Highlighting the Microbial Contamination of the Dropper Tip and Cap of In-Use Eye Drops, the Associated Contributory Factors, and the Risk of Infection: A Past-30-Years Literature Review
Abstract
:1. Introduction
2. Materials and Methods
- Ovid MEDLINE(R) Epub Ahead of Print, In-Process, and Other Non-Indexed Citations; Ovid MEDLINE(R) Daily; and Ovid MEDLINE(R) 1946 to Present;
- PubMed (http://pubmed.gov, accessed on 10 May 2022);
- Cochrane CENTRAL.
- The context of this review was the evaluation of in-use eye drop tip and cap documented microbial contamination regarding hospital settings (inpatient and outpatient clinics, operating rooms), long-term facilities, primary care clinics, and home-based settings.
- The search strategy principle was based on dividing the topic into two concepts: (1) eye drops and (2) microbial contamination. Ovid MEDLINE was first searched to identify all the possible MeSH terms with their corresponding keyword equivalences to increase the sensitivity of the search strategy. The search strategy combined the two concepts as follows: exp Ophthalmic Solutions/OR ((ophthalm* or ocular or eye?) adj2 (MEDICATION? or drop? or solution? or preparation?)).tw. OR (((eye or ophthalm* or ocular) adj2 drop?) or eyedrop?).tw. AND exp Eye Infections/AND Drug Contamination/AND (contamination? or cross-contamination?).tw. [mp = title, abstract, original title, name of substance word, subject heading word, floating subheading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]. All searches were limited to humans and the English language, with restrictions on publication dates starting from 1 January 1992 to 1 June 2022.
- After finalizing the MEDLINE strategy, the search terms were appropriately adapted to the other two databases. The search results were exported into Zotero (https://www.zotero.org/) (accessed on 1 June 2022) to remove duplicates. The citations were then imported to Rayyan (https://www.rayyan.ai/) (accessed on 10 June 2022) to screen the articles.
- The studies were excluded if their primary objective was not solely in-use eye drops documented with microbial contamination.
- Further studies were identified by a hand search and by examining the reference lists of all the included articles.
- Data extraction from the selected publications focused on descriptive, quantitative, and microbiological results. We only included full-text articles. The extracted information was the location and year of publication, study design, objective, setting, inpatient or outpatient use, description of ophthalmic solutions tested, single- or multi-dose eye drop, with or without preservatives, type of eye drops, type of preservative, intended use, duration of use, rate of contamination, eye drop site of contamination, outcomes description, and relevant findings, including the source of contamination and isolated microorganisms.
- A total of 31 publications were included in this review (Figure 2).
- Tables and figures are available for the databases search strategy
3. Results
3.1. Microbial Contamination of Eye Drops According to the Setting of Use
3.1.1. In-Use Eye Drops Collected from Inpatient and Outpatient Settings
3.1.2. In-Use Eye Drops Collected from Patients
3.2. Contaminated Eye Drop Sites
3.3. Types of Contaminated Eye Drops
3.3.1. Types of Tested Eye Drop Medications
3.3.2. Preserved and Preservative-Free Eye Drops
Preserved Eye Drops
Benzalkonium Chloride Preservatives
Preservative-Free Eye Drops
3.4. Isolated Microorganisms
3.5. Factors Associated with Microbial Contamination
3.5.1. Single-User versus Multi-User
3.5.2. Inpatient versus Outpatient Settings
3.5.3. Duration of Use
3.5.4. Frequency of Use
3.5.5. Handling Techniques
4. Discussion
- (1)
- A dropper tip offers a wide surface that is exposed to human and environmental microorganisms;
- (2)
- A contaminated dropper tip can come in contact with the ocular surface, eyelids, and eyelashes during drug self-administration or the instillation of eye drops by another person, as predominantly documented in the elderly;
- (3)
- A contaminated dropper tip and cap can lead to the contamination of eye drop content, as shown previously;
- (4)
- Studies showed contamination of the dropper tip with antibiotic-resistant bacteria;
- (5)
- Microbial contamination was demonstrated even when the eye drops were handled by HCP or in the OR;
- (6)
- The preservatives did not have sufficient contact time with the dropper tip, cap, or thread to exert their effect;
- (7)
5. Recommendations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol. 2013, 2, 47. [Google Scholar] [CrossRef] [PubMed]
- Dubald, M.; Bourgeois, S.; Andrieu, V.; Fessi, H. Ophthalmic drug delivery systems for antibiotherapy—A review. Pharmaceutics 2018, 10, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J. 2010, 12, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Awwad, S.; Mohamed Ahmed, A.H.; Sharma, G.; Heng, J.S.; Khaw, P.T.; Brocchini, S.; Lockwood, A. Principles of pharmacology in the eye. Br. J. Pharmacol. 2017, 174, 4205–4223. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, D.A.; Rocha, E.M.; Aragona, P.; Clayton, J.A.; Ding, J.; Golebiowski, B.; Hampel, U.; McDermott, A.M.; Schaumberg, D.A.; Srinivasan, S.; et al. TFOS DEWS II sex, gender, and hormones report. Ocul. Surf. 2017, 15, 284–333. [Google Scholar] [CrossRef]
- Niederkorn, J.Y. Dynamic immunoregulatory processes that sustain immune privilege in the eye. In Encyclopedia of the Eye; Elsevier: Amsterdam, The Netherlands, 2010; pp. 63–68. [Google Scholar]
- World Health Organization. Blindness and Visual Impairment. WHO. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment (accessed on 19 July 2022).
