Controversial Interactions of Tacrolimus with Dietary Supplements, Herbs and Food
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Food–Drug Interactions
3.2. Herb–Drug Interactions
3.2.1. Panax ginseng
3.2.2. Green Tea
3.2.3. Echinacea purpurea
3.2.4. Hypericum perforatum
3.3. Dietary Supplements Interactions
3.3.1. Schisandra sphenanthera
3.3.2. Melatonin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, M.; Liu, M.; Zhang, W.; Ming, Y. Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. Curr. Drug Metab. 2018, 19, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Cusinato, D.A.; Lacchini, R.; Romao, E.A.; Moysés-Neto, M.; Coelho, E.B. Relationship of CYP3A5 genotype and ABCB1 diplotype to tacrolimus disposition in Brazilian kidney transplant patients. Br. J. Clin. Pharmacol. 2014, 78, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coto, E.; Tavira, B. Pharmacogenetics of calcineurin inhibitors in renal transplantation. Transplantation 2009, 88, S62–S67. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.E.; Dalhoff, K. Food-drug interactions. Drugs 2002, 62, 1481–1502. [Google Scholar] [CrossRef]
- Staatz, C.E.; Tett, S.E. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin. Pharmacokinet. 2004, 43, 623–653. [Google Scholar] [CrossRef]
- Miedziaszczyk, M.; Ciabach, P.; Szałek, E. The Effects of Bariatric Surgery and Gastrectomy on the Absorption of Drugs, Vitamins, and Mineral Elements. Pharmaceutics 2021, 13, 2111. [Google Scholar] [CrossRef]
- Zhai, X.; Chen, C.; Xu, X.; Ma, L.; Zhou, S.; Wang, Z.; Ma, L.; Zhao, X.; Zhou, Y.; Cui, Y. Marked change in blood tacrolimus concentration levels due to grapefruit in a renal transplant patient. J. Clin. Pharm. Ther. 2019, 44, 819–822. [Google Scholar] [CrossRef]
- Vanhove, T.; Annaert, P.; Kuypers, D.R. Clinical determinants of calcineurin inhibitor disposition: A mechanistic review. Drug Metab. Rev. 2016, 48, 88–112. [Google Scholar] [CrossRef]
- Christians, U.; Jacobsen, W.; Benet, L.Z.; Lampen, A. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin. Pharmacokinet. 2002, 41, 813–851. [Google Scholar] [CrossRef]
- Moore, L.W. Food, food components, and botanicals affecting drug metabolism in transplantation. J. Ren. Nutr. 2013, 23, e71–e73. [Google Scholar] [CrossRef]
- Liu, C.; Shang, Y.F.; Zhang, X.F.; Zhang, X.G.; Wang, B.; Wu, Z.; Liu, X.M.; Yu, L.; Ma, F.; Lv, Y. Co-administration of grapefruit juice increases bioavailability of tacrolimus in liver transplant patients: A prospective study. Eur. J. Clin. Pharmacol. 2009, 65, 881–885. [Google Scholar] [CrossRef]
- Egashira, K.; Sasaki, H.; Higuchi, S.; Ieiri, I. Food-drug interaction of tacrolimus with pomelo, ginger, and turmeric juice in rats. Drug Metab. Pharmacokinet. 2012, 27, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Egashira, K.; Fukuda, E.; Onga, T.; Yogi, Y.; Matsuya, F.; Koyabu, N.; Ohtani, H.; Sawada, Y. Pomelo-induced increase in the blood level of tacrolimus in a renal transplant patient. Transplantation 2003, 75, 1057. [Google Scholar] [CrossRef]
- Lin, S.P.; Chao, P.D.; Tsai, S.Y.; Wang, M.J.; Hou, Y.C. Citrus grandis peel increases the bioavailability of cyclosporine and tacrolimus, two important immunosuppressants, in rats. J. Med. Food 2011, 14, 1463–1468. [Google Scholar] [CrossRef]
- Theile, D.; Hohmann, N.; Kiemel, D.; Gattuso, G.; Barreca, D.; Mikus, G.; Haefeli, W.E.; Schwenger, V.; Weiss, J. Clementine juice has the potential for drug interactions-In vitro comparison with grapefruit and mandarin juice. Eur. J. Pharm. Sci. 2017, 97, 247–256. [Google Scholar] [CrossRef]
