Modification of Whey Proteins by Sonication and Hydrolysis for the Emulsification and Spray Drying Encapsulation of Grape Seed Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modification of WPC
2.2. Degree of Hydrolysis (DH)
2.3. Amino Acid Composition
2.4. Antioxidant Characterization
2.4.1. DPPH Free Radical Scavenging Activity
2.4.2. ABTS Free Radical Scavenging Activity
2.5. Techno-Functional Properties
2.6. Preparation of O/W Emulsions
2.7. Characterization of Emulsions
2.8. Spray drying Encapsulation
2.9. Characterization of Spray-Dried Powders
2.10. Lipid Oxidation and Storage Stability of Encapsulated Powders
2.11. Statistical Analysis
3. Results and Discussion
3.1. Degree of Hydrolysis
3.2. Amino Acid Composition
3.3. Antioxidant Activity
3.4. Techno-Functional Properties
3.5. Physical Characteristics, Morphology and Stability of Emulsions
3.6. Physicochemical Characteristics of Spray-Dried Emulsions
3.7. Color and Morphology of Powders
3.8. Encapsulation Efficiency, Reconstitution, and Oxidative Stability of Spray Dried Powders
3.9. FTIR Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, W.; Wang, Y.; Selomulya, C. Dairy and plant proteins as natural food emulsifiers. Trends Food Sci. Technol. 2020, 105, 261–272. [Google Scholar] [CrossRef]
- McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2017, 251, 55–79. [Google Scholar] [CrossRef] [PubMed]
- Akbarbaglu, Z.; Ayaseh, A.; Ghanbarzadeh, B.; Sarabandi, K. Techno-functional, biological and structural properties of Spirulina platensis peptides from different proteases. Algal Res. 2022, 66, 102755. [Google Scholar] [CrossRef]
- Sarabandi, K.; Jafari, S.M. Improving the antioxidant stability of flaxseed peptide fractions during spray drying encapsulation by surfactants: Physicochemical and morphological features. J. Food Eng. 2020, 286, 110131. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B. The functional modification of legume proteins by ultrasonication: A review. Trends Food Sci. Technol. 2020, 98, 107–116. [Google Scholar] [CrossRef]
- Jain, S.; Anal, A.K. Optimization of extraction of functional protein hydrolysates from chicken egg shell membrane (ESM) by ultrasonic assisted extraction (UAE) and enzymatic hydrolysis. LWT—Food Sci. Technol. 2016, 69, 295–302. [Google Scholar] [CrossRef]
- Meng, Y.; Liang, Z.; Zhang, C.; Hao, S.; Han, H.; Du, P.; Li, A.; Shao, H.; Li, C.; Liu, L. Ultrasonic modification of whey protein isolate: Implications for the structural and functional properties. LWT 2021, 152, 112272. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Jafari, S.M.; Sarabandi, K.; Mohammadi, M.; Heshmati, M.K.; Pezeshki, A. Influence of spray drying encapsulation on the retention of antioxidant properties and microstructure of flaxseed protein hydrolysates. Colloids Surfaces B Biointerfaces 2019, 178, 421–429. [Google Scholar] [CrossRef]
- Sarabandi, K.; Jafari, S.M. Fractionation of Flaxseed-Derived Bioactive Peptides and Their Influence on Nanoliposomal Carriers. J. Agric. Food Chem. 2020, 68, 15097–15106. [Google Scholar] [CrossRef]
