 15, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Palamara, F.; Meindl, S.; Holcmann, M.; Lührs, P.; Stingl, G.; Sibilia, M. Identification and characterization of pDC-like cells in normal mouse skin and melanomas treated with imiquimod. J. Immunol. 2004, 173, 3051–3061. [Google Scholar] [CrossRef] [PubMed]
- Wolf, I.H.; Cerroni, L.; Kodama, K.; Kerl, H. Treatment of Lentigo Maligna (Melanoma In Situ) With the Immune Response Modifier Imiquimod. JAMA Dermatol. 2005, 141, 510–514. [Google Scholar] [CrossRef]
- Jensen, T.O.; Schmidt, H.; Møller, H.J.; Donskov, F.; Høyer, M.; Sjoegren, P.; Christensen, I.J.; Steiniche, T. Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer 2012, 118, 2476–2485. [Google Scholar] [CrossRef] [PubMed]
- Chaput, N.; Conforti, R.; Viaud, S.; Spatz, A.; Zitvogel, L. The Janus face of dendritic cells in cancer. Oncogene 2008, 27, 5920–5931. [Google Scholar] [CrossRef]
- Lande, R.; Gilliet, M. Plasmacytoid dendritic cells: Key players in the initiation and regulation of immune responses. Ann. New York Acad. Sci. 2010, 1183, 89–103. [Google Scholar] [CrossRef]
- Rook, A.H.; Gelfand, J.M.; Wysocka, M.; Troxel, A.B.; Benoit, B.; Surber, C.; Elenitsas, R.; Buchanan, M.A.; Leahy, D.S.; Watanabe, R.; et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood 2015, 126, 1452–1461. [Google Scholar] [CrossRef]
- Gilliet, M.; Cao, W.; Liu, Y.-J. Plasmacytoid dendritic cells: Sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 2008, 8, 594. [Google Scholar] [CrossRef]
- Drobits, B.; Holcmann, M.; Amberg, N.; Swiecki, M.; Grundtner, R.; Hammer, M.; Colonna, M.; Sibilia, M. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J. Clin. Investig. 2012, 122, 575–585. [Google Scholar] [CrossRef]
- Vermi, W.; Riboldi, E.; Wittamer, V.; Gentili, F.; Luini, W.; Marrelli, S.; Vecchi, A.; Franssen, J.D.; Communi, D.; Massardi, L.; et al. Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J. Exp. Med. 2005, 201, 509–515. [Google Scholar] [CrossRef]
- Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8. Science 2004, 303, 1526–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caperton, C.; Berman, B. Safety, efficacy, and patient acceptability of imiquimod for topical treatment of actinic keratoses. Clin. Cosmet. Investig. Dermatol. 2011, 4, 35. [Google Scholar] [PubMed]
- Edwards, L.; Ferenczy, A.; Eron, L.; Baker, D.; Owens, M.L.; Fox, T.L.; Hougham, A.J.; Schmitt, K.A.; HPV Study Group. Self-administered topical 5% imiquimod cream for external anogenital warts. Arch. Dermatol. 1998, 134, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, M.; Dinehart, S.; Whiting, D.; Lee, P.K.; Tawfik, N.; Jorizzo, J.; Lee, J.H.; Fox, T.L. Imiquimod 5% cream for the treatment of actinic keratosis: Results from two phase III, randomized, double-blind, parallel group, vehicle-controlled trials. J. Am. Acad. Dermatol. 2004, 50, 714–721. [Google Scholar] [CrossRef]
- Coit, D.G.; Thompson, J.A.; Algazi, A.; Andtbacka, R.; Bichakjian, C.K.; Carson, W.E.; Daniels, G.A.; DiMaio, D.; Ernstoff, M.; Fields, R.C.; et al. Melanoma, version 2.2016, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2016, 14, 450–473. [Google Scholar] [CrossRef]
- Tio, D.C.; Van Montfrans, C.; Ruijter, C.G.; Hoekzema, R.; Bekkenk, M.W. Effectiveness of 5% topical imiquimod maligna treatment. Acta Derm. Venereol. 2019, 99, 884–888. [Google Scholar] [CrossRef]
- Naylor, M.F.; Crowson, N.; Kuwahara, R.; Teague, K.; Garcia, C.; Mackinnis, C.; Haque, R.; Odom, C.; Jankey, C.; Cornelison, R.L. Treatment of lentigo maligna with topical imiquimod. Br. J. Dermatol. 2003, 149, 66–69. [Google Scholar] [CrossRef]