- Werba, J.P.; Misaka, S.; Giroli, M.G.; Shimomura, K.; Amato, M.; Simonelli, N.; Vigo, L.; Tremoli, E. Update of green tea interactions with cardiovascular drugs and putative mechanisms. J. Food Drug Anal. 2018, 26, S72–S77. [Google Scholar] [CrossRef] [Green Version]
- Nayeri, A.; Wu, S.; Adams, E.; Tanner, C.; Meshman, J.; Saini, I.; Reid, W. Acute Calcineurin Inhibitor Nephrotoxicity Secondary to Turmeric Intake: A Case Report. Transplant. Proc. 2017, 49, 198–200. [Google Scholar] [CrossRef]
- Vischini, G.; Niscola, P.; Stefoni, A.; Farneti, F. Increased plasma levels of tacrolimus after ingestion of green tea. Am. J. Kidney Dis. 2011, 58, 329. [Google Scholar] [CrossRef]
- Leino, A.D.; Emoto, C.; Fukuda, T.; Privitera, M.; Vinks, A.A.; Alloway, R.R. Evidence of a clinically significant drug-drug interaction between cannabidiol and tacrolimus. Am. J. Transplant. 2019, 19, 2944–2948. [Google Scholar] [CrossRef]
- Knops, N.; Levtchenko, E.; van den Heuvel, B.; Kuypers, D. From gut to kidney: Transporting and metabolizing calcineurin-inhibitors in solid organ transplantation. Int. J. Pharm. 2013, 452, 14–35. [Google Scholar] [CrossRef]
- Bekersky, I.; Dressler, D.; Mekki, Q.A. Effect of low- and high-fat meals on tacrolimus absorption following 5 mg single oral doses to healthy human subjects. J. Clin. Pharmacol. 2001, 41, 176–182. [Google Scholar] [CrossRef]
- Bekersky, I.; Dressler, D.; Mekki, Q.A. Effect of time of meal consumption on bioavailability of a single oral 5 mg tacrolimus dose. J. Clin. Pharmacol. 2001, 41, 289–297. [Google Scholar] [CrossRef]
- Dave, A.A.; Samuel, J. Suspected Interaction of Cranberry Juice Extracts and Tacrolimus Serum Levels: A Case Report. Cureus 2016, 8, e610. [Google Scholar] [CrossRef] [Green Version]
- Chuang, P.; Parikh, C.R.; Langone, A. Urinary tract infections after renal transplantation: A retrospective review at two US transplant centers. Clin. Transplant. 2005, 19, 230–235. [Google Scholar] [CrossRef]
- Guay, D.R. Cranberry and urinary tract infections. Drugs 2009, 69, 775–807. [Google Scholar] [CrossRef]
- Paine, M.F.; Oberlies, N.H. Clinical relevance of the small intestine as an organ of drug elimination: Drug-fruit juice interactions. Expert Opin. Drug Metab. Toxicol. 2007, 3, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Yang, X.; Ho, P.C.; Chan, S.Y.; Heng, P.W.; Chan, E.; Duan, W.; Koh, H.L.; Zhou, S. Herb-drug interactions: A literature review. Drugs 2005, 65, 1239–1282. [Google Scholar] [CrossRef]
- Izzo, A.A.; Ernst, E. Interactions between herbal medicines and prescribed drugs: An updated systematic review. Drugs 2009, 69, 1777–1798. [Google Scholar] [CrossRef]
- Lim, S.W.; Luo, K.; Quan, Y.; Cui, S.; Shin, Y.J.; Ko, E.J.; Chung, B.H.; Yang, C.W. The safety, immunological benefits, and efficacy of ginseng in organ transplantation. J. Ginseng Res. 2020, 44, 399–404. [Google Scholar] [CrossRef]
- Karmazyn, M.; Moey, M.; Gan, X.T. Therapeutic potential of ginseng in the management of cardiovascular disorders. Drugs 2011, 71, 1989–2008. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, M.; Feng, Y.; Zheng, H.; Lei, P.; Ma, X.; Han, X.; Guan, H.; Hou, D. Effect of ginseng polysaccharides on NK cell cytotoxicity in immunosuppressed mice. Exp. Ther. Med. 2016, 12, 3773–3777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.R.; Yang, C.S. Protective roles of ginseng against bacterial infection. Microb. Cell 2018, 5, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Cui, Y.; Ang, C.Y. Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly: St John’s wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 2005, 22, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, M.R.; Penzak, S.R. Pharmacokinetic Drug Interactions with Panax ginseng. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 545–557. [Google Scholar] [CrossRef]