- Moghadam, M.; Salami, M.; Mohammadian, M.; Emam-Djomeh, Z.; Jahanbani, R.; Moosavi-Movahedi, A.A. Physicochemical and bio-functional properties of walnut proteins as affected by trypsin-mediated hydrolysis. Food Biosci. 2020, 36, 100611. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Peighambardoust, S.H.; Sarabandi, K.; Jafari, S.M. Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chem. 2021, 359, 129965. [Google Scholar] [CrossRef] [PubMed]
- Hathout, R.M.; Gad, H.A.; Abdel-Hafez, S.M.; Nasser, N.; Khalil, N.; Ateyya, T.; Amr, A.; Yasser, N.; Nasr, S.; Metwally, A.A. Gelatinized core liposomes: A new Trojan horse for the development of a novel timolol maleate glaucoma medication. Int. J. Pharm. 2018, 556, 192–199. [Google Scholar] [CrossRef]
- Ossama, M.; Hathout, R.M.; Attia, D.A.; Mortada, N.D. Enhanced Allicin Cytotoxicity on HEPG-2 Cells Using Glycyrrhetinic Acid Surface-Decorated Gelatin Nanoparticles. ACS Omega 2019, 4, 11293–11300. [Google Scholar] [CrossRef] [PubMed]
- do Evangelho, J.A.; Vanier, N.L.; Pinto, V.Z.; De Berrios, J.J.; Dias, A.R.G.; Zavareze, E.D.R. Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties. Food Chem. 2017, 214, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Damerau, A.; Ogrodowska, D.; Banaszczyk, P.; Dajnowiec, F.; Tańska, M.; Linderborg, K.M. Baltic herring (Clupea harengus membras) oil encapsulation by spray drying using a rice and whey protein blend as a coating material. J. Food Eng. 2021, 314, 110769. [Google Scholar] [CrossRef]
- Assadpour, E.; Jafari, S.M. Advances in Spray-Drying Encapsulation of Food Bioactive Ingredients: From Microcapsules to Nanocapsules. Annu. Rev. Food Sci. Technol. 2019, 10, 103–131. [Google Scholar] [CrossRef]
- Alizadeh, O.; Aliakbarlu, J. Effects of ultrasound and ohmic heating pretreatments on hydrolysis, antioxidant and antibacterial activities of whey protein concentrate and its fractions. LWT 2020, 131, 109913. [Google Scholar] [CrossRef]
- Tafti, A.G.; Peighambardoust, S.H.; Hesari, J.; Bahrami, A.; Bonab, E.S. Physico-chemical and functional properties of spray-dried sourdough in breadmaking. Food Sci. Technol. Int. 2013, 19, 271–278. [Google Scholar] [CrossRef]
- Gomes, M.H.G.; Kurozawa, L.E. Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. J. Food Eng. 2019, 267, 109761. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- You, L.; Zhao, M.; Regenstein, J.M.; Ren, J. Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion. Food Chem. 2010, 120, 810–816. [Google Scholar] [CrossRef]
- Ge, J.; Sun, C.-X.; Mata, A.; Corke, H.; Gan, R.-Y.; Fang, Y. Physicochemical and pH-dependent functional properties of proteins isolated from eight traditional Chinese beans. Food Hydrocoll. 2021, 112, 106288. [Google Scholar] [CrossRef]
- Elik, A.; Yanık, D.K.; Göğüş, F. A comparative study of encapsulation of carotenoid enriched-flaxseed oil and flaxseed oil by spray freeze-drying and spray drying techniques. LWT 2021, 143, 111153. [Google Scholar] [CrossRef]
