Cyclodextrin-Based Delivery Systems and Hydroxycinnamic Acids: Interactions and Effects on Crucial Parameters Influencing Oral Bioavailability—A Review
Abstract
:1. Introduction
2. Hydroxycinnamic Acids and Cyclodextrin (CD)-Based Delivery Systems
3. Stoichiometric Ratio and Binding Constant (K) of Hydroxycinnamic Acids and Cyclodextrins
4. Complexation, Encapsulation, and Loading Efficiencies of Hydroxycinnamic Acid–Cyclodextrin Complexes
5. Effect of Cyclodextrins on the Hydroxycinnamic Acids Water Solubility, Dissolution, Release, Stability, and Absorption
5.1. Water Solubility and Dissolution
5.2. Release
5.3. Stability
5.4. In Vitro and In Vivo Absorption Studies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Lafay, S.; Gil-Izquierdo, A. Bioavailability of Phenolic Acids. Phytochem. Rev. 2008, 7, 301–311. [Google Scholar] [CrossRef]
- Rashmi, H.B.; Negi, P.S. Phenolic Acids from Vegetables: A Review on Processing Stability and Health Benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef]
- Coman, V.; Vodnar, D.C. Hydroxycinnamic Acids and Human Health: Recent Advances. J. Sci. Food Agric. 2020, 100, 483–499. [Google Scholar] [CrossRef] [PubMed]
- Sova, M.; Saso, L. Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites. Nutrients 2020, 12, 2190. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Moghadasian, M.H. Bioavailability of Hydroxycinnamates: A Brief Review of in vivo and in vitro Studies. Phytochem. Rev. 2010, 9, 133–145. [Google Scholar] [CrossRef]
- Granata, G.; Consoli, G.M.L.; Lo Nigro, R.; Geraci, C. Hydroxycinnamic Acids Loaded in Lipid-Core Nanocapsules. Food Chem. 2018, 245, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, C.S.; Chen, Q.Z.; Wang, S.; Xiong, Y.A.; Jing, J.; Lv, J.J. Characterization, Pharmacokinetics and Tissue Distribution of Chlorogenic Acid-Loaded Self-Microemulsifying Drug Delivery System. Eur. J. Pharm. Sci. 2017, 100, 102–108. [Google Scholar] [CrossRef]
- Liu, C.S.; Chen, L.; Hu, Y.N.; Dai, J.L.; Ma, B.; Tang, Q.F.; Tan, X.M. Self-Microemulsifying Drug Delivery System for Improved Oral Delivery and Hypnotic Efficacy of Ferulic Acid. Int. J. Nanomed. 2020, 15, 2059–2070. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Z.; Zhang, K.; Yang, G.; Wang, Z.; Zhao, J.; Hu, R.; Feng, N. Ethyl Oleate-Containing Nanostructured Lipid Carriers Improve Oral Bioavailability of Trans-Ferulic Acid Ascompared with Conventional Solid Lipid Nanoparticles. Int. J. Pharm. 2016, 511, 57–64. [Google Scholar] [CrossRef]
- Madureira, A.R.; Campos, D.A.; Oliveira, A.; Sarmento, B.; Manuela, M.; Maria, A. Insights into the Protective Role of Solid Lipid Nanoparticles on Rosmarinic Acid Bioactivity during Exposure to Simulated Gastrointestinal Conditions. Colloids Surf. B Biointerfaces 2016, 139, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Nallamuthu, I.; Devi, A.; Khanum, F. Chlorogenic Acid Loaded Chitosan Nanoparticles with Sustained Release Property, Retained Antioxidant Activity and Enhanced Bioavailability. Asian J. Pharm. Sci. 2015, 10, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.H.; Zhang, L.; Li, J.S.; Chen, L.H.; Zheng, Q.; Chen, T.; Chen, Z.P.; Fu, T.M.; Di, L.Q. Enhanced Oral Bioavailability and Prophylactic Effects on Oxidative Stress and Hepatic Damage of an Oil Solution Containing a Rosmarinic Acid-Phospholipid Complex. J. Funct. Foods 2015, 19, 63–73. [Google Scholar] [CrossRef]