- Campistol, J.M.; Grinyó, J.M. Exploring treatment options in renal transplantation: The problems of chronic allograft dysfunction and drug-related nephrotoxicity. Transplantation. 2001, 71, 42–51. [Google Scholar]
- Li, C.; Yang, C.W. The pathogenesis and treatment of chronic allograft nephropathy. Nat. Rev. Nephrol. 2009, 5, 513–519. [Google Scholar] [CrossRef]
- Ghee, J.Y.; Han, D.H.; Song, H.K.; Kim, W.Y.; Kim, S.H.; Yoon, H.E.; Choi, B.S.; Kim, Y.S.; Kim, J.; Yang, C.W. The role of macrophage in the pathogenesis of chronic cyclosporine-induced nephropathy. Nephrol. Dial. Transplant. 2008, 23, 4061–4069. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, Z. Current understanding of klotho. Ageing Res. Rev. 2009, 8, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.W.; Shin, Y.J.; Luo, K.; Quan, Y.; Cui, S.; Ko, E.J.; Chung, B.H.; Yang, C.W. Ginseng increases Klotho expression by FoxO3-mediated manganese superoxide dismutase in a mouse model of tacrolimus-induced renal injury. Aging 2019, 11, 5548–5569. [Google Scholar] [CrossRef]
- Emerling, B.M.; Weinberg, F.; Liu, J.L.; Mak, T.W.; Chandel, N.S. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proc. Natl. Acad. Sci. USA 2008, 105, 2622–2627. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.W.; Jin, L.; Luo, K.; Jin, J.; Yang, C.W. Ginseng extract reduces tacrolimus-induced oxidative stress by modulating autophagy in pancreatic beta cells. Lab. Investig. 2017, 97, 1271–1281. [Google Scholar] [CrossRef]
- Lim, S.W.; Hyoung, B.J.; Piao, S.G.; Doh, K.C.; Chung, B.H.; Yang, C.W. Chronic cyclosporine nephropathy is characterized by excessive autophagosome formation and decreased autophagic clearance. Transplantation 2012, 94, 218–225. [Google Scholar] [CrossRef]
- Lim, S.W.; Jin, L.; Jin, J.; Yang, C.W. Effect of Exendin-4 on Autophagy Clearance in Beta Cell of Rats with Tacrolimus-induced Diabetes Mellitus. Sci. Rep. 2016, 6, 29921. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.G.; Lim, S.W.; Doh, K.C.; Jin, L.; Heo, S.B.; Zheng, Y.F.; Bae, S.K.; Chung, B.H.; Li, C.; Yang, C.W. Combined treatment of tacrolimus and everolimus increases oxidative stress by pharmacological interactions. Transplantation 2014, 98, 22–28. [Google Scholar] [CrossRef]
- Doh, K.C.; Lim, S.W.; Piao, S.G.; Jin, L.; Heo, S.B.; Zheng, Y.F.; Bae, S.K.; Hwang, G.H.; Min, K.I.; Chung, B.H.; et al. Ginseng treatment attenuates chronic cyclosporine nephropathy via reducing oxidative stress in an experimental mouse model. Am. J. Nephrol. 2013, 37, 421–433. [Google Scholar] [CrossRef]
- Choi, K.T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin. 2008, 29, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Jhun, J.; Lee, J.; Byun, J.K.; Kim, E.K.; Woo, J.W.; Lee, J.H.; Kwok, S.K.; Ju, J.H.; Park, K.S.; Kim, H.Y.; et al. Red ginseng extract ameliorates autoimmune arthritis via regulation of STAT3 pathway, Th17/Treg balance, and osteoclastogenesis in mice and human. Mediat. Inflamm. 2014, 2014, 351856. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.; Ahn, G.; Park, E.; Ha, D.; Song, J.Y.; Jee, Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol. Lett. 2011, 138, 169–178. [Google Scholar] [CrossRef]
