Development of Plant Protein Derived Tri Angular Shaped Nano Zinc Oxide Particles with Inherent Antibacterial and Neurotoxicity Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Materials
2.2. Preparation of Crude Perilla Protein
2.3. Biosynthesis of ZnO Nanoparticles
2.4. Characterization of ZnO Nanoparticles
2.5. Antimicrobial Activity
2.6. Evaluation of Cytotoxicity
2.7. Statistical Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, M.N.; Roy, N.; Mandal, D.; Begum, N.A. Green chemistry for nanochemistry: Exploring medicinal plants for the biogenic synthesis of metal NPs with fine-tuned properties. RSC Adv. 2013, 3, 11935–11956. [Google Scholar] [CrossRef]
- Thanha, N.T.K.; Greena, L.A.W. Functionalisation of nanoparticles for biomedical applications. Nano Today 2010, 5, 213–230. [Google Scholar] [CrossRef]
- Sarojini, K.S.; Indumathi, M.P.; Rajarajeswari, G.R. Mahua, oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int. J. Biol. Macromol. 2019, 124, 163–174. [Google Scholar] [CrossRef]
- Qin, X.; Xu, H.; Zhang, G.; Wang, J.; Wang, Z.; Zhao, Y.; Wang, Z.; Tan, T.; Bockstaller, M.R.; Zhang, L.; et al. Enhancing the Performance of Rubber with Nano ZnO as Activators. ACS Appl. Mater. Interfaces 2020, 12, 48007–48015. [Google Scholar] [CrossRef]
- Khmelinskii, I.; Makarov, V.I. Optical properties of ZnO semiconductor nanolayers. Mater. Res. Bull. 2019, 109, 291–300. [Google Scholar] [CrossRef]
- Singh, V.P.; Sandeep, K.; Kushwaha, H.S.; Powar, S.; Vaish, R. Photocatalytic, hydrophobic and antimicrobial characteristics of ZnO nanoneedle embedded cement composites. Constr. Build. Mater. 2018, 158, 285–294. [Google Scholar] [CrossRef]
- Babaei-Ghazvinia, A.; Shahabi-Ghahfarrokhib, I.; Goudarzi, V. Preparation of UV-protective starch/kefiran/ZnO nanocomposite as a packaging film: Characterization. Food Packag. Shelf Life 2018, 16, 103–111. [Google Scholar] [CrossRef]
- Mezni, A.; Kouki, F.; Romdhane, S.; Warot-Fonrose, B.; Joulie, S.; Mlayah, A.; Smiri, L.S. Facile synthesis of ZnO nanocrystals in polyol. Mater. Lett. 2012, 86, 153–156. [Google Scholar] [CrossRef]
- Kahouli, M.; Barhoum, A.; Bouzid, A.; Al-Hajry, A.; Guermazi, S. Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. Superlattices Microstruct. 2015, 85, 7–23. [Google Scholar] [CrossRef]
- Soni, A.; Mavani, K.R. Controlling porosity and ultraviolet photoresponse of crystallographically oriented ZnO nanostructures grown by pulsed laser deposition. Scr. Mater. 2019, 162, 24–27. [Google Scholar] [CrossRef]
- Delice, S.; Isik, M.; Gasanly, N.M. Traps distribution in sol-gel synthesized ZnO nanoparticles. Mater. Lett. 2019, 245, 103–105. [Google Scholar] [CrossRef]
- Koseoglu, Y. A simple microwave-assisted combustion synthesis and structural, optical, and magnetic characterization of ZnO nanoplatelets. Ceram. Int. 2014, 40, 4673–4679. [Google Scholar] [CrossRef]
- Singh, G.; Babele, P.K.; Kumar, A.; Srivastava, A.; Sinha, R.P.; Tyagi, M.B. Synthesis of ZnO nanoparticles using the cell extract of the cyan bacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine. J. Photochem. Photobiol. B Biol. 2014, 138, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K.V.B. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta Part A 2012, 90, 78–84. [Google Scholar] [CrossRef]
- Buono, D.D.; Michele, A.D.; Costantino, F.; Trevisan, M.; Lucini, L. Biogenic ZnO Nanoparticles Synthesized Using a Novel Plant Extract: Application to Enhance Physiological and Biochemical Traits in Maize. Nanomaterials 2021, 11, 1270. [Google Scholar] [CrossRef]