- Yang, J.-H.; Mao, K.-J.; Huang, P.; Ye, Y.-J.; Guo, H.-S.; Cai, B.-C. Effect of Piperine on the Bioavailability and Pharmacokinetics of Rosmarinic Acid in Rat Plasma Using UPLC-MS/MS. Xenobiotica 2018, 48, 178–185. [Google Scholar] [CrossRef]
- Jung, J.W.; Kim, J.M.; Jeong, J.S.; Son, M.; Lee, H.S.; Lee, M.G.; Kang, H.E. Pharmacokinetics of Chlorogenic Acid and Corydaline in DA-9701, a New Botanical Gastroprokinetic Agent, in Rats. Xenobiotica 2014, 44, 635–643. [Google Scholar] [CrossRef]
- Pinho, E.; Grootveld, M.; Soares, G.; Henriques, M. Cyclodextrins as Encapsulation Agents for Plant Bioactive Compounds. Carbohydr. Polym. 2014, 101, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Suvarna, V.; Gujar, P.; Murahari, M. Complexation of Phytochemicals with Cyclodextrin Derivatives—An Insight. Biomed. Pharmacother. 2017, 88, 1122–1144. [Google Scholar] [CrossRef]
- Adeoye, O.; Cabral-Marques, H. Cyclodextrin Nanosystems in Oral Drug Delivery: A Mini Review. Int. J. Pharm. 2017, 531, 521–531. [Google Scholar] [CrossRef]
- Brewster, M.E.; Loftsson, T. Cyclodextrins as Pharmaceutical Solubilizers. Adv. Drug Deliv. Rev. 2007, 59, 645–666. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical Applications of Cyclodextrins: Basic Science and Product Development. J. Pharm. Pharmacol. 2010, 62, 1607–1621. [Google Scholar] [CrossRef]
- Loftsson, T.; Másson, M.; Brewster, M.E. Self-Association of Cyclodextrins and Cyclodextrin Complexes. J. Pharm. Sci. 2004, 93, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Carrier, R.L.; Miller, L.A.; Ahmed, I. The Utility of Cyclodextrins for Enhancing Oral Bioavailability. J. Control. Release 2007, 123, 78–99. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Vogensen, S.B.; Brewster, M.E.; Konrasdottir, F. Effects of Cyclodextrins on Drug Delivery through Biological Membranes. J. Pharm. Sci. 2007, 96, 2532–2546. [Google Scholar] [CrossRef]
- Szente, L.; Szejtli, J. Highly Soluble Cyclodextrin Derivatives: Chemistry, Properties, and Trends in Development. Adv. Drug Deliv. Rev. 1999, 36, 17–28. [Google Scholar] [CrossRef]
- Sherje, A.P.; Dravyakar, B.R.; Kadam, D.; Jadhav, M. Cyclodextrin-Based Nanosponges: A Critical Review. Carbohydr. Polym. 2017, 173, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Shahiwala, A. Cyclodextrin Conjugates for Colon Drug Delivery. J. Drug Deliv. Sci. Technol. 2020, 55, 101448. [Google Scholar] [CrossRef]
- Da Cunha Filho, M.S.S.; Sá-Barreto, L.C.L. Utilização de Ciclodextrinas Na Formação de Complexos de Inclusão de Interesse Farmacêutico. Rev. De Cienc. Farm. Basica E Apl. 2007, 28, 1–9. [Google Scholar]
- Han, X.; Zhang, Z.; Shen, H.; Zheng, J.; Zhang, G. Comparison of Structures, Physicochemical Properties and in Vitro Bioactivity between Ferulic Acid-β-Cyclodextrin Conjugate and the Corresponding Inclusion Complex. Food Res. Int. 2019, 125, 108619. [Google Scholar] [CrossRef]