- Baranowski, P.; Karolewicz, B.; Gajda, M.; Pluta, J. Ophthalmic drug dosage forms: Characterisation and research methods. Sci. World J. 2014, 2014, 861904. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, E.A.S.; Al Qahtani, A.Y.; Sinjab, M.M.; Alyahya, K.M. Guidelines of The American Society of Health-System Pharmacists (ASHP) on Pharmacy-Prepared Ophthalmic Products. In Extemporaneous Ophthalmic Preparations; Springer: Cham, Switzerland, 2020; pp. 21–23. [Google Scholar]
- Tovey, G.D. (Ed.) Specialised Pharmaceutical Formulation; Royal Society of Chemistry: London, UK, 2022; Volume 2. [Google Scholar]
- Connor, A.J.; Severn, P.S. Force requirements in topical medicine use—The squeezability factor. Eye 2011, 25, 466–469. [Google Scholar] [CrossRef] [Green Version]
- López-García, J.S.; García-Lozano, I. Use of containers with sterilizing filter in autologous serum eyedrops. Ophthalmology 2012, 119, 2225–2230. [Google Scholar] [CrossRef]
- Lagnado, R.; King, A.J.; Donald, F.; Dua, H.S. A protocol for low contamination risk of autologous serum drops in the management of ocular surface disorders. Br. J. Ophthalmol. 2004, 88, 464–465. [Google Scholar] [CrossRef] [Green Version]
- Thanathanee, O.; Phanphruk, W.; Anutarapongpan, O.; Romphruk, A.; Suwan-Apichon, O. Contamination risk of 100% autologous serum eye drops in management of ocular surface diseases. Cornea 2013, 32, 1116–1119. [Google Scholar] [CrossRef]
- Bachewar, N.P.; Deshmukh, D.; Choudhari, S.R.; Joshi, R.S. Evaluation of used eye drop containers for microbial contamination in outpatient department of tertiary care teaching hospital. Int. J. Basic Clin. Pharmacol. 2018, 7, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Brudieu, E.; Duc, D.L.; Masella, J.J.; Croize, J.; Valence, B.; Meylan, I.; Mouillon, M.; Franco, A.; Calop, J. Bacterial contamination of multi-dose ocular solutions. A prospective study at the Grenoble Teaching Hospital. Pathol.-Biol. 1999, 47, 1065–1070. [Google Scholar]
- Chantra, S.; Hathaisaard, P.; Grzybowski, A.; Ruamviboonsuk, P. Microbial contamination of multiple-dose preservative-free hospital ophthalmic preparations in a tertiary care hospital. Adv. Ophthalmol. Pract. Res. 2022, 2, 100046. [Google Scholar] [CrossRef]
- Chua, S.W.; Mustapha, M.; Wong, K.K.; Ami, M.; Zahidin, A.Z.M.; Nasaruddin, R.A. Microbial Contamination of Extended Use Ophthalmic Drops in Ophthalmology Clinic. Clin. Ophthalmol. 2021, 15, 3147. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.J.; Ong, B.; Stanley, C.B. Contamination of diagnostic ophthalmic solutions in primary eye care settings. Mil. Med. 1997, 162, 501–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coad, C.T.; Osato, M.S.; Wilhelmus, K.R. Bacterial contamination of eyedrop dispensers. Am. J. Ophthalmol. 1984, 98, 548–551. [Google Scholar] [CrossRef]
- Daehn, T.; Schneider, A.; Knobloch, J.; Hellwinkel, O.J.; Spitzer, M.S.; Kromer, R. Contamination of multi dose eyedrops in the intra and perioperative context. Sci. Rep. 2021, 11, 20364. [Google Scholar] [CrossRef]
- Danny, H.; Jokl, K.; Wormser, G.P.; Nichols, N.S.; Montecalvo, M.A.; Karmen, C.L. Bacterial contamination of ophthalmic solutions used in an extended care facility. Br. J. Ophthalmol. 2007, 91, 1308–1310. [Google Scholar]
- Fazeli, M.R.; Nejad, H.B.; Mehrgan, H.; Elahian, L. Microbial contamination of preserved ophthalmic drops in outpatient departments: Possibility of an extended period of use. DARU J. Pharm. Sci. 2004, 12, 151–155. [Google Scholar]
- Figuêiredo, L.V.; Mantovani, C.M.L.; Vianna, M.S.; Fonseca, B.M.; Costa, A.A.A.N.; Mesquita, Y.B.; Polveiro, J.P.D.S.C.; Júnior, J.J.N. Microbial contamination in eye drops of patients in glaucoma treatment. Rev. Bras. De Oftalmol. 2018, 77, 320–323. [Google Scholar] [CrossRef]
- Somner, J.E.A.; Cavanagh, D.J.; Wong, K.K.Y.; Whitelaw, M.; Thomson, T.; Mansfield, D. The precautionary principle: What is the risk of reusing disposable drops in routine ophthalmology consultations and what are the costs of reducing this risk to zero? Eye 2010, 24, 361–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Høvding, G.; Sjursen, H. Bacterial contamination of drops and dropper tips of in-use multidose eye drop bottles. Acta Ophthalmol. 1982, 60, 213–222. [Google Scholar] [CrossRef]
- Kyei, S.; France, D.; Asiedu, K. Microbial contamination of multiple-use bottles of fluorescein ophthalmic solution. Clin. Exp. Optom. 2019, 102, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Kyei, S.; Appiah, E.; Ayerakwa, E.A.; Antwi, C.B.; Asiedu, K. Microbial safety implications of in-use topical diagnostic ophthalmic medications in eye clinics in Ghana. J. Optom. 2019, 12, 263–271. [Google Scholar] [CrossRef]
- Kyei, S.; Mensah, R.; Kwakye-Nuako, G.; Abu, E.K. Microbial Contamination of Topical Therapeutic Ophthalmic Medications in Cape Coast Metropolis, Ghana. Niger. J. Ophthalmol. 2019, 27, 56. [Google Scholar] [CrossRef]
- Livingstone One, D.J.; Hanlon, G.W.; Dyke, S. Evaluation of an extended period of use for preserved eye drops in hospital practice. Br. J. Ophthalmol. 1998, 82, 473–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marion, A.D.; Tampert, M.J. Bacterial Contamination of Timolol in Use by Non-Selected Clinic Population. Invest. Ophthalmol. Vis. Sci. 1986, 36. [Google Scholar]
- Hennessy, A.L.; Katz, J.; Covert, D.; Protzko, C.; Robin, A.L. Videotaped evaluation of eyedrop instillation in glaucoma patients with visual impairment or moderate to severe visual field loss. Ophthalmology 2010, 117, 2345–2352. [Google Scholar] [CrossRef]
- Mehr-un-Nisa, I.Q.M.; Irshad, M.W. To Study the Safety of Multi-dose Topical Anaesthetic Eye Drops for One Month after Opening. Pak J Ophthalmol 2019, 35, 193–197. [Google Scholar]
- Nentwich, M.M.; Kollmann, K.H.M.; Meshack, J.; Ilako, D.R.; Schaller, U.C. Microbial contamination of multi-use ophthalmic solutions in Kenya. Br. J. Ophthalmol. 2007, 91, 1265–1268. [Google Scholar] [CrossRef] [Green Version]
