Peelable Nanocomposite Coatings: “Eco-Friendly” Tools for the Safe Removal of Radiopharmaceutical Spills or Accidental Contamination of Surfaces in General-Purpose Radioisotope Laboratories
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of the Decontamination Solutions
2.2.2. Controlled Contamination, Decontamination Procedure, and Activity Measurements
2.2.3. Characterization
3. Results and Discussions
3.1. Evaluation of the Properties of the Decontamination Solutions
3.2. Evaluation of the Properties of the Strippable Nanocomposite Films
3.3. Evaluation of the Decontamination Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jans, H.-S.; Stypinski, D.; Kumar, P.; Mercer, J.R.; McQuarrie, S.A.; McEwan, A.J.B.; Wiebe, L.I. Radiation Dosimetry of Theragnostic Pairs for Isotopes of Iodine in IAZA. Pharmaceutics 2022, 14, 1655. [Google Scholar] [CrossRef]
- Jadvar, H. Targeted Radionuclide Therapy: An Evolution Toward Precision Cancer Treatment. Am. J. Roentgenol. 2017, 209, 277. [Google Scholar] [CrossRef] [Green Version]
- Żuk, M.; Podgórski, R.; Ruszczyńska, A.; Ciach, T.; Majkowska-Pilip, A.; Bilewicz, A.; Krysiński, P. Multifunctional Nanoparticles Based on Iron Oxide and Gold-198 Designed for Magnetic Hyperthermia and Radionuclide Therapy as a Potential Tool for Combined HER2-Positive Cancer Treatment. Pharmaceutics 2022, 14, 1680. [Google Scholar] [CrossRef]
- Salih, S.; Alkatheeri, A.; Alomaim, W.; Elliyanti, A. Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges. Molecules 2022, 27, 5231. [Google Scholar] [CrossRef]
- Yeong, C.-H.; Cheng, M.-h.; Ng, K.-H. Therapeutic radionuclides in nuclear medicine: Current and future prospects. J. Zhejiang Univ. Sci. B 2014, 15, 845–863. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, N.M.; Tesán, F.C.; Zubillaga, M.B.; Salgueiro, M.J. Radioactivity Decontamination of Materials Commonly Used as Surfaces in General-Purpose Radioisotope Laboratories. J. Nucl. Med. Technol. 2014, 42, 292. [Google Scholar] [CrossRef] [Green Version]
- Mountford, P.J. Techniques for radioactive decontamination in nuclear medicine. Semin. Nucl. Med. 1991, 21, 82–89. [Google Scholar] [CrossRef]
- Gillings, N.; Hjelstuen, O.; Behe, M.; Decristoforo, C.; Elsinga, P.H.; Ferrari, V.; Kiss, O.C.; Kolenc, P.; Koziorowski, J.; Laverman, P.; et al. EANM guideline on quality risk management for radiopharmaceuticals. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3353–3364. [Google Scholar] [CrossRef]
- Environmental Health and Safety—Radiological Spills and Contaminations. Available online: https://www.ehs.iastate.edu/research/radiation/radioactive-materials/spills-and-contaminations (accessed on 1 February 2022).