- Han, X.; Wei, T.; Jiang, H.; Li, W.; Zhang, G. Enhanced Water Solubility, Stability, and in Vitro Antitumor Activity of Ferulic Acid by Chemical Conjugation with Amino- b-Cyclodextrins. J. Mater. Sci. 2020, 55, 8694–8709. [Google Scholar] [CrossRef]
- García-Padial, M.; Martínez-Ohárriz, M.C.; Navarro-Blasco, I.; Zornoza, A. The Role of Cyclodextrins in ORAC-Fluorescence Assays. Antioxidant Capacity of Tyrosol and Caffeic Acid with Hydroxypropyl-β-Cyclodextrin. J. Agric. Food Chem. 2013, 61, 12260–12264. [Google Scholar] [CrossRef]
- Irwin, P.L.; Pfeffer, P.E.; Doner, L.W.; Sapers, G.M.; Brewster, J.D.; Nagahashi, G.; Hicks, K.B. Binding Geometry, Stoichiometry, and Thermodynamics of Cyclomalto-Oligosaccharide (Cyclodextrin) Inclusion Complex Formation with Chlorogenic Acid, the Major Substrate of Apple Polyphenol Oxidase. Carbohydr. Res. 1994, 256, 13–27. [Google Scholar] [CrossRef]
- Rezaei, A.; Varshosaz, J.; Fesharaki, M.; Farhang, A.; Jafari, S.M. Improving the Solubility and in Vitro Cytotoxicity (Anticancer Activity) of Ferulic Acid by Loading It into Cyclodextrin Nanosponges. Int. J. Nanomed. 2019, 14, 4589–4599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kfoury, M.; Landy, D.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Effect of Cyclodextrin Complexation on Phenylpropanoids’ Solubility and Antioxidant Activity. Beilstein J. Org. Chem. 2014, 10, 2322–2331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kfoury, M.; Lounès-Hadj Sahraoui, A.; Bourdon, N.; Laruelle, F.; Fontaine, J.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Solubility, Photostability and Antifungal Activity of Phenylpropanoids Encapsulated in Cyclodextrins. Food Chem. 2016, 196, 518–525. [Google Scholar] [CrossRef]
- Shiozawa, R.; Inoue, Y.; Murata, I.; Kanamoto, I. Effect of Antioxidant Activity of Caffeic Acid with Cyclodextrins Using Ground Mixture Method. Asian J. Pharm. Sci. 2018, 13, 24–33. [Google Scholar] [CrossRef]
- Kfoury, M.; Geagea, C.; Ruellan, S.; Greige-Gerges, H.; Fourmentin, S. Effect of Cyclodextrin and Cosolvent on the Solubility and Antioxidant Activity of Caffeic Acid. Food Chem. 2019, 278, 163–169. [Google Scholar] [CrossRef]
- Nakhle, L.; Kfoury, M.; Greige-Gerges, H.; Fourmentin, S. Effect of Dimethylsulfoxide, Ethanol, α- and β-Cyclodextrins and Their Association on the Solubility of Natural Bioactive Compounds. J. Mol. Liq. 2020, 310, 113156. [Google Scholar] [CrossRef]
- Rajendiran, N.; Mohandoss, T.; Thulasidhasan, J. Photophysics of Caffeic, Ferulic and Sinapic Acids with α- and β-Cyclodextrins: Spectral and Molecular Modeling Studies. Int. Lett. Chem. Phys. Astron. 2017, 72, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Divakar, S.; Maheswaran, M.M. Structural Studies on Inclusion Compounds of β-Cyclodextrin with Some Substituted Phenols. J. Incl. Phenom. Mol. Recognit. Chem. 1997, 27, 113–126. [Google Scholar] [CrossRef]
- Rodrigues, E.; Vaz, S.; Gil, V.M.S.S.; Madalena Caldeira, M.; Moreira Da Silva, A.M.G. Inclusion of Polyphenol Oxidase Substrates in β-Cyclodextrin: A 1H-NMR Study. J. Incl. Phenom. 2002, 44, 395–397. [Google Scholar] [CrossRef] [Green Version]
- Chao, J.-B.; Tong, H.B.; Li, Y.F.; Zhang, L.W.; Zhang, B.T. Investigation on the Inclusion Behavior of Caffeic Acid with Cyclodextrin. Supramol. Chem. 2008, 20, 461–466. [Google Scholar] [CrossRef]