- Suzuki, H.; Wang, B.; Shivji, G.M.; Toto, P.; Amerio, P.; Sauder, D.N.; Tomai, M.A.; Miller, R.L. Imiquimod, a topical immune response modifier, induces migration of Langerhans cells. J. Investig. Dermatol. 2000, 114, 135–141. [Google Scholar] [CrossRef]
- Kirkwood, J.M.; Ibrahim, J.G.; Sondak, V.K.; Ernstoff, M.S.; Ross, M. Interferon alfa-2a for melanoma metastases. Lancet 2002, 359, 978–979. [Google Scholar] [CrossRef]
- Manome, Y.; Suzuki, D.; Mochizuki, A.; Saito, E.; Sasa, K.; Yoshimura, K.; Inoue, T.; Takami, M.; Inagaki, K.; Funatsu, T.; et al. The inhibition of malignant melanoma cell invasion of bone by the TLR7 agonist R848 is dependent upon pro-inflammatory cytokines produced by bone marrow macrophages. Oncotarget 2018, 9, 29934. [Google Scholar] [CrossRef]
- Steinmann, A.; Funk, J.O.; Schuler, G.; von den Driesch, P. Topical imiquimod treatment of a cutaneous melanoma metastasis. J. Am. Acad. Dermatol. 2000, 43, 555–556. [Google Scholar] [CrossRef] [PubMed]
- Ugurel, S.; Wagner, A.; Pföhler, C.; Tilgen, W.; Reinhold, U. Topical imiquimod eradicates skin metastases of malignant melanoma but fails to prevent rapid lymphogenous metastatic spread. Br. J. Dermatol. 2002, 147, 621–623. [Google Scholar] [CrossRef] [PubMed]
- Naylor, M.F.; Chen, W.R.; Teague, T.K.; Perry, L.A.; Nordquist, R.E. In situ photoimmunotherapy: A tumour-directed treatment for melanoma. Br. J. Dermatol. 2006, 155, 1287–1292. [Google Scholar] [CrossRef]
- Chicas-Sett, R.; Morales-Orue, I.; Rodriguez-Abreu, D.; Lara-Jimenez, P. Combining radiotherapy and ipilimumab induces clinically relevant radiation-induced abscopal effects in metastatic melanoma patients: A systematic review. Clin. Transl. Radiat. Oncol. 2018, 9, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Dagoglu, N.; Karaman, S.; Caglar, H.B.; Oral, E.N. Abscopal effect of radiotherapy in the immunotherapy era: Systematic review of reported cases. Cureus 2019, 11, e4103. [Google Scholar] [CrossRef] [PubMed]
- Royal, R.E.; Vence, L.M.; Wray, T.; Cormier, J.N.; Lee, J.E.; Gershenwald, J.E.; Ross, M.I.; Wargo, J.A.; Amaria, R.N.; Davies, M.A.; et al. A toll-like receptor agonist to drive melanoma regression as a vaccination adjuvant or by direct tumor application. Am. Soc. Clin. Oncol. 2017, 35, 9582. [Google Scholar] [CrossRef]
- Asselin-Paturel, C.; Brizard, G.; Chemin, K.; Boonstra, A.; O’Garra, A.; Vicari, A.; Trinchieri, G. Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J. Exp. Med. 2005, 201, 1157. [Google Scholar] [CrossRef]
- Gorden, K.K.; Qiu, X.X.; Binsfeld, C.C.; Vasilakos, J.P.; Alkan, S.S. Cutting edge: Activation of murine TLR8 by a combination of imidazoquinoline immune response modifiers and polyT oligodeoxynucleotides. J. Immunol. 2006, 177, 6584–6587. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Park, C.S.; Lee, Y.R.; Im, S.A.; Song, S.; Lee, C.K. Resiquimod, a TLR7/8 agonist, promotes differentiation of myeloid-derived suppressor cells into macrophages and dendritic cells. Arch. Pharmacal Res. 2014, 37, 1234–1240. [Google Scholar] [CrossRef]
- Peng, G.; Guo, Z.; Kiniwa, Y.; Voo, K.S.; Peng, W.; Fu, T.; Wang, D.Y.; Li, Y.; Wang, H.Y.; Wang, R.F. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 2005, 309, 1380–1384. [Google Scholar] [CrossRef]