- Nisar, S.; Rahim, N.; Maqbool, T. Bacterial Contamination of Multi-Dose Ophthalmic Drops. Hamdar Medicus 2018, 61, 3. [Google Scholar]
- Porges, Y.; Rothkoff, L.; Glick, J.; Cohen, S. Sterility of glaucoma medications among chronic users in the community. J. Ocul. Pharmacol. Ther. 2004, 20, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.Q.; Tejwani, D.; Wilson, J.A.; Butcher, I.; Ramaesh, K. Microbial contamination of preservative free eye drops in multiple application containers. Br. J. Ophthalmol. 2006, 90, 139–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raynaud, C.; Laveran, H.; Rigal, D.; Bonicel, P. Bacterial contamination of eyedrops in clinical use. J. Fr. D’ophtalmologie 1997, 20, 17–24. [Google Scholar]
- Razooki, R.A.; Saeed, E.N.; Al-Deem, H.I.O. Microbial Contamination of Eye Drops in out Patient in Iraq. Iraqi J. Pharm. Sci. 2011, 20, 91–95. [Google Scholar] [CrossRef]
- Saisyo, A.; Oie, S.; Kimura, K.; Sonoda, K.H.; Furukawa, H. Microbial contamination of in-use ophthalmic preparations and its prevention. Bull. Yamaguchi Med. Sch. 2016, 63, 17–24. [Google Scholar]
- Schein, O.D.; Hibberd, P.L.; Starck, T.; Baker, A.S.; Kenyon, K.R. Microbial contamination of in-use ocular medications. Arch. Ophthalmol. 1992, 110, 82–85. [Google Scholar] [CrossRef]
- Stevens, J.D.; Matheson, M.M. Survey of the contamination of eyedrops of hospital inpatients and recommendations for the changing of current practice in eyedrop dispensing. Br. J. Ophthalmol. 1992, 76, 36–38. [Google Scholar] [CrossRef]
- Tamrat, L.; Gelaw, Y.; Beyene, G.; Gize, A. Microbial contamination and antimicrobial resistance in use of ophthalmic solutions at the Department of Ophthalmology, Jimma University Specialized Hospital, Southwest Ethiopia. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 5372530. [Google Scholar] [CrossRef] [Green Version]
- Taşli, H.; Coşar, G. Microbial contamination of eye drops. Cent. Eur. J. Public Health 2001, 9, 162–164. [Google Scholar]
- Templeton, W.C., III; Eiferman, R.A.; Snyder, J.W.; Melo, J.C.; Raff, M.J. Serratia keratitis transmitted by contaminated eyedroppers. Am. J. Ophthalmol. 1982, 93, 723–726. [Google Scholar] [CrossRef]
- Teuchner, B.; Wagner, J.; Bechrakis, N.E.; Orth-Höller, D.; Nagl, M. Microbial contamination of glaucoma eyedrops used by patients compared with ocular medications used in the hospital. Medicine 2015, 94, e583. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Choi, C.Y.; Kim, J.M.; Chung, H.R.; Woo, H.Y. Microbial contamination of multiply used preservative-free artificial tears packed in reclosable containers. Br. J. Ophthalmol. 2008, 92, 1518–1521. [Google Scholar] [CrossRef]
- Feghhi, M.; Zarei Mahmoudabadi, A.; Mehdinejad, M. Evaluation of fungal and bacterial contaminations of patient-used ocular drops. Med. Mycol. 2008, 46, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, O.; Bottone, E.J.; Podos, S.M.; Schumer, R.A.; Asbell, P.A. Microbial contamination of medications used to treat glaucoma. Br. J. Ophthalmol. 1995, 79, 376–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsegaw, A.; Tefera Abula, Y.A. Bacterial contamination of multi-dose eye drops at ophthalmology department, University of Gondar, Northwest Ethiopia. Middle East Afr. J. Ophthalmol. 2017, 24, 81. [Google Scholar] [CrossRef] [PubMed]
- Pisella, P.J.; Pouliquen, P.; Baudouin, C. Prevalence of ocular symptoms and signs with preserved and preservative free glaucoma medication. Br. J. Ophthalmol. 2002, 86, 418–423. [Google Scholar] [CrossRef]
- Wasson, P.J.; Boruchoff, S.A.; Schein, O.D.; Kenyon, K.R. Microbial keratitis associated with contaminated ocular medications. Am. J. Ophthalmol. 1988, 105, 361–365. [Google Scholar] [CrossRef]
- Mayo, M.S.; Schlitzer, R.L.; Ward, M.A.; Wilson, L.A.; Ahearn, D.G. Association of Pseudomonas and Serratia corneal ulcers with use of contaminated solutions. J. Clin. Microbiol. 1987, 25, 1398–1400. [Google Scholar] [CrossRef]
- Penland, R.L.; Wilhelmus, K.R. Stenotrophomonas maltophilia ocular infections. Arch. Ophthalmol. 1996, 114, 433–436. [Google Scholar] [CrossRef]
- Mah-Sadorra, J.H.; Najjar, D.M.; Rapuano, C.J.; Laibson, P.R.; Cohen, E.J. Serratia corneal ulcers: A retrospective clinical study. Cornea 2005, 24, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Donzis, P.B. Corneal ulcer associated with contamination of aerosol saline spray tip. Am. J. Ophthalmol. 1997, 124, 394–395. [Google Scholar] [CrossRef]
- Mason, B.L.; Alfonso, E.C.; Miller, D. In-use study of potential bacterial contamination of ophthalmic moxifloxacin. J. Cataract. Refract. Surg. 2005, 31, 1773–1776. [Google Scholar]
- Goldstein, M.H.; Silva, F.Q.; Blender, N.; Tran, T.; Vantipalli, S. Ocular benzalkonium chloride exposure: Problems and solutions. Eye 2022, 36, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Kaur, I.P.; Lal, S.; Rana, C.; Kakkar, S.; Singh, H. Ocular preservatives: Associated risks and newer options. Cutan. Ocul. Toxicol. 2009, 28, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Noecker, R. Effects of common ophthalmic preservatives on ocular health. Adv. Ther. 2001, 18, 205–215. [Google Scholar] [CrossRef]
- Baudouin, C.; Labbé, A.; Liang, H.; Pauly, A.; Brignole-Baudouin, F. Preservatives in eyedrops: The good, the bad and the ugly. Prog. Retin. Eye Res. 2010, 29, 312–334. [Google Scholar] [CrossRef]
- Coroi, M.C.; Bungau, S.; Tit, M. Preservatives from the eye drops and the ocular surface. Rom. J. Ophthalmol. 2015, 59, 2. [Google Scholar]
- European Medicines Agency. EMEA. 2009. EMEA Public Statement on Antimicrobial Preservatives in Ophthalmic Preparations for Human Use. EMEA/622721/2009. Available online: https://www.ema.europa.eu/en/documents/public-statement/emea-public-statement-antimicrobial-preservatives-ophthalmic-preparations-human-use_en.pdf (accessed on 4 July 2022).