- Górnas, P.; Neunert, G.; Baczyński, K.; Polewski, K. Beta-Cyclodextrin Complexes with Chlorogenic and Caffeic Acids from Coffee Brew: Spectroscopic, Thermodynamic and Molecular Modelling Study. Food Chem. 2009, 114, 190–196. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Konteles, S.; Mourtzinos, I.; Troullidou, E.; Chiou, A.; Karathanos, V.T. Encapsulation of Complex Extracts in β-Cyclodextrin: An Application to Propolis Ethanolic Extract. J. Microencapsul. 2009, 26, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, J.; Zhang, L.; Chao, J. Preparation and Spectral Investigation of Inclusion Complex of Caffeic Acid with Hydroxypropyl-β-Cyclodextrin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 71, 1891–1895. [Google Scholar] [CrossRef] [PubMed]
- Pinho, E.; Soares, G.; Henriques, M. Evaluation of Antibacterial Activity of Caffeic Acid Encapsulated by β-Cyclodextrins. J. Microencapsul. 2015, 32, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zeng, J.; Chen, C.; Liu, Y.; Ma, H.; Mo, H.; Liang, G. Interaction of Cinnamic Acid Derivatives with β-Cyclodextrin in Water: Experimental and Molecular Modeling Studies. Food Chem. 2016, 194, 1156–1163. [Google Scholar] [CrossRef]
- Malapert, A.; Tomao, V.; Margier, M.; Nowicki, M.; Gleize, B.; Dangles, O.; Reboul, E. Β-Cyclodextrin Does Not Alter the Bioaccessibility and the Uptake By Caco-2 Cells of Olive By-Product Phenolic Compounds. Nutrients 2018, 10, 1653. [Google Scholar] [CrossRef] [Green Version]
- Aree, T. Understanding Structures and Thermodynamics of β-Cyclodextrin Encapsulation of Chlorogenic, Caffeic and Quinic Acids: Implications for Enriching Antioxidant Capacity and Masking Bitterness in Coffee. Food Chem. 2019, 293, 550–560. [Google Scholar] [CrossRef]
- Simsek, T.; Simsek, S.; Mayer, C.; Rasulev, B. Combined Computational and Experimental Study on the Inclusion Complexes of β-Cyclodextrin with Selected Food Phenolic Compounds. Struct. Chem. 2019, 30, 1395–1406. [Google Scholar] [CrossRef]
- Rocha, B.A.; Rodrigues, M.R.; Bueno, P.C.P.; De Mello Costa-Machado, A.R.; De Oliveira Lima Leite Vaz, M.M.; Nascimento, A.P.; Barud, H.S.; Berretta-Silva, A.A. Preparation and Thermal Characterization of Inclusion Complex of Brazilian Green Propolis and Hydroxypropyl-β-Cyclodextrin: Increased Water Solubility of the Chemical Constituents and Antioxidant Activity. J. Therm. Anal. Calorim. 2012, 108, 87–94. [Google Scholar] [CrossRef]
- Im, N.R.; Kim, K.M.; Young, S.J.; Park, S.N. Physical Characteristics and in Vitro Skin Permeation of Elastic Liposomes Loaded with Caffeic Acid-Hydroxypropyl-β-Cyclodextrin. Korean J. Chem. Eng. 2016, 33, 2738–2746. [Google Scholar] [CrossRef]
- Andreadelis, I.; Chatziathanasiadou, Μ.V.; Ntountaniotis, D.; Valsami, G.; Papaemmanouil, C.; Christodoulou, E.; Mitropoulou, G.; Kourkoutas, Y.; Tzakos, A.G.; Mavromoustakos, T. Charting the Structural and Thermodynamic Determinants in Phenolic Acid Natural Product—Cyclodextrin Encapsulations. J. Biomol. Struct. Dyn. 2020, 39, 2642–2658. [Google Scholar] [CrossRef]