- Tomai, M.A.; Imbertson, L.M.; Stanczak, T.L.; Tygrett, L.T.; Waldschmidt, T.J. The immune response modifiers imiquimod and R-848 are potent activators of B lymphocytes. Cell. Immunol. 2000, 203, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Vasilakos, J.P.; Smith, R.M.; Gibson, S.J.; Lindh, J.M.; Pederson, L.K.; Reiter, M.J.; Smith, M.H.; Tomai, M.A. Adjuvant activities of immune response modifier R-848: Comparison with CpG ODN. Cell. Immunol. 2000, 204, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Vasilakos, J.P.; Tomai, M.A. The use of Toll-like receptor 7/8 agonists as vaccine adjuvants. Expert Rev. Vaccines 2013, 12, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Marrack, P.; Kappler, J.; Mitchell, T. Type I interferons keep activated T cells alive. J. Exp. Med. 1999, 189, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Inaba, M.; Inaba, K.; Toki, J.; Sogo, S.; Iguchi, T.; Adachi, Y.; Yamaguchi, K.; Amakawa, R.; Valladeau, J.; et al. A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J. Immunol. 1999, 163, 1409–1419. [Google Scholar]
- Finkelman, F.D.; Holmes, J.; Katona, I.M.; Urban, J.F., Jr.; Beckmann, M.P.; Park, L.S.; Schooley, K.A.; Coffman, R.L.; Mosmann, T.R.; Paul, W.E. Lymphokine control of in vivo immunoglobulin isotype selection. Annu. Rev. Immunol. 1990, 8, 303–333. [Google Scholar] [CrossRef]
- Festenstein, H.; Garrido, F. Tumour immunology: MHC antigens and malignancy. Nature 1986, 322, 502–503. [Google Scholar] [CrossRef]
- Garrido, F.; Cabrera, T.; Concha, A.; Glew, S.; Ruiz-Cabello, F.; Stern, P.L. Natural history of HLA expression during tumour development. Immunol. Today 1993, 14, 491–499. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Rafiyan, M.R.; Atmaca, A.; Neumann, A.; Karbach, J.; Bender, A.; Weidmann, E.; Altmannsberger, H.M.; Knuth, A.; Jäger, E. Intratumoral T-Cell Infiltrates and MHC Class I Expression in Patients with Stage IV Melanoma. Cancer Res. 2005, 65, 3937–3941. [Google Scholar] [CrossRef]
- Hemmi, H.; Kaisho, T.; Takeuchi, O.; Sato, S.; Sanjo, H.; Hoshino, K.; Horiuchi, T.; Tomizawa, H.; Takeda, K.; Akira, S. Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway. Nat. Immunol. 2002, 3, 196–200. [Google Scholar] [CrossRef]
- Ye, J.; Ma, C.; Hsueh, E.C.; Dou, J.; Mo, W.; Liu, S.; Han, B.; Huang, Y.; Zhang, Y.; Varvares, M.A.; et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol. Med. 2014, 6, 1294–1311. [Google Scholar] [CrossRef]
- Gorden, K.B.; Gorski, K.S.; Gibson, S.J.; Kedl, R.M.; Kieper, W.C.; Qiu, X.; Tomai, M.A.; Alkan, S.S.; Vasilakos, J.P. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J. Immunol. 2005, 174, 1259–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattermann, K.; Picard, S.; Borgeat, M.; Leclerc, P.; Pouliot, M.; Borgeat, P. The Toll-like receptor 7/8-ligand resiquimod (R-848) primes human neutrophils for leukotriene B4, prostaglandin E2 and platelet-activating factor biosynthesis. FASEB J. 2007, 21, 1575–1585. [Google Scholar] [CrossRef]
- Iwasaki, A.; Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 2004, 5, 987. [Google Scholar] [CrossRef] [PubMed]
- Al-Mayahy, M.H.; Sabri, A.H.; Rutland, C.S.; Holmes, A.; McKenna, J.; Marlow, M.; Scurr, D.J. Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment. Eur. J. Pharm. Biopharm. 2019, 139, 33–43. [Google Scholar] [CrossRef]
- Ma, M.; Wang, J.; Guo, F.; Lei, M.; Tan, F.; Li, N. Development of nanovesicular systems for dermal imiquimod delivery: Physicochemical characterization and in vitro/in vivo evaluation. J. Mater. Sci. Mater. Med. 2015, 26, 192. [Google Scholar] [CrossRef]
- Argenziano, M.; Haimhoffer, A.; Bastiancich, C.; Jicsinszky, L.; Caldera, F.; Trotta, F.; Scutera, S.; Alotto, D.; Fumagalli, M.; Musso, T. In vitro enhanced skin permeation and retention of imiquimod loaded in β-cyclodextrin nanosponge hydrogel. Pharmaceutics 2019, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Klimuk, S.K.; Najar, H.M.; Semple, S.C.; Aslanian, S.; Dutz, J.P. Epicutaneous application of CpG oligodeoxynucleotides with peptide or protein antigen promotes the generation of CTL. J. Investig. Dermatol. 2004, 122, 1042–1049. [Google Scholar] [CrossRef]