- Sarabandi, K.; Mahoonak, A.S.; Akbari, M. Physicochemical properties and antioxidant stability of microencapsulated marjoram extract prepared by co-crystallization method. J. Food Process Eng. 2018, 42, e12949. [Google Scholar] [CrossRef] [Green Version]
- Noello, C.; Carvalho, A.; Silva, V.; Hubinger, M. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition. Food Res. Int. 2016, 89, 549–557. [Google Scholar] [CrossRef]
- Zhou, D.; Pan, Y.; Ye, J.; Jia, J.; Ma, J.; Ge, F. Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil. LWT—Food Sci. Technol. 2017, 83, 292–297. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, J.; Li, J.; Sun, H.; Liu, Y. Physicochemical and antioxidative characteristics of black bean protein hydrolysates obtained from different enzymes. Food Hydrocoll. 2019, 97, 105222. [Google Scholar] [CrossRef]
- Ballatore, M.B.; del Rosario Bettiol, M.; Braber, N.L.V.; Aminahuel, C.A.; Rossi, Y.E.; Petroselli, G.; Erra-Balsells, R.; Cavaglieri, L.R.; Montenegro, M.A. Antioxidant and cytoprotective effect of peptides produced by hydrolysis of whey protein concentrate with trypsin. Food Chem. 2020, 319, 126472. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Álvarez, C.; O’Donnell, C.P. Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends Food Sci. Technol. 2015, 46, 60–67. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Al-Khalifa, A.S.; Shahidi, F. Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. J. Funct. Foods 2015, 18, 1125–1137. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Xie, J.; Du, M.; Shen, M.; Wu, T.; Lin, L. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chem. 2018, 270, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Hongxin, W.; Admassu, H.; Noman, A.; Ma, C.; Wei, F.A. Degree of hydrolysis, functional and antioxidant properties of protein hydrolysates from Grass Turtle (Chinemys reevesii ) as influenced by enzymatic hydrolysis conditions. Food Sci. Nutr. 2021, 9, 4031–4047. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Chang, S.K.; Meng, S. Comparing the kinetics of the hydrolysis of by-product from channel catfish (Ictalurus punctatus) fillet processing by eight proteases. LWT 2019, 111, 809–820. [Google Scholar] [CrossRef]
- Zang, X.; Yue, C.; Wang, Y.; Shao, M.; Yu, G. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. J. Cereal Sci. 2018, 85, 168–174. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Chang, C.; Chen, J.; Cao, F.; Zhao, J.; Zheng, Y.; Zhu, J. Physicochemical and functional properties of proteins extracted from three microalgal species. Food Hydrocoll. 2019, 96, 510–517. [Google Scholar] [CrossRef]
- Eckert, E.; Han, J.; Swallow, K.; Tian, Z.; Jarpa-Parra, M.; Chen, L. Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chem. 2019, 96, 725–741. [Google Scholar] [CrossRef]
- Premi, M.; Sharma, H.K. Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. Int. J. Biol. Macromol. 2017, 105, 1232–1240. [Google Scholar] [CrossRef]