- Xiong, X.; Zhao, X.; Song, Z. Exploring Host-Guest Interactions of Sulfobutylether-β-Cyclodextrin and Phenolic Acids by Chemiluminescence and Site-Directed Molecular Docking. Anal. Biochem. 2014, 460, 54–60. [Google Scholar] [CrossRef]
- Hunt, L.E.; Bourne, S.A.; Caira, M.R. Inclusion of Hydroxycinnamic Acids in Methylated Cyclodextrins: Host-Guest Interactions and Effects on Guest Thermal Stability. Biomolecules 2021, 11, 45. [Google Scholar] [CrossRef]
- Zhao, W.; Chao, J.; Du, R.; Huang, S. Spectroscopic Studies on the Inclusion Behavior between Caffenic Acid and γ-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 25–34. [Google Scholar] [CrossRef]
- Inoue, Y.; Suzuki, K.; Ezawa, T.; Murata, I.; Yokota, M.; Tokudome, Y.; Kanamoto, I. Examination of the Physicochemical Properties of Caffeic Acid Complexed with γ-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2015, 83, 289–298. [Google Scholar] [CrossRef] [Green Version]
- García-Padial, M.; Martínez-Ohárriz, M.C.; Isasi, J.R.; Zornoza, A. Sorption and Release of Natural Phenolic Antioxidants in Different Cyclodextrin Polymers. J. Agric. Food Chem. 2017, 65, 4905–4910. [Google Scholar] [CrossRef]
- Navarro-Orcajada, S.; Matencio, A.; Vicente-Herrero, C.; García-Carmona, F.; López-Nicolás, J.M. Study of the Fluorescence and Interaction between Cyclodextrins and Neochlorogenic Acid, in Comparison with Chlorogenic Acid. Sci. Rep. 2021, 11, 3275. [Google Scholar] [CrossRef]
- Aree, T. Inclusion Complex of β-Cyclodextrin with Coffee Chlorogenic Acid: New Insights from a Combined Crystallographic and Theoretical Study. Acta Crystallogr. C Struct. Chem. 2019, 75, 15–21. [Google Scholar] [CrossRef]
- Irwin, P.; Brouillette, J.; Giampa, A.; Hicks, K.; Gehring, A.; Tu, S.I. Cyclomaltoheptaose (β-Cyclodextrin) Inclusion Complex Formation with Chlorogenic Acid: Hydration Enthalpy, the Solvent Entropy (Hydrophobic) Effect, and Enthalpy-Entropy Compensation. Carbohydr. Res. 1999, 322, 67–76. [Google Scholar] [CrossRef]
- Alvarez-Parrilla, E.; De La Rosa, L.A.; Torres-Rivas, F.; Rodrigo-Garcia, J.; González-Aguilar, G.A. Complexation of Apple Antioxidants: Chlorogenic Acid, Quercetin and Rutin by β-Cyclodextrin (β-CD). J. Incl. Phenom. 2005, 53, 121–129. [Google Scholar] [CrossRef]
- Alvarez-Parrilla, E.; de la Rosa, L.A.; Rodrigo-García, J.; Escobedo-González, R.; Mercado-Mercado, G.; Moyers-Montoya, E.; Vázquez-Flores, A.; González-Aguilar, G.A. Dual Effect of β-Cyclodextrin (β-CD) on the Inhibition of Apple Polyphenol Oxidase by 4-Hexylresorcinol (HR) and Methyl Jasmonate (MJ). Food Chem. 2007, 101, 1346–1356. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, H.; Yang, B.; Tao, H. Identification of Cyclodextrin Inclusion Complex of Chlorogenic Acid and Its Antimicrobial Activity. Food Chem. 2010, 120, 1138–1142. [Google Scholar] [CrossRef]
- Álvarez-Parrilla, E.; Palos, R.; De La Rosa, L.A.; Frontana-Uribe, B.A.; González-Aguilar, G.A.; Machi, L.; Ayala-Zavala, J.F. Formation of Two 1:1 Chlorogenic Acid: β-Cyclodextrin Complexes at PH 5: Spectroscopic, Thermodynamic and Voltammetric Study. J. Mex. Chem. Soc. 2010, 54, 103–110. [Google Scholar] [CrossRef]