- Excipients Labelling. EMA. 2017. Available online: www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_001683.jsp&mid=WC0b01ac05808c01f6 (accessed on 4 July 2022).
- Pflugfelder, S.C. Ophthalmic Preservatives: The Past, Present and Future; Candeo Clinical/Science Communications, LLC.: White Plains, NY, USA, 2008. [Google Scholar]
- Sarkar, R. Effects of preservatives used in ocular medications on the eye: A comparative review. Ophthalmol. J. 2021, 6, 44–52. [Google Scholar] [CrossRef]
- Freeman, P.D.; Kahook, M.Y. Preservatives in topical ophthalmic medications: Historical and clinical perspectives. Expert Rev. Ophthalmol. 2009, 4, 59–64. [Google Scholar] [CrossRef]
- De Saint Jean, M.; Brignole, F.; Bringuier, A.F.; Bauchet, A.; Feldmann, G.; Baudouin, C. Effects of benzalkonium chloride on growth and survival of Chang conjunctival cells. Investig. Ophthalmol. Vis. Sci. 1999, 40, 619–630. [Google Scholar]
- Epstein, S.P.; Ahdoot, M.; Marcus, E.; Asbell, P.A. Comparative toxicity of preservatives on immortalized corneal and conjunctival epithelial cells. J. Ocul. Pharmacol. Ther. 2009, 25, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Harte, V.J.; O’Hanrahan, M.T.; Timoney, R.F. Microbial contamination in residues of ophthalmic preparations. Int. J. Pharm. 1978, 1, 165–171. [Google Scholar] [CrossRef]
- Kahook, M.Y. The pros and cons of preservatives. Rev. Ophthalmol. 2015. [Google Scholar]
- Tu, E.Y. Balancing antimicrobial efficacy and toxicity of currently available topical ophthalmic preservatives. Saudi J. Ophthalmol. 2014, 28, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Broadway, D.C.; Grierson, I.; O’Brien, C.; Hitchings, R.A. Adverse effects of topical antiglaucoma medication: II. The outcome of filtration surgery. Arch. Ophthalmol. 1994, 112, 1446–1454. [Google Scholar] [CrossRef]
- Becquet, F.; Goldschild, M.; Moldovan, M.S.; Ettaiche, M.; Gastaud, P. Histopathological effects of topical ophthalmic preservatives on rat corneoconjunctival surface. Curr. Eye Res. 1998, 17, 419–425. [Google Scholar] [CrossRef]
- Rolando, M.; Brezzo, G.; Giordano, P.; Campagna, P.; Burlando, S.; Calabria, G. The effect of different benzalkonium chloride concentrations on human normal ocular surface: A controlled prospective impression cytology study. In The Lacrimal System; Kagler & Ghedini: Amsterdam, The Netherlands, 1991; pp. 89–91. [Google Scholar]
- Aihara, M.; Ikeda, Y.; Mizoue, S.; Arakaki, Y.; Kita, N.; Kobayashi, S. Effect of switching to travoprost preserved with SofZia in glaucoma patients with chronic superficial punctate keratitis while receiving BAK-preserved latanoprost. J. Glaucoma 2016, 25, e610–e614. [Google Scholar] [CrossRef]
- Aihara, M.; Oshima, H.; Araie, M.; EXTraKT Study Group. Effects of SofZia-preserved travoprost and benzalkonium chloride-preserved latanoprost on the ocular surface–a multicentre randomized single-masked study. Acta Ophthalmol. 2013, 91, e7–e14. [Google Scholar] [CrossRef]
- García-Feijoo, J.; Muñoz-Negrete, F.J.; Hubatsch, D.A.; Rossi, G.C. Efficacy and tolerability of benzalkonium chloride-free travoprost in glaucoma patients switched from benzalkonium chloride-preserved latanoprost or bimatoprost. Clin. Ophthalmol. 2016, 10, 2085. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.C.M.; Scudeller, L.; Rolle, T.; Pasinetti, G.M.; Bianchi, P.E. From benzalkonium chloride-preserved Latanoprost to Polyquad-preserved Travoprost: A 6-month study on ocular surface safety and tolerability. Expert Opin. Drug Saf. 2015, 14, 619–623. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Benzalkonoium Chloride Used ans an Excipient. EMA. 2017. Available online: https://www.ema.europa.eu/en/documents/report/benzalkonium-chloride-used-excipient-report-published-support-questions-answers-benzalkonium_en.pdf (accessed on 20 July 2022).