- Carneiro, H.C.; Tonon, R.V.; Grosso, C.R.; Hubinger, M.D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Sukkhown, P.; Jangchud, K.; Lorjaroenphon, Y.; Pirak, T. Flavored-functional protein hydrolysates from enzymatic hydrolysis of dried squid by-products: Effect of drying method. Food Hydrocoll. 2018, 76, 103–112. [Google Scholar] [CrossRef]
- Botrel, D.A.; de Barros Fernandes, R.V.; Borges, S.V.; Yoshida, M.I. Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Res. Int. 2014, 62, 344–352. [Google Scholar] [CrossRef]
- Karaaslan, M.; Şengün, F.; Cansu, Ü.; Başyiğit, B.; Sağlam, H.; Karaaslan, A. Gum arabic/maltodextrin microencapsulation confers peroxidation stability and antimicrobial ability to pepper seed oil. Food Chem. 2021, 337, 127748. [Google Scholar] [CrossRef] [PubMed]
- Nesterenko, A.; Alric, I.; Silvestre, F.; Durrieu, V. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Ind. Crop. Prod. 2013, 42, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Saguer, E.; Alvarez, P.; Sedman, J.; Ismail, A. Study of the denaturation/aggregation behaviour of whole porcine plasma and its protein fractions during heating under acidic pH by variable-temperature FTIR spectroscopy. Food Hydrocoll. 2013, 33, 402–414. [Google Scholar] [CrossRef]
- Motoyama, M.; Vénien, A.; Loison, O.; Sandt, C.; Watanabe, G.; Sicard, J.; Sasaki, K.; Astruc, T. In situ characterization of acidic and thermal protein denaturation by infrared microspectroscopy. Food Chem. 2018, 248, 322–329. [Google Scholar] [CrossRef]
- Lei, M.; Jiang, F.-C.; Cai, J.; Hu, S.; Zhou, R.; Liu, G.; Wang, Y.-H.; Wang, H.-B.; He, J.-R.; Xiong, X.-G. Facile microencapsulation of olive oil in porous starch granules: Fabrication, characterization, and oxidative stability. Int. J. Biol. Macromol. 2018, 111, 755–761. [Google Scholar] [CrossRef]
Amino Acid | Crude Protein (TAA) | FAA (mg Amino Acid/g Dry Sample) | ||
---|---|---|---|---|
0 min | 30 min-Ul | 30 min-En | ||
Aspartic acid | 77.1 | 0.5 | 2.5 | 4.1 |
Glutamic acid | 128.9 | 2.9 | 3.9 | 5.8 |
Histidine | 6.4 | - | 0.8 | 2.1 |
Serine | 44.5 | 1.1 | 1.7 | 3.6 |
Arginine | 22.6 | 0.3 | 2.6 | 4.5 |
Glycine | 45.4 | 0.8 | 2.3 | 3.9 |
Threonine * | 56.3 | 0.1 | 2.1 | 4.3 |
Alanine | 44.7 | 0.2 | 1.9 | 3.8 |
Tyrosine | 15.3 | 0.1 | 1.1 | 1.5 |
Methionine * | 27.8 | 0.4 | 1.3 | 2.4 |
Valine * | 15.9 | 0.1 | 0.8 | 2.7 |
Phenylalanine | 29.7 | 0.3 | 1.2 | 3.6 |
Isoleucine * | 40.3 | 1.4 | 1.3 | 5.1 |
Leucine * | 87.2 | 2.8 | 2.4 | 8.3 |
Lysine * | 71.3 | 1.5 | 1.3 | 4.2 |
Tryptophan * | 14.2 | 0.1 | 0.3 | 1.1 |
HAA | 275.1 | 5.4 | 10.0 | 28.5 |
AAA | 135.0 | 2.1 | 4.8 | 11.3 |
TAA | 727.6 | 12.6 | 27.5 | 61.0 |
Treatment | Size (μm) | PDI | Zeta Potential (mV) |
---|---|---|---|
WPC | 0.286 ± 9.61 a | 0.33 ± 0.02 a | −8.56 ± 1.15 a |
Ul-30 | 0.253 ± 9.07 b | 0.31 ± 0.02 ab | −10.70 ± 1.34 a |
En-30 | 0.192 ± 10.02 c | 0.28 ± 0.02 b | −14.03 ± 1.53 b |
Sample | Yield (%) | Moisture (%) | aw | Solubility (%) | Hygroscopicity (%) |
---|---|---|---|---|---|
WPC | 68.73 ± 2.01 a | 3.57 ± 0.32 a | 0.267 ± 0.01 a | 83.80 ± 1.81 c | 13.63 ± 0.91 b |