- Oh, G.N.; Son, S.W. Efficacy of korean red ginseng in the treatment of alopecia areata. J. Ginseng Res. 2012, 36, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Misaka, S.; Kawabe, K.; Onoue, S.; Werba, J.P.; Giroli, M.; Tamaki, S.; Kan, T.; Kimura, J.; Watanabe, H.; Yamada, S. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes. Drug Metab. Pharmacokinet. 2013, 28, 244–249. [Google Scholar] [CrossRef]
- Kitagawa, S.; Nabekura, T.; Kamiyama, S. Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells. J. Pharm. Pharmacol. 2004, 56, 1001–1005. [Google Scholar] [CrossRef]
- Satoh, T.; Fujisawa, H.; Nakamura, A.; Takahashi, N.; Watanabe, K. Inhibitory Effects of Eight Green Tea Catechins on Cytochrome P450 1A2, 2C9, 2D6, and 3A4 Activities. J. Pharm. Pharm. Sci. 2016, 19, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Lim, L.Y.; Chowbay, B. Herbal modulation of P-glycoprotein. Drug Metab. Rev. 2004, 36, 57–104. [Google Scholar] [CrossRef]
- Miedziaszczyk, M.; CIabach, P.; Grześkowiak, E.; Szałek, E. The Safety of a Vegan Diet During Pregnancy. Postepy Hig. Med. Dosw. 2021, 75, 417–425. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, R.; Yang, T.; Wei, Y.; Yang, C.; Zhou, J.; Liu, Y.; Shi, S. Inhibition effect of epigallocatechin-3-gallate on the pharmacokinetics of calcineurin inhibitors, tacrolimus, and cyclosporine A, in rats. Expert Opin. Drug Metab. Toxicol. 2021, 17, 121–134. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, J.; Chua, S.S.; Qatanani, M.; Han, Y.; Granata, R.; Moore, D.D. Induction of bilirubin clearance by the constitutive androstane receptor (CAR). Proc. Natl. Acad. Sci. USA 2003, 100, 4156–4161. [Google Scholar] [CrossRef] [Green Version]
- Kast, H.R.; Goodwin, B.; Tarr, P.T.; Jones, S.A.; Anisfeld, A.M.; Stoltz, C.M.; Tontonoz, P.; Kliewer, S.; Willson, T.M.; Edwards, P.A. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J. Biol. Chem. 2002, 277, 2908–2915. [Google Scholar] [CrossRef] [Green Version]
- Back, J.H.; Ryu, H.H.; Hong, R.; Han, S.A.; Yoon, Y.M.; Kim, D.H.; Hong, S.J.; Kim, H.L.; Chung, J.H.; Shin, B.C.; et al. Antiproteinuric Effects of Green Tea Extract on Tacrolimus-Induced Nephrotoxicity in Mice. Transplant. Proc. 2015, 47, 2032–2034. [Google Scholar] [CrossRef]
- Hisamura, F.; Kojima-Yuasa, A.; Kennedy, D.O.; Matsui-Yuasa, I. Protective effect of green tea extract and tea polyphenols against FK506-induced cytotoxicity in renal cells. Basic Clin. Pharmacol. Toxicol. 2006, 98, 192–196. [Google Scholar] [CrossRef]
- Hisamura, F.; Kojima-Yuasa, A.; Huang, X.; Kennedy, D.O.; Matsui-Yuasa, I. Synergistic effect of green tea polyphenols on their protection against FK506-induced cytotoxicity in renal cells. Am. J. Chin. Med. 2008, 36, 615–624. [Google Scholar] [CrossRef]
- Khuu, T.; Hickey, A.; Deng, M.C. Pomegranate-containing products and tacrolimus: A potential interaction. J. Heart Lung Transplant. 2013, 32, 272–274. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, M.I.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorski, J.C.; Huang, S.M.; Pinto, A.; Hamman, M.A.; Hilligoss, J.K.; Zaheer, N.A.; Desai, M.; Miller, M.; Hall, S.D. The effect of echinacea (Echinacea purpurea root) on cytochrome P450 activity in vivo. Clin. Pharmacol. Ther. 2004, 75, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Carrier, J.; Khan, I.A.; Edwards, D.J.; Shah, A. In vivo assessment of botanical supplementation on human cytochrome P450 phenotypes: Citrus aurantium, Echinacea purpurea, milk thistle, and saw palmetto. Clin. Pharmacol. Ther. 2004, 76, 428–440. [Google Scholar] [CrossRef]