- Feuillolay, C.; Haddioui, L.; Verelst, M.; Furiga, A.; Marchin, L.; Roques, C. Antimicrobial activity of metal oxide microspheres: An innovative process for homogeneous incorporation into materials. J. Appl. Microbiol. 2018, 125, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, K.; Jones, L. The use of preservatives in dry eye drops. Clin. Ophthalmol. 2019, 13, 1409. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Craig, J.P.; Rupenthal, I.D. Formulation considerations for the management of dry eye disease. Pharmaceutics 2021, 13, 207. [Google Scholar] [CrossRef] [PubMed]
- Douch, M.M.; Davison, A.L. An investigation into the in-use contamination of Timolol eye drops used on the wards. J Hosp. Pharm. Pract. 1992, 2, 483–486. [Google Scholar]
- Hanssens, J.M.; Quintana-Giraldo, C.; Jacques, S.; El-Zoghbi, N.; Lampasona, V.; Langevin, C.; Bouchard, J.F. Shelf life and efficacy of diagnostic eye drops. Optom. Vis. Sci. 2018, 95, 947–952. [Google Scholar] [CrossRef] [Green Version]
- Aslund, B. Studies on in-use microbial contamination of eye drops. Acta Pharm. Suec. 1978, 15, 389–394. [Google Scholar]
- da Costa, A.X.; Yu, M.C.Z.; de Freitas, D.; Cristovam, P.C.; LaMonica, L.C.; Dos Santos, V.R.; Gomes, J.A.P. Microbial cross-contamination in multidose eyedrops: The impact of instillation angle and bottle geometry. Transl. Vis. Sci. Technol. 2020, 9, 7. [Google Scholar] [CrossRef]
- Malmin, A.; Syre, H.; Ushakova, A.; Utheim, T.P.; Forsaa, V.A. Twenty years of endophthalmitis: Incidence, aetiology and clinical outcome. Acta Ophthalmol. 2021, 99, e62–e69. [Google Scholar] [CrossRef]
- Montecalvo, M.A.; Karmen, C.L.; Alampur, S.K.; Kauffman, D.J.H.; Wormser, G.P. Contaminated medicinal solutions associated with endophthalmitis. Infect. Dis. Clin. Pract. 1993, 2, 199–202. [Google Scholar]
- Alarcon, I.; Tam, C.; Mun, J.J.; LeDue, J.; Evans, D.J.; Fleiszig, S.M. Factors impacting corneal epithelial barrier function against Pseudomonas aeruginosa traversal. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1368–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, D.J.; Fleiszig, S.M. Why does the healthy cornea resist Pseudomonas aeruginosa infection? Am. J. Ophthalmol. 2013, 155, 961–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherwal, B.L.; Verma, A.K. Epidemiology of ocular infection due to bacteria and fungus-a prospective study. JK Sci. 2008, 10, 127–131. [Google Scholar]
- Scott, I.U.; Flynn, H.W., Jr.; Feuer, W.; Pflugfelder, S.C.; Alfonso, E.C.; Forster, R.K.; Miller, D. Endophthalmitis associated with microbial keratitis. Ophthalmology 1996, 103, 1864–1870. [Google Scholar] [CrossRef]
- Robert, M.C.; Moussally, K.; Harissi-Dagher, M. Review of endophthalmitis following Boston keratoprosthesis type 1. Br. J. Ophthalmol. 2012, 96, 776–780. [Google Scholar] [CrossRef]
- Herreras, J.M.; Pastor, J.C.; Calonge, M.; Asensio, V.M. Ocular surface alteration after long-term treatment with an antiglaucomatous drug. Ophthalmology 1992, 99, 1082–1088. [Google Scholar] [CrossRef]
- Cheng, S.C.H.; Lin, Y.Y.; Kuo, C.N.; Lai, L.J. Cladosporium keratitis–a case report and literature review. BMC Ophthalmol. 2015, 15, 106. [Google Scholar] [CrossRef]
- LLeck, A.; A Thomas, P.; Hagan, M.; Kaliamurthy, J.; Ackuaku, E.; John, M.; Newman, M.J.; Codjoe, F.S.; A Opintan, J.; Kalavathy, C.M.; et al. Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis. Br. J. Ophthalmol. 2002, 86, 1211–1215. [Google Scholar] [CrossRef]
- Wilson, L.A.; Sawant, A.D.; Simmons, R.B.; Ahearn, D.G. Microbial contamination of contact lens storage cases and solutions. Am. J. Ophthalmol. 1990, 110, 193–198. [Google Scholar] [CrossRef]
- Mack, R.J.; Shott, S.; Schatz, S.; Farley, S.J. Association between moxifloxacin ophthalmic solution and fungal infection in patients with corneal ulcers and microbial keratitis. J. Ocul. Pharmacol. Ther. 2009, 25, 279–284. [Google Scholar] [CrossRef]
- Nam, K.Y.; Lee, J.E.; Lee, J.E.; Jeung, W.J.; Park, J.M.; Park, J.M.; Chung, I.Y.; Han, Y.S.; Yun, I.H.; Kim, H.W.; et al. Clinical features of infectious endophthalmitis in South Korea: A five-year multicenter study. BMC Infect. Dis. 2015, 15, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessner, R.; Golan, S.; Barak, A. Changes in the etiology of endophthalmitis from 2003 to 2010 in a large tertiary medical center. Eur. J. Ophthalmol. 2014, 24, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Stack, R.R.; McKellar, M.J. Black eye drop bottle tips improve compliance. Clin. Exp. Ophthalmol. 2004, 32, 39–41. [Google Scholar] [CrossRef] [PubMed]
Authors | Year of Publication | Country | Study Design | Aim of the Study | Setting |
---|---|---|---|---|---|
Chantra et al. [17] | 2022 | Thailand | Cross-sectional study | The aim of this study was to assess the incidence of microbial contamination in preservative-free hospital-prepared anti-infective eye drops and investigate factors that contributed to contamination. | Hospital |
Chua et al. [18] | 2021 | Malaysia | Cross-sectional study | To determine the prevalence of microbial contamination in multi-user preserved ophthalmic drops in an ophthalmology outpatient clinic to compare the rates of contamination between the dropper tip and the residual contents in the bottle and to identify the contaminating organisms. | Hospital |
Daehn et al. [21] | 2021 | Germany | To address the potential contamination of multi-dose ophthalmic solutions in the operating theater and the underlying risk of infection by examining the microbiological load on the tips of dispenser bottles. | Hospital | |
Kyei et al. [27] | 2019 | Ghana | To investigate the possible microbial contamination of fluorescein sodium dye solutions used in eye clinics in Ghana. | Eye care clinics | |