- Kamphuis, E.; Junt, T.; Waibler, Z.; Forster, R.; Kalinke, U. Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood 2006, 108, 3253–3261. [Google Scholar] [CrossRef]
- Andrews, S.N.; Jeong, E.; Prausnitz, M.R. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm. Res. 2013, 30, 1099–1109. [Google Scholar] [CrossRef]
- Tomai, M.A.; Miller, R.L.; Lipson, K.E.; Kieper, W.C.; Zarraga, I.E.; Vasilakos, J.P. Resiquimod and other immune response modifiers as vaccine adjuvants. Expert Rev. Vaccines 2007, 6, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Gunzer, M.; Riemann, H.; Basoglu, Y.; Hillmer, A.; Weishaupt, C.; Balkow, S.; Benninghoff, B.; Ernst, B.; Steinert, M.; Scholzen, T.; et al. Systemic administration of a TLR7 ligand leads to transient immune incompetence due to peripheral-blood leukocyte depletion. Blood 2005, 106, 2424–2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janotová, T.; Jalovecká, M.; Auerová, M.; Švecová, I.; Bruzlová, P.; Maierová, V.; Kumžáková, Z.; Čunátová, Š.; Vlčková, Z.; Caisová, V.; et al. The use of anchored agonists of phagocytic receptors for cancer immunotherapy: B16-F10 murine melanoma model. PLoS ONE 2014, 9, e85222. [Google Scholar] [CrossRef]
- Waldmannová, E.; Caisová, V.; Fáberová, J.; Sváčková, P.; Kovářová, M.; Sváčková, D.; Kumžáková, Z.; Jačková, A.; Vácová, N.; Nedbalová, P.; et al. The use of Zymosan A and bacteria anchored to tumor cells for effective cancer immunotherapy: B16-F10 murine melanoma model. Int. Immunopharmacol. 2016, 39, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Sabado, R.L.; Pavlick, A.; Gnjatic, S.; Cruz, C.M.; Vengco, I.; Hasan, F.; Spadaccia, M.; Darvishian, F.; Chiriboga, L.; Holman, R.M.; et al. Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma. Cancer Immunol. Res. 2015, 3, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Lu, X.; Pua, E.C.; Zhong, P. The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model. Biochem. Biophys. Res. Commun. 2008, 375, 645–650. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, X.; Liu, Y.; Sankin, G.N.; Pua, E.C.; Morse, M.A.; Lyerly, H.K.; Clay, T.M.; Zhong, P. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. J. Transl. Med. 2007, 5, 34. [Google Scholar] [CrossRef]
- Stamell, E.F.; Wolchok, J.D.; Gnjatic, S.; Lee, N.Y.; Brownell, I. The Abscopal Effect Associated with a Systemic Anti-melanoma Immune Response. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 293–295. [Google Scholar] [CrossRef]
- Ribeiro Gomes, J.; Schmerling, R.A.; Haddad, C.K.; Racy, D.J.; Ferrigno, R.; Gil, E.; Zanuncio, P.; Buzaid, A.C. Analysis of the abscopal effect with anti-PD1 therapy in patients with metastatic solid tumors. J. Immunother. 2016, 39, 367–372. [Google Scholar] [CrossRef]
- Lee, Y.; Auh, S.L.; Wang, Y.; Burnette, B.; Wang, Y.; Meng, Y.; Beckett, M.; Sharma, R.; Chin, R.; Tu, T.; et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: Changing strategies for cancer treatment. Blood J. Am. Soc. Hematol. 2009, 114, 589–595. [Google Scholar] [CrossRef]
- Demaria, S.; Ng, B.; Devitt, M.L.; Babb, J.S.; Kawashima, N.; Liebes, L.; Formenti, S.C. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, A.M.; Simeone, E.; Giannarelli, D.; Muto, P.; Falivene, S.; Borzillo, V.; Giugliano, F.M.; Sandomenico, F.; Petrillo, A.; Curvietto, M.; et al. Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 2014, 3, e28780. [Google Scholar] [CrossRef] [PubMed]