- Ruhman, N.; Grantham, V.; Martin, C.; Martin, C. The effectiveness of decontamination products in the nuclear medicine department. J. Nucl. Med. Technol. 2010, 38, 191–194. [Google Scholar] [CrossRef]
- Akchata, S.; Lavanya, K.; Shivanand, B. Influence of Decontaminating Agents and Swipe Materials on Laboratory Simulated Working Surfaces Wet Spilled with Sodium Pertechnetate. IJNM Off. J. Soc. Nucl. Med. India. 2017, 32, 173. [Google Scholar]
- Kołodyńska, D. Chelating Agents of a New Generation as an Alternative to Conventional Chelators for Heavy Metal Ions Removal from Different Waste Waters. In Expanding Issues in Desalination; Ning, R.Y., Ed.; IntechOpen: London, UK, 2011. [Google Scholar]
- Liu, S.; He, Y.; Xie, H.; Ge, Y.; Lin, Y.; Yao, Z.; Jin, M.; Liu, J.; Chen, X.; Sun, Y.; et al. A State-of-the-Art Review of Radioactive Decontamination Technologies: Facing the Upcoming Wave of Decommissioning and Dismantling of Nuclear Facilities. Sustainability 2022, 14, 4021. [Google Scholar] [CrossRef]
- Gray, H.N.; Jorgensen, B.; McClaugherty, D.L.; Kippenberger, A. Smart Polymeric Coatings for Surface Decontamination. Ind. Eng. Chem. Res. 2001, 40, 3540–3546. [Google Scholar] [CrossRef]
- Yang, H.-M.; Yoon, I.-H.; Lee, Y. Poly(vinyl alcohol)-borax complex-based spray coating for the decontamination of radioactive Cs from wide-area surfaces. Chem. Eng. J. 2020, 402, 126299. [Google Scholar] [CrossRef]
- Yang, H.-M.; Park, C.W.; Lee, K.-W. Polymeric coatings for surface decontamination and ecofriendly volume reduction of radioactive waste after use. Prog. Nucl. Energy 2018, 104, 67–74. [Google Scholar] [CrossRef]
- Xu, X.; Pan, X.; Li, J.; Li, Z.; Xie, Y.; Lin, X. Radioactive decontamination in low-temperature environments by using a novel high-strength strippable coating. Chemosphere 2022, 308, 136187. [Google Scholar] [CrossRef]
- Gossard, A.; Lilin, A.; Faure, S. Gels, coatings and foams for radioactive surface decontamination: State of the art and challenges for the nuclear industry. Prog. Nucl. Energy 2022, 149, 104255. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, L.; Zhao, L.; Zhang, T. Strippable coatings for radioactive contamination removal: A short review and perspectives. J. Radioanal. Nucl. Chem. 2021, 330, 29–36. [Google Scholar] [CrossRef]
- Toader, G.; Stănescu, P.-O.; Zecheru, T.; Rotariu, T.; El-Ghayoury, A.; Teodorescu, M. Water-based strippable coatings containing bentonite clay for heavy metal surface decontamination. Arab. J. Chem. 2019, 12, 4026–4034. [Google Scholar] [CrossRef] [Green Version]
- Byrne, D.; Boeije, G.; Croft, I.; Hüttmann, G.; Luijkx, G.; Meier, F.; Parulekar, Y.; Stijntjes, G. Biodegradability of Polyvinyl Alcohol Based Film Used for Liquid Detergent Capsules. Biol. Abbaubarkeit Der Für Flüssigwaschmittelkapseln Verwendeten Folie Auf Polyvinylalkoholbasis 2021, 58, 88–96. [Google Scholar] [CrossRef]
- Kurowiak, J.; Kaczmarek-Pawelska, A.; Mackiewicz, A.G.; Bedzinski, R. Analysis of the Degradation Process of Alginate-Based Hydrogels in Artificial Urine for Use as a Bioresorbable Material in the Treatment of Urethral Injuries. Processes 2020, 8, 304. [Google Scholar] [CrossRef] [Green Version]