Kyei et al. [28] | 2019 | Ghana | Cross-sectional study | To determine the microbial contaminants and their clinical importance in topical diagnostic ophthalmic medications in eye clinics in Ghana. | Eye care clinics |
Kyei et al. [29] | 2019 | Ghana | Clinical experiment | To evaluate the microbial contamination of in-use therapeutic ophthalmic medications in the Cape Coast metropolis. | Home |
Nisar et al. [35] | 2019 | Pakistan | To investigate the bacterial contamination of eye drops dispensed for multi-dose purpose. | ||
Tamrat et al. [43] | 2019 | Ethiopia | Cross-sectional study | To determine the magnitude of contamination and pattern of antimicrobial resistance of in-use ophthalmic solutions. | Hospital |
Bachewar et al. [15] | 2018 | India | Prospective observational study | To determine the magnitude and pattern of microbial contamination rates in multi-dose used eye drop containers and residual medicine in presence or absence of preservatives. | Hospital |
Figuêiredo et al. [24] | 2018 | Brazil | Cross-sectional study | To evaluate contamination in topical medication eye drops of patients from the glaucoma ambulatory of a university hospital and use a questionnaire to analyze the storage and method of instillation of the eye drops collected. | Hospital |
Tsegaw et al. [50] | 2017 | Ethiopia | Cross-sectional study | To assess the magnitude and pattern of bacterial contamination of multi-dose ophthalmic medications and investigate the drug susceptibility pattern of the isolates in the Department of Ophthalmology at Gondar University Teaching Hospital. | Hospital |
Teuchner et al. [46] | 2015 | Austria | To compare the percentage of contamination of multi-use eye drops applied by glaucoma patients at home and by the medical personnel in the outpatient department, ward, and operating room of a Department of Ophthalmology and to test the influence of sampling from the eye drop tips, drops, and residual fluid inside the bottle. | Hospital | |
Thanathanee et al. [14] | 2013 | Thailand | Prospective descriptive study | To evaluate the sterility and safety of 100% nonpreserved, autologous, serum eye drop treatment in patients with ocular surface diseases. | Hospital |
López-García et al. [12] | 2012 | Spain | Prospective, consecutive, comparative, and randomized study | To assess the effect of the use of containers with adapted sterilizing filters on the contamination of autologous serum eye drops. | Home |
Razooki et al. [39] | 2011 | Iraq | To determine the magnitude and pattern of microbial contamination of eye drops in outpatients at the department of ophthalmology. | Hospital | |
Somner et al. [25] | 2010 | UK | To quantify the financial and waste implications of reducing this risk to zero by using disposable droppers only once. | Eye care clinics | |
Feghhi et al. [48] | 2008 | Iran | To investigate the incidence of fungal and bacterial contaminations of in-use eye drop products in the teaching department of ophthalmology. | Hospital | |
Kim et al. [47] | 2008 | Republic of Korea | Prospective, non-masked, randomized trial | To evaluate microbial contamination of multiple-use preservative-free artificial tears packed in reclosable containers after daily use. | Home |
Nentwich et al. [34] | 2007 | Kenya | Cross-sectional study | To determine the magnitude and pattern of microbial contamination (bacterial and fungal) of multi-dose ocular solutions. | Hospital |
Jokl et al. [22] | 2007 | USA | To assess the frequency of contamination of ophthalmic solutions in a long-term care facility and to describe the characteristics of contaminated solutions. | Long-term care facility | |
Rahman et al. [37] | 2006 | UK | To investigate the incidence of microbial contamination in preservative-free drops dispensed from multi-use containers. | Hospital | |
Mason et al. [57] | 2005 | USA | Prospective, non-masked, non-randomized trial | To determine the contamination rate of topical moxifloxacin 0.5% (Vigamox) after clinical use for preoperative and postoperative prophylaxis for cataract surgery. | Hospital |
Porges et al. [36] | 2004 | Israel | Cross-sectional study | To evaluate the sterility of topical glaucoma medications among chronic glaucoma medication users in the community. | Community |
Fazeli et al. [23] | 2004 | Iran | To assess the validity of an increased in-use period for preserved eye drops opened in a hospital outpatient department. | Hospital | |
Lagnado et al. [13] | 2004 | UK | To establish if contamination of 20% autologous serum drops prepared under sterile conditions occurred over a 24 h period of one to two hourly use in a hospital inpatient setting. | Hospital | |
Livingstone et al. [30] | 1998 | UK | Comparative study | To compare the microbial contamination of eye drop residues used by inpatients for both 7 and 14 days in order to assess the validity of an increased in use period for preserved eye drops issued to hospital inpatients. | Hospital |
Clarck et al. [19] | 1997 | USA | To investigate the possible contamination of a representative sample of diagnostic pharmaceutical agents and irrigating solutions in small office practices. | Eye care clinics | |
Donzis [56] | 1997 | USA | Case report | To report a complication of aerosol saline use in a contact lens wearer. | Home |
Geyer et al. [49] | 1995 | USA | Comparative study | To estimate the frequency of contamination of topical antiglaucoma medications used by asymptomatic patients. | Hospital |
Schein et al. [41] | 1992 | USA | Comparative study | To estimate the frequency of medication contamination and to test the hypothesis that contaminated medications were associated with conjunctival colonization with the same organism. | Hospital |