- Elsayed, M.S.; Ahmed, I.A.; Bader, D.M.D.; Hassan, A.F. Green Synthesis of Nano Zinc Oxide/Nanohydroxyapatite Composites Using Date Palm Pits Extract and Eggshells: Adsorption and Photocatalytic Degradation of Methylene Blue. Nanomaterials 2022, 12, 49. [Google Scholar] [CrossRef]
- Jun, X.; Huang, Y.; Zhu, S.; Abbes, N.; Zhang, X.J.L. A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. J. Eng. Fibers Fabr. 2021, 16, 1–14. [Google Scholar] [CrossRef]
- Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resour. Effic. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Chena, F.; Liu, S.; Zhao, Z.; Gao, W.; Yibo, M.; Wanga, X.; Yan, S.; Luo, D. Ultrasound pre-treatment combined with microwave-assisted hydrodistillation of essential oils from Perilla frutescens (L.) Britt. leaves and their chemical composition and biological activity. Ind. Crops Prod. 2020, 143, 111908. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Jiang, K.; Wang, Q.; Zheng, Y.; Tang, W.; Tan, C. Anti-inflammatory constituents from Perilla frutescens on lipopolysaccharide-stimulated RAW264.7 cells. Fitoterapia 2018, 130, 61–65. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Jin, R.; Li, H.; Liu, Q.; Zhang, Z. Identification of a Novel Anticancer Oligopeptide from Perilla frutescens (L.) Britt. and Its Enhanced Anticancer Effect by Targeted Nanoparticles In Vitro. Int. J. Polym. Sci. 2018, 2018, 1782734. [Google Scholar] [CrossRef] [Green Version]
- Darroudia, M.; Sabouri, Z.; Oskuee, R.K.; Zake, A.K.; Kargarc, H.; Abd Hamid, M.H.N. Green chemistry approach for the synthesis of ZnO nanopowders and their cytotoxic effects. Ceram. Int. 2014, 40, 4827–4831. [Google Scholar] [CrossRef]
- Bonev, B.; Hooper, J.; Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother. 2008, 61, 1295–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Sana, S.S.; Kumbhakar, D.V.; Pasha, A.; Pawar, S.C.; Grace, A.N.; Singh, R.P.; Nguyen, V.; Van Le, Q.; Peng, W. Crotalaria verrucosa Leaf Extract Mediated Synthesis of Zinc Oxide Nanoparticles: Assessment of Antimicrobial and Anticancer Activity. Molecules 2020, 25, 4896. [Google Scholar] [CrossRef]
- Kahsay, M.H. Synthesis and characterization of ZnO nanoparticles using aqueous extract of Becium grandiflorum for antimicrobial activity and adsorption of methylene blue. Appl. Water Sci. 2021, 11, 45. [Google Scholar] [CrossRef]
- Nagajyothi, P.C.; Cha, S.J.; Yang, I.J.; Sreekanth, T.V.M.; Kim, K.J.; Shin, H.M. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B Biol. 2015, 146, 10–17. [Google Scholar] [CrossRef]
- Iqbal, Y.; Malik, A.R.; Iqbal, T.; Aziz, M.H.; Ahmed, F.; Abolaban, F.A.; Ali, S.M.; Ullah, H. Green synthesis of ZnO and Ag-doped ZnO nanoparticles using Azadirachta indica leaves Characterization and their potential antibacterial, antidiabetic, and wound-healing activities. Mater. Lett. 2021, 305, 130671. [Google Scholar] [CrossRef]
- Alharthi, M.N.; Ismail, I.; Bellucci, S.; Salam, M.A. Green synthesis of zinc oxide nanoparticles by Ziziphus jujuba leaves extract: Environmental application, kinetic and thermodynamic studies. J. Phys. Chem. Solids 2021, 158, 110237. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Banat, F.; Show, P.L. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J. Hazard. Mater. 2021, 402, 123560. [Google Scholar] [CrossRef]