- Nur Hanani, Z.A.; Roos, Y.H.; Kerry, J.P. Use and application of gelatin as potential biodegradable packaging materials for food products. Int. J. Biol. Macromol. 2014, 71, 94–102. [Google Scholar] [CrossRef]
- Pulpea, D.; Rotariu, T.; Toader, G.; Pulpea, G.B.; Neculae, V.; Teodorescu, M. Decontamination of radioactive hazardous materials by using novel biodegradable strippable coatings and new generation complexing agents. Chemosphere 2020, 258, 127227. [Google Scholar] [CrossRef]
- Toader, G.; Pulpea, D.; Rotariu, T.; Diacon, A.; Rusen, E.; Moldovan, A.; Podaru, A.; Ginghină, R.; Alexe, F.; Iorga, O.; et al. Strippable Polymeric Nanocomposites Comprising Green Chelates, for the Removal of Heavy Metals and Radionuclides. Polymers 2021, 13, 4194. [Google Scholar] [CrossRef]
- Alonso-López, O.; López-Ibáñez, S.; Beiras, R. Assessment of Toxicity and Biodegradability of Poly(vinyl alcohol)-Based Materials in Marine Water. Polymers 2021, 13, 3742. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of poly (vinyl alcohol) based materials. Prog. Polym. Sci. 2003, 28, 963–1014. [Google Scholar] [CrossRef]
- Bonilla, J.; Paiano, R.B.; Lourenço, R.V.; Bittante, A.M.Q.B.; Sobral, P.J.A. Biodegradation of Films Based on Natural and Synthetic Biopolymers Using an Aquatic System from Active Sludge. J. Polym. Environ. 2021, 29, 1380–1395. [Google Scholar] [CrossRef]
- Reddy, M.S.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Sheikh, M.F.; Zolfagharian, A.; Bodaghi, M. Biopolymeric sustainable materials and their emerging applications. J. Environ. Chem. Eng. 2022, 10, 108159. [Google Scholar] [CrossRef]
- Júnior, R.M.S.; de Oliveira, T.A.; Araque, L.M.; Alves, T.S.; de Carvalho, L.H.; Barbosa, R. Thermal behavior of biodegradable bionanocomposites: Influence of bentonite and vermiculite clays. J. Mater. Res. Technol. 2019, 8, 3234–3243. [Google Scholar] [CrossRef]
- Chhabra, R.P.; Richardson, J.F. Chapter 1—Non-Newtonian Fluid Behaviour. In Non-Newtonian Flow and Applied Rheology, 2nd ed.; Chhabra, R.P., Richardson, J.F., Eds.; Butterworth-Heinemann: Oxford, UK, 2008; pp. 1–55. [Google Scholar]
- Al-Otoum, R.; Abulateefeh, S.R.; Taha, M.O. Preparation of novel ionotropically crosslinked beads based on alginate-terephthalic acid composites as potential controlled release matrices. Pharmazie 2014, 69, 10–18. [Google Scholar]
- Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. Temperature Dependences of IR Spectra of Humic Substances of Brown Coal. Agronomy 2021, 11, 1822. [Google Scholar] [CrossRef]
- Ng, H.M.; Saidi, N.M.; Omar, F.S.; Ramesh, K.; Ramesh, S.; Bashir, S. Thermogravimetric Analysis of Polymers. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 1–29. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/0471440264.pst667 (accessed on 1 February 2022).
- Apostolov, A.A.; Fakirov, S.; Vassileva, E.; Patil, R.D.; Mark, J.E. DSC and TGA studies of the behavior of water in native and crosslinked gelatin. J. Appl. Polym. Sci. 1999, 71, 465–470. [Google Scholar] [CrossRef]