- Gurley, B.J.; Swain, A.; Hubbard, M.A.; Williams, D.K.; Barone, G.; Hartsfield, F.; Tong, Y.; Carrier, D.J.; Cheboyina, S.; Battu, S.K. Clinical assessment of CYP2D6-mediated herb-drug interactions in humans: Effects of milk thistle, black cohosh, goldenseal, kava kava, St. John’s wort, and Echinacea. Mol. Nutr. Food Res. 2008, 52, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.W.; Serag, E.S.; Sneed, K.B.; Liang, J.; Chew, H.; Pan, S.Y.; Zhou, S.F. Clinical herbal interactions with conventional drugs: From molecules to maladies. Curr. Med. Chem. 2011, 18, 4836–4850. [Google Scholar] [CrossRef]
- Nicolussi, S.; Drewe, J.; Butterweck, V.; Schwabedissen, H.E.M.Z. Clinical relevance of St. John’s wort drug interactions revisited. Br. J. Pharmacol. 2020, 177, 1212–1226. [Google Scholar] [CrossRef]
- Dasgupta, A.; Tso, G.; Szelei-Stevens, K. St. John’s wort does not interfere with therapeutic drug monitoring of 12 commonly monitored drugs using immunoassays. J. Clin. Lab. Anal. 2006, 20, 62–67. [Google Scholar] [CrossRef]
- Mai, I.; Störmer, E.; Bauer, S.; Krüger, H.; Budde, K.; Roots, I. Impact of St John’s wort treatment on the pharmacokinetics of tacrolimus and mycophenolic acid in renal transplant patients. Nephrol. Dial. Transplant. 2003, 18, 819–822. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Chan, E.; Pan, S.Q.; Huang, M.; Lee, E.J. Pharmacokinetic interactions of drugs with St John’s wort. J. Psychopharmacol. 2004, 18, 262–276. [Google Scholar] [CrossRef]
- Hebert, M.F.; Park, J.M.; Chen, Y.L.; Akhtar, S.; Larson, A.M. Effects of St. John’s wort (Hypericum perforatum) on tacrolimus pharmacokinetics in healthy volunteers. J. Clin. Pharmacol. 2004, 44, 89–94. [Google Scholar] [CrossRef]
- Mannel, M. Drug interactions with St John’s wort: Mechanisms and clinical implications. Drug Saf. 2004, 27, 773–797. [Google Scholar] [CrossRef] [Green Version]
- Meier, B. Comparing phytopharmaceuticals: The example of St. John’s Wort. Adv. Ther. 2001, 18, 35–46. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, F.; Zheng, N.; Guo, M.; Bao, L.; Zhan, Y.; Zhang, M.; Zhao, Y.; Guo, W.; Ding, G. Wuzhi capsule (Schisandra sphenanthera extract) attenuates liver steatosis and inflammation during non-alcoholic fatty liver disease development. Biomed. Pharmacother. 2019, 110, 285–293. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, D.F. Analysis of Schisandra chinensis and Schisandra sphenanthera. J. Chromatogr. A 2009, 1216, 1980–1990. [Google Scholar] [CrossRef]
- Zhang, H.; Bu, F.; Li, L.; Jiao, Z.; Ma, G.; Cai, W.; Zhuang, X.; Lin, H.S.; Shin, J.G.; Xiang, X. Prediction of Drug-Drug Interaction between Tacrolimus and Principal Ingredients of Wuzhi Capsule in Chinese Healthy Volunteers Using Physiologically-Based Pharmacokinetic Modelling. Basic Clin. Pharmacol. Toxicol. 2018, 122, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Tao, X.; Di, P.; Yang, Y.; Li, J.; Qian, X.; Feng, J.; Chen, W. Effects of traditional Chinese medicine Wuzhi capsule on pharmacokinetics of tacrolimus in rats. Drug Metab. Dispos. 2013, 41, 1398–1403. [Google Scholar] [CrossRef]
- Xin, H.W.; Wu, X.C.; Li, Q.; Yu, A.R.; Zhu, M.; Shen, Y.; Su, D.; Xiong, L. Effects of Schisandra sphenanthera extract on the pharmacokinetics of tacrolimus in healthy volunteers. Br. J. Clin. Pharmacol. 2007, 64, 469–475. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Bu, F.; Zhang, H.; Wang, Q.; Tang, Z.; Yuan, J.; Lin, H.S.; Xiang, X. Investigation of the Impact of CYP3A5 Polymorphism on Drug-Drug Interaction between Tacrolimus and Schisantherin A/Schisandrin A Based on Physiologically-Based Pharmacokinetic Modeling. Pharmaceuticals 2021, 14, 198. [Google Scholar] [CrossRef]