- Nagajyothi, P.C.; Sreekanth, T.V.M.; Tettey, C.O.; Jun, Y.I.; Mook, S.H. Characterization, antibacterial, antioxidant, and cytotoxic activity of ZnO nanoparticles using CoptidisRhizoma. Bioorg. Med. Chem. Lett. 2014, 24, 4298–4303. [Google Scholar] [CrossRef] [PubMed]
- Kwoka, M.; Kulis-Kapuscinska, A.; Zappa, D.; Comini, E.; Szuber, J. Novel insight on the local surface properties of ZnO nanowires. Nanotechnology 2020, 31, 465705. [Google Scholar] [CrossRef] [PubMed]
- Steffy, K.; Shanthi, G.; Maroky, A.S.; Selvakumar, S. Synthesis and characterization of ZnO phytonanocomposite using Strychnosnux-vomica L. (Loganiaceae) and antimicrobial activity against multidrug-resistant bacterial strains from diabetic foot ulcer. J. Adv. Res. 2018, 9, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A.; Ngom, B.D.; Park, E.; Maaza, M. Green synthesis of ZnO nanoparticles by Aspalathuslinearis: Structural& optical properties. J. Alloys Compd. 2015, 646, 425–430. [Google Scholar] [CrossRef]
- Sahin, B.; Soylu, S.; Kara, M.; Türkmen, M.; Aydind, R.; Cetin, H. Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceram. Int. 2021, 47, 341–350. [Google Scholar] [CrossRef]
- Vinay, S.P.; Chandrasekhar, N. Structural and Biological Investigation of Green Synthesized Silver and Zinc Oxide Nanoparticles. J. Inorg. Org. Polym. Mater. 2021, 31, 1–7. [Google Scholar] [CrossRef]
- Meenatchi, T.; Palanimurugan, A.; Dhanalakshmi, A.; Maheshkumar, V.; Natarajan, B. Green synthesis of CynodonDactylon capped concentrations on ZnO nanoparticles for antibacterial activity, ROS/ML-DNA treatment and compilation of best-controlling microbes by mathematical comparisons. Chem. Phys. Lett. 2020, 749, 137429. [Google Scholar] [CrossRef]
- Verma, R.; Pathak, S.; Srivastava, A.K.; Prawer, S.; Tomljenovic-Hanic, S. ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. J. Alloys Compd. 2021, 876, 160175. [Google Scholar] [CrossRef]
- Singh, T.A.; Sharma, A.; Tejwan, N.; Ghosh, N.; Das, J.; Sil, P.C. A state-of-the-art review on the synthesis, antibacterial, antioxidant, antidiabetic, and tissue regeneration activities of zinc oxide nanoparticles. Adv. Colloid. Int. Sci. 2021, 295, 102495. [Google Scholar] [CrossRef]
- Gomathi, R.; Suhana, H. Green synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles using Artemisia pallens plant extract. Inorg. Nano-Met. Chem. 2021, 51, 1663–1672. [Google Scholar] [CrossRef]
- Ravichandran, V.; Sumitha, S.; Ning, C.Y.; Xian, O.Y.; Yu, U.K.; Paliwal, N.; Ali Shah, S.A.; Tripathy, M. Durian waste mediated green synthesis of zinc oxide nanoparticles and evaluation of their antibacterial, antioxidant, cytotoxicity and photocatalytic activity. Green Chem. Lett. Rev. 2021, 13, 102–116. [Google Scholar] [CrossRef]
- Bisht, G.; Rayamajhi, S. ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine 2016, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Esparza González, S.C.; Ena, B.; Perez-Trujillo, J.J.; Puente-Urbina, B.A.; Rodriguez-Fernandez, O.; Fonseca-Garcia, A. Betancourt-Galindo, R. Antibacterial and anticancer activity of ZnO with different morphologies: A comparative study. 3 Biotech 2021, 11, 68. [Google Scholar] [CrossRef] [PubMed]
- Naila, Z.; Khalida, A. Morphology controlled synthesis of ZnO nanoparticles for in-vitro evaluation of the antibacterial activity. Trans. Nonferrous Met. Soc. China 2020, 30, 1605–1614. [Google Scholar] [CrossRef]