- Gomaa, M.M.; Hugenschmidt, C.; Dickmann, M.; Abdel-Hady, E.E.; Mohamed, H.F.M.; Abdel-Hamed, M.O. Crosslinked PVA/SSA proton exchange membranes: Correlation between physiochemical properties and free volume determined by positron annihilation spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 28287–28299. [Google Scholar] [CrossRef]
- Salisu, A.; Sanagi, M.M.; Abu Naim, A.; Abd Karim, K.J.; Wan Ibrahim, W.A.; Abdulganiyu, U. Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions. Polym. Bull. 2016, 73, 519–537. [Google Scholar] [CrossRef]
- Mao, L.; Ma, L.; Fu, Y.; Chen, H.; Dai, H.; Zhu, H.; Wang, H.; Yu, Y.; Zhang, Y. Transglutaminase modified type A gelatin gel: The influence of intra-molecular and inter-molecular cross-linking on structure-properties. Food Chem. 2022, 395, 133578. [Google Scholar] [CrossRef]
- Soares, J.d.P.; Santos, J.; Chierice, G.O.; Cavalheiro, E. Thermal behavior of alginic acid and its sodium salt. Eclética Química 2004, 29, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Fathi, E.; Atyabi, N.; Imani, M.; Alinejad, Z. Physically crosslinked polyvinyl alcohol–dextran blend xerogels: Morphology and thermal behavior. Carbohydr. Polym. 2011, 84, 145–152. [Google Scholar] [CrossRef]
- Mohsin, M.; Hossin, A.; Haik, Y. Thermal and mechanical properties of poly(vinyl alcohol) plasticized with glycerol. J. Appl. Polym. Sci. 2011, 122, 3102–3109. [Google Scholar] [CrossRef]
- Montanucci, P.; Terenzi, S.; Santi, C.; Pennoni, I.; Bini, V.; Pescara, T.; Basta, G.; Calafiore, R. Insights in Behavior of Variably Formulated Alginate-Based Microcapsules for Cell Transplantation. Biomed. Res. Int. 2015, 2015, 965804. [Google Scholar] [CrossRef]
- Patrick, P.S.; Bear, J.C.; Fitzke, H.E.; Zaw-Thin, M.; Parkin, I.P.; Lythgoe, M.F.; Kalber, T.L.; Stuckey, D.J. Radio-metal cross-linking of alginate hydrogels for non-invasive in vivo imaging. Biomaterials 2020, 243, 119930. [Google Scholar] [CrossRef]
- Tran, E.L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N. Uranium and Cesium sorption to bentonite colloids under carbonate-rich environments: Implications for radionuclide transport. Sci. Total Environ. 2018, 643, 260–269. [Google Scholar] [CrossRef]
- Seliman, A.F.; Lasheen, Y.F.; Youssief, M.A.E.; Abo-Aly, M.M.; Shehata, F.A. Removal of some radionuclides from contaminated solution using natural clay: Bentonite. J. Radioanal. Nucl. Chem. 2014, 300, 969–979. [Google Scholar] [CrossRef]
- Hoffer, P.B. Fluorescent Thyroid Scanning. Am. J. Roentgenol. 1969, 105, 721–727. [Google Scholar] [CrossRef] [Green Version]
- Klumpp, J.; Bertelli, L.; Waters, T. Interpretation of Nasal Swab Measurements Following Suspected Releases of Actinide Aerosols. Health Phys. 2017, 112, 465–469. [Google Scholar] [CrossRef]
- Kołodyńska, D. Iminodisuccinic acid as a new complexing agent for removal of heavy metal ions from industrial effluents. Chem. Eng. J. 2009, 152, 277–288. [Google Scholar] [CrossRef]
- Kołodyńska, D. Adsorption characteristics of chitosan modified by chelating agents of a new generation. Chem. Eng. J. 2012, 179, 33–43. [Google Scholar] [CrossRef]
- Achour, S.; Amokrane, S.; Chegrouche, S.; Guedioura, B.; Nibou, D. Adsorption Mechanism Study of Radionuclide 60Co by Purified and α-Fe2O3-Supported Bentonite from Radioactive Solution. Arab. J. Sci. Eng. 2022, 47, 5629–5645. [Google Scholar] [CrossRef]