Stevens and Matheson [42] | 1992 | UK | To assess whether short-stay patients having routine surgery who used postoperative eye drops had contamination of these drops on leaving hospital. | Hospital |
Settings | Type of Product | Sample Size | Contains a Preservative | Rate of Microbial Contamination | Site of Contamination | Duration of Use | Ref. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inpatient Ward | Surgical Theatre | Outpatient Clinics | Single User Setting | Multi-User Setting | Yes | No | Dropper Tip | Drops | Residual Content | Cap | Dried Residue Thread | ||||||
Community | X | Multi-dose | 156 | X | 29% | X | X | X | >2 month | [41] | |||||||
Hospital | X | X | X | Multi-dose | 216 | X | 2% | X | ≤72 h | [42] | |||||||
Community | X | Multi-dose | 194 | X | 28% | 20% | 8% | >3 month | [49] | ||||||||
Eye care clinics | X | X | X | Multi-dose | 60 | X | 12% | X | X | X | X | [19] | |||||
Home | X | Multi-dose | 1 | X | X | X | [56] | ||||||||||
Hospital | X | X | X | Multi-dose | 31 (D7); 295 (D14) | X | 6% (D7) vs 9% (D14) | X | 1-2 weeks | [30] | |||||||
Community | X | Multi-dose | 13% | 1-12 weeks | [36] | ||||||||||||
Hospital | X | X | Multi-dose | 200 | X | 44% (D1) vs 70% (D7) | 50% | 32% | 1-7 days | [23] | |||||||
Hospital | X | Multi-dose | 134 | X | 9.70% | X | Day 0 and day 1 for a minimum of four consecutive days and a maximum of 14 days | [13] | |||||||||
Hospital | X | X | X | Multi-dose | 61 | X | 2.00% | X | Pre-OP:2.2 days; Post-OP: 7.2 days | [57] | |||||||
Hospital | X | X | X | X | Multi-dose | 95 | X | 8% | X | D3 (Inpatients); D7 (outpatients) | [37] | ||||||
Hospital | X | X | X | X | X | Multi-dose | 101 | X | 6% | 5% | 0% | 2 weeks | [34] | ||||
Long-term care facility | X | X | Multi-dose | 123 | X | 8% | X | 1 week | [22] | ||||||||
Hospital | X | X | Multi-dose | 287 | X | 18% | 41% | 13% | 46% | Day 1, 2, 3, 4 and 7 | [48] | ||||||
Home | X | Multi-dose and unit dose | 207 | X (control) | X | 2% | X | 10 hr | [47] | ||||||||
Eye care clinics | X | Unit dose | 100 | X | 5% | 5% | Instant use | [25] | |||||||||
Hospital | X | X | Multi-dose | 54 | X | 15% | 9% | 4% | Average2 weeks | [39] | |||||||
Home | X | Multi-dose | 176 * | X | 2% (container with filter) and 29% (conventional containers) | X | Conventional containers: 1 week; Containers with adapted filters: days 1, 14, 21, 28 | [12] | |||||||||
Hospital | X | Multi-dose | 147 | X | 6% | X | Daily for 1 week starting day 0 | [14] | |||||||||
Hospital | X | X | X | X | X | Multi-dose | 400 | X | 17% | 20% ** | 8% ** | 5% ** | 1 week (OR) vs. 4 weeks other settings | [46] | |||
1% *** | 11% *** | 7% *** | |||||||||||||||
Hospital | X | X | Multi-dose | 100 | X | 11% | 11% | 0% | ≥1 week | [50] | |||||||
Hospital | X | X | Multi-dose | 55 | X | 25% | X | X | X | 1–8 weeks | [15] | ||||||
Eye care clinics | X | X | Multi-dose | 55 | X | 9% | X | >1 month | [24] | ||||||||
Home | X | Multi-dose | 21 | X | 100% | X | [27] | ||||||||||
Eye care clinics | X | Mulit-dose | 113 | X | 96% | 2–8 weeks | [28] | ||||||||||
Eye care clinics | X | Multi-dose | 100 | 65% | X | ≤2 weeks | [29] | ||||||||||
Hospital | X | X | Multi-dose | 106 | 23% | [35] | |||||||||||
Hospital | X | X | X | X | X | Multi-dose | 70 | 73% | 61% | 4% | Average 12 weeks | [43] | |||||
Hospital | X | X | Multi-dose | 245 | 2% | X | ≤5 days | [21] | |||||||||
Hospital | X | X | X | X | Multi-dose | 140 | X | 30% | 50% | 33% | Day 14 and day 30 | [18] | |||||
Hospital | X | X | Multi-dose | 295 | X | 24% | 49% | 27% | >2 days | [17] |
Authors | Tested Eye Drops Medications | Use of Preservatives | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mydriatics | Glaucoma Medications | Miotics | Anesthetics | Steroids | Antimicrobials | Antimicrobials/Glucocorticoids | Antibiotics | Antifungals | Lubricants | Antiinflammatory Agents | NSAIDs | Antihistamines | Others | Acetylcysteine | Aerosol Saline Spray | Autologous Serum | Artificial Tears | Cyclosporine | Fluorescein Solutions | Hypromellose | Idoxurudine 0.1% | Irrigating Solutions | Methylcellulose 2% | Combinations | Atropine Sulfate 1%, Phenylephrine HCl 2.5%, Cyclopentolate HCl 1% and Tropicamide 1% | Preservative Free | Preservative | Benzalconiumchloride 0.004% | Benzalkonium 0.005% | Benzalconiumchloride 0.01% | Benzalconiumchloride 0.014% | Benzalconiumchloride 0.02% | Benzalconiumchloride 0.03% | Benzalkonium 0.05% | Chlorbutol IP 0.5% | Cetrimonbromide | Hydroxybenzoate | Phenylmercuric Nitrate IP 0.001% | Phenylmercuric Nitrate IP 0.002% | Sodium Perborate | Thiomersal 0.005% | Thiomersal 0.001% | |
Chantra et al. [17] | |||||||||||||||||||||||||||||||||||||||||||
Chua et al. [18] | |||||||||||||||||||||||||||||||||||||||||||
Daehn et al. [21] | |||||||||||||||||||||||||||||||||||||||||||
Tamrat et al. [43] | |||||||||||||||||||||||||||||||||||||||||||
Nisar et al. [35] | |||||||||||||||||||||||||||||||||||||||||||
Kyei et al. [29] | |||||||||||||||||||||||||||||||||||||||||||
Kyei et al. [28] | |||||||||||||||||||||||||||||||||||||||||||
Kyei et al. [27] | |||||||||||||||||||||||||||||||||||||||||||
Figuêiredo et al. [14] | |||||||||||||||||||||||||||||||||||||||||||
Bachewar et al. [15] | |||||||||||||||||||||||||||||||||||||||||||
Tsegaw et al. [50] | |||||||||||||||||||||||||||||||||||||||||||
Teuchner et al. [46] | |||||||||||||||||||||||||||||||||||||||||||
Teuchner et al. [46] | |||||||||||||||||||||||||||||||||||||||||||
Thanathanee et al. [14] | |||||||||||||||||||||||||||||||||||||||||||
Lopez-garcia et al. [12] | |||||||||||||||||||||||||||||||||||||||||||