- Pankaj, K.T.; Deepak, G.; Shruti, T.; Ankit, K.M.; Arvind, K.; Nitin, C.; Anami, A.; Sandeep, S. Synthesis of Zinc oxide nanoparticles and its conjugation with antibiotic: Antibacterial and morphological characterization. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100391. [Google Scholar] [CrossRef]
- Kanchana, U.S.; Thomas, V.M. Surface functionalization of ZnO nanoparticles with functionalized bovine serum albumin as a biocompatible photochemical and antimicrobial agent. Surf. Interfaces 2021, 24, 101056. [Google Scholar] [CrossRef]
- Amna, K.K.; Sullivan, R.; Samantha, D.; Jean-Philippe, B.; Iram, A.; Christophe, H.; Bilal, H.A.; Sumaira, A. Effect of UV Irradiation (A and C) on Casuarina equisetifolia-Mediated Biosynthesis and Characterization of Antimicrobial and Anticancer Activity of Biocompatible Zinc Oxide Nanoparticles. Pharmaceutics 2021, 13, 1977. [Google Scholar] [CrossRef]
- Majid, R.K.; Maqsood, A.M.; Vartika, S.; Jamal, S.M.S.; Ehab, H.M.; Aijaz, A. Biogenic ZnO Nanoparticles Synthesized from Origanum vulgare Abrogates Quorum Sensing and Biofilm Formation in Opportunistic Pathogen Chromobacterium violaceum. Pharmaceutics 2021, 13, 1743. [Google Scholar] [CrossRef]
N-ZnOPs Suspension Zone of Inhibition (ZOI) (mm) | |||||
---|---|---|---|---|---|
S. No | Micro Organism | 10 µL | 20 µL | 30 µL | Streptomycin 30 µL |
1 | E. coli | 7 ± 1.4 | 9 ± 1.0 | 10 ± 0.4 | 38 ± 1.4 |
2 | K.pneumoniae | 7 ± 1.2 | 8 ± 1.2 | 10 ± 0.5 | 30 ± 1.7 |
S. No | Method | Applications | Ref. |
---|---|---|---|
1 | Chemical reduction | Antibacterial and anticancer activity | [43] |
2 | Co-precipitation | Antibacterial | [44] |
3 | Chemical reduction | Antibacterial | [45] |
4 | Sol-gel | Antibacterial | [46] |
5 | Casuarina equisetifolia | Antibacterial and anticancer activity | [47] |
6 | Origanum vulgare | Antibacterial and antibiofilm | [48] |
7 | Perilla frutescens | Antibacterial and neurotoxicity | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, T.; Sankar Sana, S.; Li, H.; Wang, X.; Wang, Q.; Boya, V.K.N.; Vadde, R.; Kumar, R.; Kumbhakar, D.V.; Zhang, Z.; et al. Development of Plant Protein Derived Tri Angular Shaped Nano Zinc Oxide Particles with Inherent Antibacterial and Neurotoxicity Properties. Pharmaceutics 2022, 14, 2155. https://doi.org/10.3390/pharmaceutics14102155
Hou T, Sankar Sana S, Li H, Wang X, Wang Q, Boya VKN, Vadde R, Kumar R, Kumbhakar DV, Zhang Z, et al. Development of Plant Protein Derived Tri Angular Shaped Nano Zinc Oxide Particles with Inherent Antibacterial and Neurotoxicity Properties. Pharmaceutics. 2022; 14(10):2155. https://doi.org/10.3390/pharmaceutics14102155
Chicago/Turabian StyleHou, Tianyu, Siva Sankar Sana, Huizhen Li, Xin Wang, Qinqin Wang, Vijaya Kumar Naidu Boya, Ramakrishna Vadde, Raj Kumar, Divya Vishambhar Kumbhakar, Zhijun Zhang, and et al. 2022. "Development of Plant Protein Derived Tri Angular Shaped Nano Zinc Oxide Particles with Inherent Antibacterial and Neurotoxicity Properties" Pharmaceutics 14, no. 10: 2155. https://doi.org/10.3390/pharmaceutics14102155
APA StyleHou, T., Sankar Sana, S., Li, H., Wang, X., Wang, Q., Boya, V. K. N., Vadde, R., Kumar, R., Kumbhakar, D. V., Zhang, Z., & Mamidi, N. (2022). Development of Plant Protein Derived Tri Angular Shaped Nano Zinc Oxide Particles with Inherent Antibacterial and Neurotoxicity Properties. Pharmaceutics, 14(10), 2155. https://doi.org/10.3390/pharmaceutics14102155