Sample | Glt (wt.%) | Alg (wt.%) | PVA (wt.%) | IDS (wt.%) | BT (wt.%) | Gly (wt.%) |
---|---|---|---|---|---|---|
DS1 | - | - | 10 | 0.5 | 1 | 2.5 |
DS2 | - | 1 | 3 | 0.5 | 1 | 2.5 |
DS3 | 1 | - | 3 | 0.5 | 1 | 2.5 |
DS4 | 1 | 0.5 | 3 | 0.5 | 1 | 2.5 |
DS5 | 0.5 | 1 | 3 | 0.5 | 1 | 2.5 |
DS6 | 1 | 1 | - | 0.5 | 1 | 2.5 |
Temperature | 25 °C | 30 °C | 35 °C | 40 °C | 45 °C | 30 °C | 35 °C | 40 °C |
---|---|---|---|---|---|---|---|---|
Sample | Evaporation Rate (mg/min) | Total Film-Forming Duration (h) | ||||||
DS1 | 4.4 | 7.1 | 10.3 | 15.8 | 12.7 | 7.8 | 5.3 | 3.5 |
DS2 | 3.3 | 6.7 | 11.0 | 15.4 | 16.6 | 8.2 | 5.0 | 3.5 |
DS3 | 4.2 | 7.6 | 10.8 | 14.8 | 13.3 | 7.2 | 5.0 | 3.7 |
DS4 | 3.5 | 6.7 | 10.8 | 15.0 | 15.6 | 8.1 | 5.0 | 3.6 |
DS5 | 4.3 | 7.3 | 11.3 | 15.9 | 12.9 | 7.4 | 4.8 | 3.5 |
DS6 | 3.8 | 7.2 | 11.8 | 16.0 | 14.9 | 7.8 | 4.8 | 3.5 |
Sample | T10%, [°C] | Tmax, [°C] |
---|---|---|
DS1 | 140 | 50, 175, 300, 445 |
DS2 | 152 | 64, 190, 290, 430 |
DS3 | 157 | 60, 192, 324, 430 |
DS4 | 155 | 60, 185, 305, 425 |
DS5 | 156 | 69, 181, 226, 289, 426 |
DS6 | 225 | 97, 295, 425, 570, 822 |
Sample | DS1 | DS2 | DS3 | DS4 | DS5 | DS6 |
Tg [°C] | 72.0 | 67.6 | 70.0 | 74.9 | 70.7 | 46.5 |
Sample | Young’s Modulus * (MPa) | σmax (MPa) | εmax (%) |
---|---|---|---|
DS1 | 0.58 ± 0.2 | 6.3 ± 0.4 | 74.8 ± 0.6 |
DS2 | 1.34 ± 0.6 | 25.1± 0.4 | 64.2 ± 0.8 |
DS3 | 0.41 ± 0.2 | 5.3 ± 0.5 | 73.3 ± 0.7 |
DS4 | 1.46 ± 0.2 | 27.0 ± 0.4 | 80.2 ± 0.6 |
DS5 | 4.74 ± 0.4 | 37.2 ± 0.5 | 46.2 ± 0.8 |
DS6 | 36.86 ± 1.2 | 25.5 ± 1.2 | 0.8 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotariu, T.; Pulpea, D.; Toader, G.; Rusen, E.; Diacon, A.; Neculae, V.; Liggat, J. Peelable Nanocomposite Coatings: “Eco-Friendly” Tools for the Safe Removal of Radiopharmaceutical Spills or Accidental Contamination of Surfaces in General-Purpose Radioisotope Laboratories. Pharmaceutics 2022, 14, 2360. https://doi.org/10.3390/pharmaceutics14112360
Rotariu T, Pulpea D, Toader G, Rusen E, Diacon A, Neculae V, Liggat J. Peelable Nanocomposite Coatings: “Eco-Friendly” Tools for the Safe Removal of Radiopharmaceutical Spills or Accidental Contamination of Surfaces in General-Purpose Radioisotope Laboratories. Pharmaceutics. 2022; 14(11):2360. https://doi.org/10.3390/pharmaceutics14112360
Chicago/Turabian StyleRotariu, Traian, Daniela Pulpea, Gabriela Toader, Edina Rusen, Aurel Diacon, Valentina Neculae, and John Liggat. 2022. "Peelable Nanocomposite Coatings: “Eco-Friendly” Tools for the Safe Removal of Radiopharmaceutical Spills or Accidental Contamination of Surfaces in General-Purpose Radioisotope Laboratories" Pharmaceutics 14, no. 11: 2360. https://doi.org/10.3390/pharmaceutics14112360
APA StyleRotariu, T., Pulpea, D., Toader, G., Rusen, E., Diacon, A., Neculae, V., & Liggat, J. (2022). Peelable Nanocomposite Coatings: “Eco-Friendly” Tools for the Safe Removal of Radiopharmaceutical Spills or Accidental Contamination of Surfaces in General-Purpose Radioisotope Laboratories. Pharmaceutics, 14(11), 2360. https://doi.org/10.3390/pharmaceutics14112360