Ul-30 | 65.23 ± 2.74 a | 3.37 ± 0.15 a | 0.243 ± 0.01 ab | 87.63 ± 1.98 b | 15.17 ± 0.99 b |
En-30 | 65.23 ± 2.74 a | 3.20 ± 0.20 a | 0.227 ± 0.01 b | 92.70 ± 1.70 a | 18.47 ± 1.02 a |
Bulk Density (g/mL) | Tapped Density (g/mL) | Angle of Repose (°) | Hausner Ratio | Carr Index | |
WPC | 0.487 ± 0.01 b | 0.600 ± 0.01 c | 24.33 ± 1.53 b | 1.230 ± 0.01 a | 0.187 ± 0.01 b |
Ul-30 | 0.533 ± 0.01 a | 0.670 ± 0.01 a | 30.00 ± 2.00 a | 1.257 ± 0.01 a | 0.207 ± 0.01 a |
En-30 | 0.520 ± 0.01 a | 0.650 ± 0.01 b | 27.33 ± 1.53 ab | 1.247 ± 0.01 a | 0.203 ± 0.01 a |
L* | a* | b* | Hue Angle (°) | Chroma | |
---|---|---|---|---|---|
Primary emulsions | |||||
WPC | 63.60 ± 2.68 b | 5.22 ± 0.56 a | 28.30 ± 0.63 a | 79.50 ± 1.28 c | 28.77 ± 0.55 a |
Ul-30 | 73.63 ± 1.91 a | −1.51 ± 0.24 c | 19.24 ± 0.14 b | 94.47 ± 0.66 a | 19.33 ± 0.15 b |
En-30 | 70.93 ± 2.66 a | 1.99 ± 0.47 b | 16.30 ± 0.01 c | 83.00 ± 1.60 b | 16.43 ± 0.06 c |
Spray dried emulsions | |||||
WPC | 56.42 ± 0.75 a | 6.04 ± 0.46 a | 22.60 ± 2.33 a | 75.00 ± 1.45 b | 23.40 ± 2.23 a |
Ul-30 | 56.48 ± 1.01 a | −0.25 ± 0.19 b | 14.10 ± 1.50 c | 91.00 ± 0.70 a | 14.10 ± 1.48 c |
En-30 | 56.55 ± 1.32 a | 0.63 ± 1.46 b | 18.22 ± 1.79 b | 88.28 ± 4.42 a | 18.27 ± 1.79 b |
Treatment | EE (%) | Size (μm) | Peroxide Value | ||
---|---|---|---|---|---|
Powder Particles | Primary Emulsions | Reconstituted Emulsions | |||
WPC | 83.60 ± 2.52 b | 9.83 ± 0.84 a | 0.286 ± 9.61 a | 0.737 ± 10.15 a | 3.57 ± 0.55 a |
Ul-30 | 88.77 ± 1.62 a | 8.77 ± 0.47 b | 0.253 ± 9.07 b | 0.575 ± 23.46 b | 2.27 ± 0.21 b |
En-30 | 91.67 ± 2.63 a | 8.60 ± 0.79 b | 0.192 ± 10.02 c | 0.296 ± 17.01 c | 1.43 ± 0.45 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarabandi, K.; Tamjidi, F.; Akbarbaglu, Z.; Samborska, K.; Gharehbeglou, P.; Kharazmi, M.S.; Jafari, S.M. Modification of Whey Proteins by Sonication and Hydrolysis for the Emulsification and Spray Drying Encapsulation of Grape Seed Oil. Pharmaceutics 2022, 14, 2434. https://doi.org/10.3390/pharmaceutics14112434
Sarabandi K, Tamjidi F, Akbarbaglu Z, Samborska K, Gharehbeglou P, Kharazmi MS, Jafari SM. Modification of Whey Proteins by Sonication and Hydrolysis for the Emulsification and Spray Drying Encapsulation of Grape Seed Oil. Pharmaceutics. 2022; 14(11):2434. https://doi.org/10.3390/pharmaceutics14112434
Chicago/Turabian StyleSarabandi, Khashayar, Fardin Tamjidi, Zahra Akbarbaglu, Katarzyna Samborska, Pouria Gharehbeglou, Mohammad Saeed Kharazmi, and Seid Mahdi Jafari. 2022. "Modification of Whey Proteins by Sonication and Hydrolysis for the Emulsification and Spray Drying Encapsulation of Grape Seed Oil" Pharmaceutics 14, no. 11: 2434. https://doi.org/10.3390/pharmaceutics14112434
APA StyleSarabandi, K., Tamjidi, F., Akbarbaglu, Z., Samborska, K., Gharehbeglou, P., Kharazmi, M. S., & Jafari, S. M. (2022). Modification of Whey Proteins by Sonication and Hydrolysis for the Emulsification and Spray Drying Encapsulation of Grape Seed Oil. Pharmaceutics, 14(11), 2434. https://doi.org/10.3390/pharmaceutics14112434