- Qin, X.L.; Chen, X.; Wang, Y.; Xue, X.P.; Wang, Y.; Li, J.L.; Wang, X.D.; Zhong, G.P.; Wang, C.X.; Yang, H.; et al. In vivo to in vitro effects of six bioactive lignans of Wuzhi tablet (Schisandra sphenanthera extract) on the CYP3A/P-glycoprotein-mediated absorption and metabolism of tacrolimus. Drug Metab. Dispos. 2014, 42, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Yang, Z.Q.; Shi, Y.Y.; Ren, J.; Yang, C.L.; Wan, Z.L.; Bai, Y.J.; Luo, L.M.; Wang, L.L.; Li, Y. Effects of Wuzhi Capsules on Blood Concentration of Tacrolimus in Renal Transplant Recipients. Ann. Transplant. 2019, 24, 594–604. [Google Scholar] [CrossRef]
- Qin, X.L.; Bi, H.C.; Wang, C.X.; Li, J.L.; Wang, X.D.; Liu, L.S.; Chen, X.; Huang, M. Study of the effect of Wuzhi tablet (Schisandra sphenanthera extract) on tacrolimus tissue distribution in rat by liquid chromatography tandem mass spectrometry method. Biomed Chromatogr. 2010, 24, 399–405. [Google Scholar]
- Li, J.; Chen, S.; Qin, X.; Fu, Q.; Bi, H.; Zhang, Y.; Wang, X.; Liu, L.; Wang, C.; Huang, M. Wuzhi tablet (Schisandra sphenanthera Extract) is a Promising Tacrolimus-Sparing Agent for Renal Transplant Recipients Who are CYP3A5 Expressers: A Two-Phase Prospective Study. Drug Metab. Dispos. 2017, 45, 1114–1119. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.L.; Yu, T.; Li, L.J.; Wang, Y.; Gu, H.M.; Wang, Y.T.; Huang, M.; Bi, H.C. Effect of long-term co-administration of Wuzhi tablet (Schisandra sphenanthera extract) and prednisone on the pharmacokinetics of tacrolimus. Phytomedicine 2013, 20, 375–379. [Google Scholar] [CrossRef]
- Xin, H.W.; Li, Q.; Wu, X.C.; He, Y.; Yu, A.R.; Xiong, L.; Xiong, Y. Effects of Schisandra sphenanthera extract on the blood concentration of tacrolimus in renal transplant recipients. Eur. J. Clin. Pharmacol. 2011, 67, 1309–1311. [Google Scholar] [CrossRef]
- Chen, T.; Lin, M.; Lu, J. Hyperkalemia induced by tacrolimus combined with Wuzhi-capsule following renal transplantation: One case report. J. Clin. Rehabil. Tissue Eng. Res. 2011, 44, 8341–8343. [Google Scholar]
- Chen, L.; Yang, Y.; Wang, X.; Wang, C.; Lin, W.; Jiao, Z.; Wang, Z. Wuzhi Capsule Dosage Affects Tacrolimus Elimination in Adult Kidney Transplant Recipients, as Determined by a Population Pharmacokinetics Analysis. Pharmgenom. Pers. Med. 2021, 14, 1093–1106. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Chen, X.; Li, Z.P. Wuzhi capsule and haemoglobin influence tacrolimus elimination in paediatric kidney transplantation patients in a population pharmacokinetics analysis: A retrospective study. J. Clin. Pharm. Ther. 2019, 44, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Chen, X.; Fu, M.; Zheng, Q.S.; Xu, H.; Li, Z.P. Model extrapolation to a real-world dataset: Evaluation of tacrolimus population pharmacokinetics and drug interaction in pediatric liver transplantation patients. Xenobiotica 2020, 50, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, D.D.; Xu, H.; Li, Z.P. Population pharmacokinetics and pharmacogenomics of tacrolimus in Chinese children receiving a liver transplant: Initial dose recommendation. Transl. Pediatr. 2020, 9, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Yang, M.; Sun, Y.; Li, J.; Lu, Y.; Li, X. Population pharmacokinetic analysis of tacrolimus in Chinese cardiac transplant recipients. Eur. J. Hosp. Pharm. 2020, 27, e12–e18. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Zhou, H.; Cai, J.; Huang, J.; Zhang, J.; Shi, S.J.; Liu, Y.N.; Zhang, Y. Prediction of tacrolimus dosage in the early period after heart transplantation: A population pharmacokinetic approach. Pharmacogenomics 2019, 20, 21–35. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.D.; Xu, H.; Li, Z.P. Optimization of initial dosing scheme of tacrolimus in pediatric refractory nephrotic syndrome patients based on CYP3A5 genotype and coadministration with wuzhi-capsule. Xenobiotica 2020, 50, 606–613. [Google Scholar] [CrossRef]