Razooki et al. [39] | |||||||||||||||||||||||||||||||||||||||||||
Somner et al. [25] | |||||||||||||||||||||||||||||||||||||||||||
Kim et al. [47] | |||||||||||||||||||||||||||||||||||||||||||
Feghhi et al. [48] | |||||||||||||||||||||||||||||||||||||||||||
Jokl et al. [22] | |||||||||||||||||||||||||||||||||||||||||||
Nentwich et al. [34] | |||||||||||||||||||||||||||||||||||||||||||
Rahman et al. [37] | |||||||||||||||||||||||||||||||||||||||||||
Mason et al. [57] | |||||||||||||||||||||||||||||||||||||||||||
Lagnado et al [13] | |||||||||||||||||||||||||||||||||||||||||||
Fazeli et al. [23] | |||||||||||||||||||||||||||||||||||||||||||
Porges et al. [36] | |||||||||||||||||||||||||||||||||||||||||||
Livingstone et al. [30] | |||||||||||||||||||||||||||||||||||||||||||
Clarck et al. [19] | |||||||||||||||||||||||||||||||||||||||||||
Donzis [56] | |||||||||||||||||||||||||||||||||||||||||||
Geyer et al. [49] | |||||||||||||||||||||||||||||||||||||||||||
Stevens and Matheson [42] | |||||||||||||||||||||||||||||||||||||||||||
Schein et al. [41] |
Eye Drops | Microbial Contamination Sites | Gram-Positive Bacteria | Gram-Negative Bacteria | Fungi | Ref. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Preservative Free | Preservative | Dropper Tip | Drops | Residual Content | Cap Contaminated | Dried Residue Thread | Gram-positive cocci | Aerococcus viridans | Arthrobacter spp. | Bacillus spp. | Brevibacterium casei | Clostridium perfringens | Corynebacterium spp. | Kocuria spp. | Micrococcus spp. | Propionibacterium acnes | Rothia dentocariosa | Staphylococcus coagulase negative | Staphylococcus epidermidis | Staphylococcus aureus | Staphylococcus spp. | Streptococcus spp. | Gram Negative Rods | Acinetobacter spp. | Bordetella spp. | Citrobacter spp. | Escherichia coli | Edwardsiella | Enterobacter spp. | Haemophilus spp. | Flavobacterium spp. | Klebsiella spp. | Moraxella spp. | Morganella morganii | Neisseria spp. | Nocardia spp. | Pantoea spp. | Proteus spp. | Pseudomonas spp. | Providencia spp. | Salmonella spp. | Serratia spp. | Shigella spp. | Stenotrophomonas maltophilia | Aspergillus spp. | Acremonium spp. | Alternaria spp. | Aureobasidium pullulans | Bravibactrium casei | Candida spp. | Cephalosporium spp. | Cercospora spp. | Cellulosimicrobium cellulans | Cladosporium sp. | Exiguobacterium | Fonsecaea spp. | Fusarium spp. | Gliocladium spp. | Geotricum spp. | Mucor spp. | Penicillium spp. | Rothiarhodotorula rubra Streptomyces spp. Trichosporon spp. Yeast not candida Yeast spp. Unidentified |
[41] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[42] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[49] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[56] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[30] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[36] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[19] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[37] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[23] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[13] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[57] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[34] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[22] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[48] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[25] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[47] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[39] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[12] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[14] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[46] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[50] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[15] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[24] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[27] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[28] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[29] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[35] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[43] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[21] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[18] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[17] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iskandar, K.; Marchin, L.; Kodjikian, L.; Rocher, M.; Roques, C. Highlighting the Microbial Contamination of the Dropper Tip and Cap of In-Use Eye Drops, the Associated Contributory Factors, and the Risk of Infection: A Past-30-Years Literature Review. Pharmaceutics 2022, 14, 2176. https://doi.org/10.3390/pharmaceutics14102176
Iskandar K, Marchin L, Kodjikian L, Rocher M, Roques C. Highlighting the Microbial Contamination of the Dropper Tip and Cap of In-Use Eye Drops, the Associated Contributory Factors, and the Risk of Infection: A Past-30-Years Literature Review. Pharmaceutics. 2022; 14(10):2176. https://doi.org/10.3390/pharmaceutics14102176
Chicago/Turabian StyleIskandar, Katia, Loïc Marchin, Laurent Kodjikian, Maxime Rocher, and Christine Roques. 2022. "Highlighting the Microbial Contamination of the Dropper Tip and Cap of In-Use Eye Drops, the Associated Contributory Factors, and the Risk of Infection: A Past-30-Years Literature Review" Pharmaceutics 14, no. 10: 2176. https://doi.org/10.3390/pharmaceutics14102176
APA StyleIskandar, K., Marchin, L., Kodjikian, L., Rocher, M., & Roques, C. (2022). Highlighting the Microbial Contamination of the Dropper Tip and Cap of In-Use Eye Drops, the Associated Contributory Factors, and the Risk of Infection: A Past-30-Years Literature Review. Pharmaceutics, 14(10), 2176. https://doi.org/10.3390/pharmaceutics14102176