- Dovedi, S.J.; Melis, M.H.; Wilkinson, R.W.; Adlard, A.L.; Stratford, I.J.; Honeychurch, J.; Illidge, T.M. Systemic delivery of a TLR7 agonist in combination with radiation primes durable antitumor immune responses in mouse models of lymphoma. Blood J. Am. Soc. Hematol. 2013, 121, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Boon, T.; Coulie, P.G.; Eynde, B.J.; Bruggen, P.V. Human T cell responses against melanoma. Annu. Rev. Immunol. 2006, 24, 175–208. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214. [Google Scholar] [CrossRef]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.J.; Hwu, W.-J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.; Weber, J.S.; et al. Safety and tumor responses with lambrolizumab (anti–PD-1) in melanoma. N. Engl. J. Med. 2013, 369, 134–144. [Google Scholar] [CrossRef]
- Mahoney, K.M.; Freeman, G.J.; McDermott, D.F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin. Ther. 2015, 37, 764–782. [Google Scholar] [CrossRef]
- Jacobs, J.F.; Nierkens, S.; Figdor, C.G.; Vries, J.M.D.; Adema, G.J. Regulatory T cells in melanoma: The final hurdle towards effective immunotherapy? Lancet Oncol. 2012, 13, e32–e42. [Google Scholar] [CrossRef]
- Nishikawa, H.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol. 2014, 27, 1–7. [Google Scholar] [CrossRef]
- Croci, D.O.; Fluck, M.F.Z.; Rico, M.J.; Rabinovich, G.A.; Scharovsky, O.G. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol. Immunother. 2007, 56, 1687–1700. [Google Scholar] [CrossRef] [PubMed]
NCT Number | Title | Melanoma Condition | Vaccine/Other Adjuvants Used | Phase | Status |
---|---|---|---|---|---|
NCT00470379 | Vaccine therapy and Resiquimod in Treating Patients with Stage II, Stage III, or Stage IV Melanoma That Has Been Completely Removed by Surgery | Completely removed stage II, III, and IV melanoma patients | NY-ESO-1b peptide vaccine | I | Completed |
NCT01748747 | Vaccine therapy and Resiquimod in Treating Patients with Stage II-IV, Melanoma That Has Been Completely Removed by Surgery | Completely removed stage II, III, and IV melanoma patients | Montanide ISA 51 VG, MART-1 antigen, Gag:267-274 peptide | I | Completed |
NCT02126579 | Phase I/II Trials of a Long Peptide Vaccine (LPV7) Plus TLR Agonists (MEL60) | Metastatic and mucosa melanoma | Peptide Vaccine (LPV7), Tetanus peptide, PolyICLC | I and II | Active |
NCT00948961 | A Study of CDX-1401 in Patients With Malignancies Known to Express NY-ESO-1 | Advanced melanoma | CDX-1401, Poly-ICLC | I and II | Completed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tambunlertchai, S.; Geary, S.M.; Salem, A.K. Topically Applied Resiquimod versus Imiquimod as a Potential Adjuvant in Melanoma Treatment. Pharmaceutics 2022, 14, 2076. https://doi.org/10.3390/pharmaceutics14102076
Tambunlertchai S, Geary SM, Salem AK. Topically Applied Resiquimod versus Imiquimod as a Potential Adjuvant in Melanoma Treatment. Pharmaceutics. 2022; 14(10):2076. https://doi.org/10.3390/pharmaceutics14102076
Chicago/Turabian StyleTambunlertchai, Supreeda, Sean M. Geary, and Aliasger K. Salem. 2022. "Topically Applied Resiquimod versus Imiquimod as a Potential Adjuvant in Melanoma Treatment" Pharmaceutics 14, no. 10: 2076. https://doi.org/10.3390/pharmaceutics14102076
APA StyleTambunlertchai, S., Geary, S. M., & Salem, A. K. (2022). Topically Applied Resiquimod versus Imiquimod as a Potential Adjuvant in Melanoma Treatment. Pharmaceutics, 14(10), 2076. https://doi.org/10.3390/pharmaceutics14102076