- Lu, T.; Zhu, X.; Xu, S.; Zhao, M.; Huang, X.; Wang, Z.; Zhao, L. Dosage Optimization Based on Population Pharmacokinetic Analysis of Tacrolimus in Chinese Patients with Nephrotic Syndrome. Pharm. Res. 2019, 36, 45. [Google Scholar] [CrossRef]
- Sun, Z.; Ren, M.; Wu, Q.; Du, X. Co-administration of Wuzhi capsules and tacrolimus in patients with idiopathic membranous nephropathy: Clinical efficacy and pharmacoeconomics. Int. Urol. Nephrol. 2014, 46, 1977–1982. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, X.; Dong, L.; Ma, J.; Fan, X. Clinical observation on the effect of Wuzhi soft capsule on FK506 concentration in membranous nephropathy patients. Medicine 2019, 98, e18150. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.; Xu, H.; Li, Z. Initial dose optimization of tacrolimus for children with systemic lupus erythematosus based on the CYP3A5 polymorphism and coadministration with Wuzhi capsule. J. Clin. Pharm. Ther. 2020, 45, 309–317. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.D.; Xu, H.; Li, Z.P. Population pharmacokinetics model and initial dose optimization of tacrolimus in children and adolescents with lupus nephritis based on real-world data. Exp. Ther. Med. 2020, 20, 1423–1430. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Y.P.; Jiao, Z.; Zhao, C.B.; Wu, H.; Li, Z.R.; Cai, X.J.; Xi, J.Y. Population Pharmacokinetic Analysis of Tacrolimus in Adult Chinese Patients with Myasthenia Gravis: A Prospective Study. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 453–466. [Google Scholar] [CrossRef]
- Shrestha, B.M. Two Decades of Tacrolimus in Renal Transplant: Basic Science and Clinical Evidences. Exp. Clin. Transplant. 2017, 15, 1–9. [Google Scholar]
- Yang, C.C.; Sung, P.H.; Chiang, J.Y.; Chai, H.T.; Chen, C.H.; Chu, Y.C.; Li, Y.C.; Yip, H.K. Combined tacrolimus and melatonin effectively protected kidney against acute ischemia-reperfusion injury. FASEB J. 2021, 35, e21661. [Google Scholar] [CrossRef]
- Karabulut, A.B.; Ara, C. Melatonin ameliorates tacrolimus (FK-506)’s induced immunosupressive effect in rat liver. Transplant. Proc. 2009, 41, 1875–1877. [Google Scholar] [CrossRef]
- Ara, C.; Dirican, A.; Unal, B.; Bay Karabulut, A.; Piskin, T. The effect of melatonin against FK506-induced renal oxidative stress in rats. Surg. Innov. 2011, 18, 34–38. [Google Scholar] [CrossRef]
Databases: Cochrane, PubMed, Scopus | ||
---|---|---|
Stage | Action | Results |
I | key words (“tacrolimus” AND “interaction” AND “food” or “nutrients” or “ethanol” or “herb” or “herbal” or “dietary supplements”) | 125 |
II | independent verification and inclusive research by two authors inclusion criteria: the agents selected by the authors: grapefruit, pomelo, clementine, ginger, turmeric, pomegranate juice, Panax ginseng, green tea, St. John’s Wort, cranberry, Echinacea purpurea, melatonin and Schisandra sphenanthera extract | 105 |
III | due to the small number of studies in recent years, the time criterion has not been applied | 105 |
Food | Active Component | Relevant Metabolizing Enzymes/Transporters/Mechanism of Actions | Pharmacokinetics of Tacrolimus | Adverse Effects |
---|---|---|---|---|
Grapefruit | Furanocoumarins: bergamottin 6′7′-dihydroxybergamottin | Inhibition of intestinal CYP3A4 Inhibition of P-gp | Elevation of TAC serum level | Aggravation of TAC toxicity |
Pomelo | Naringin, Naringenin, Neohesperidin 6′7′-dihydroxybergamottin | Inhibition of intestinal CYP3A4 Inhibition of P-gp | Elevation of TAC serum level | Aggravation of TAC toxicity |
Clementine | - | Inhibition of CYP3A4 | Elevation of TAC serum level | Aggravation of TAC toxicity |
Turmeric | - | - | Elevation of TAC serum level | Aggravation of TAC toxicity |
Ginger | - | - | Elevation of TAC serum level | Aggravation of TAC toxicity |
Pomegranate | Quercetin | Inhibition of CYP3A4 | Elevation of TAC serum level | Aggravation of TAC toxicity |
Cranberry | - | Influence on CYPs | Inconclusive data | Inconclusive data |
Herb | Active Component | Relevant Metabolizing Enzymes/Transporters/Mechanism of Actions | Pharmacokinetics of Tacrolimus | Impact on Organism |
---|---|---|---|---|
Panax ginseng | Ginsenosides Glycosylated intestinal metabolites | Poor inhibition of CYP2D6; Poor inhibition of P-gp; Poor induction of CYP3A; Promotion of Klotho signalling pathway | Poor increase or lack of impact on TAC serum level | Poor or no aggravation of TAC toxicity, a decrease in oxidative stress with a reduction in TAC-induced nephrotoxicity |
Green tea | Catechins Theaflavins | Inhibition of CYPs; Inhibition of P-gp; Promotion of Klotho signalling pathway | Inconclusive data | A decrease in oxidative stress with a reduction in TAC-induced nephrotoxicity |
Echinacea purpurea | - | Inconclusive data | Inconclusive data | Inconclusive data |
Hypericum perforatum | Hyperforin Hypericin | Induction of CYP3A4; Induction of P-gp | A decrease in TAC serum level | Increased risk of transplant rejection |
Dietary Supplement | Active Component | Relevant Metabolizing Enzymes/Transporters/Mechanism of Actions | Pharmacokinetics of Tacrolimus | Impact on Organism |
---|---|---|---|---|
Schisandra sphenanthera | Schisantherin A (STA); Schisandrin A (SIA); Gomisin C; Schisandrin B; Gomisin A | Inhibition of CYP3A4; Inhibition of CYP3A5; Inhibition of P-gp | Elevation of TAC serum level | Exacerbation of TAC toxicity; Protective effect on the liver |
Melatonin | - | - | A decrease in oxidative stress, with a decreased risk TAC-induced nephrotoxicity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miedziaszczyk, M.; Bajon, A.; Jakielska, E.; Primke, M.; Sikora, J.; Skowrońska, D.; Idasiak-Piechocka, I. Controversial Interactions of Tacrolimus with Dietary Supplements, Herbs and Food. Pharmaceutics 2022, 14, 2154. https://doi.org/10.3390/pharmaceutics14102154
Miedziaszczyk M, Bajon A, Jakielska E, Primke M, Sikora J, Skowrońska D, Idasiak-Piechocka I. Controversial Interactions of Tacrolimus with Dietary Supplements, Herbs and Food. Pharmaceutics. 2022; 14(10):2154. https://doi.org/10.3390/pharmaceutics14102154
Chicago/Turabian StyleMiedziaszczyk, Miłosz, Aleksander Bajon, Ewelina Jakielska, Marta Primke, Jędrzej Sikora, Dagmara Skowrońska, and Ilona Idasiak-Piechocka. 2022. "Controversial Interactions of Tacrolimus with Dietary Supplements, Herbs and Food" Pharmaceutics 14, no. 10: 2154. https://doi.org/10.3390/pharmaceutics14102154
APA StyleMiedziaszczyk, M., Bajon, A., Jakielska, E., Primke, M., Sikora, J., Skowrońska, D., & Idasiak-Piechocka, I. (2022). Controversial Interactions of Tacrolimus with Dietary Supplements, Herbs and Food. Pharmaceutics, 14(10), 2154. https://doi.org/10.3390/pharmaceutics14102154