- Budryn, G.; Nebesny, E.; Pałecz, B.; Rachwał-Rosiak, D.; Hodurek, P.; Miśkiewicz, K.; Oracz, J.; Zyzelewicz, D. Inclusion Complexes of β-Cyclodextrin with Chlorogenic Acids (CHAs) from Crude and Purified Aqueous Extracts of Green Robusta Coffee Beans (Coffea canephora L.). Food Res. Int. 2014, 61, 202–213. [Google Scholar] [CrossRef]
- Shao, P.; Zhang, J.; Fang, Z.; Sun, P. Complexing of Chlorogenic Acid with β-Cyclodextrins: Inclusion Effects, Antioxidative Properties and Potential Application in Grape Juice. Food Hydrocoll. 2014, 41, 132–139. [Google Scholar] [CrossRef]
- Budryn, G.; Zaczyńska, D.; Rachwał-Rosiak, D. Changes of Free and Nanoencapsulated Hydroxycinnamic Acids from Green Coffee Added to Different Food Products during Processing and in Vitro Enzymatic Digestion. Food Res. Int. 2016, 89, 1004–1014. [Google Scholar] [CrossRef]
- Budryn, G.; Zaczyńska, D.; Żyżelewicz, D.; Grzelczyk, J.; Zduńczyk, Z.; Juśkiewicz, J. Influence of the Form of Administration of Chlorogenic Acids on Oxidative Stress Induced by High Fat Diet in Rats. Plant. Foods Hum. Nutr. 2017, 72, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Chao, J.; Wang, H.; Zhao, W.; Zhang, M.; Zhang, L. Investigation of the Inclusion Behavior of Chlorogenic Acid with Hydroxypropyl-β-Cyclodextrin. Int. J. Biol. Macromol. 2012, 50, 277–282. [Google Scholar] [CrossRef]
- Uekama, K.; Otagiri, M.; Kanie, Y.; Tanaka, S.; Ikeda, K. Inclusion Complexes of Cinnamic Acids with Cyclodextrins. Mode of Inclusion in Aqueous Solution. Chem. Pharm. Bull. 1975, 23, 1421–1429. [Google Scholar] [CrossRef] [Green Version]
- Krajl, B.; Smidovnik, A.; Kobe, J. Mass Spectrometric Investigations of α- and β- Cyclodextrin Complexes with Ortho-, Meta- and Para- Coumaric Acids by Negative Mode Electrospray Ionization. Rapid Commun. Mass Spectrom. 2009, 23, 171–180. [Google Scholar] [CrossRef]
- Stražišar, M.; Andrenšek, S.; Šmidovnik, A. Effect of β-Cyclodextrin on Antioxidant Activity of Coumaric Acids. Food Chem. 2008, 110, 636–642. [Google Scholar] [CrossRef]
- Kim, J.-S. Synthesis and Characterization of Phenolic Acid/Hydroxypropyl-β-Cyclodextrin Inclusion Complexes. Prev. Nutr. Food Sci. 2020, 25, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Qi, A.-D.; Li, L.; Liu, Y. Molecular Binding Ability and Selectivity of Natural α-, β-, γ-Cyclodextrins and Oligo (Ethylenediamino) Modified β-Cyclodextrins with Chinese Traditional Medicines. J. Incl. Phenom. 2003, 45, 69–72. [Google Scholar] [CrossRef]
- Anselmi, C.; Centini, M.; Maggiore, M.; Gaggelli, N.; Andreassi, M.; Buonocore, A.; Beretta, G.; Facino, R.M. Non-Covalent Inclusion of Ferulic Acid with α-Cyclodextrin Improves Photo-Stability and Delivery: NMR and Modeling Studies. J. Pharm. Biomed. Anal. 2008, 46, 645–652. [Google Scholar] [CrossRef]
- Monti, D.; Tampucci, S.; Chetoni, P.; Burgalassi, S.; Saino, V.; Centini, M.; Staltari, L.; Anselmi, C. Permeation and Distribution of Ferulic Acid and Its α-Cyclodextrin Complex from Different Formulations in Hairless Rat Skin. AAPS PharmSciTech 2011, 12, 514–520. [Google Scholar] [CrossRef]
- González-Mondragón, E.; Torralba-González, A.; García-Gutiérrez, P.; Robles-González, V.S.; Salazar-Govea, A.Y.; Zubillaga, R.A. Thermodynamic Analysis of Ferulate Complexation with α-, β- And γ-Cyclodextrins. Acta 2016, 634, 1–5. [Google Scholar] [CrossRef]
- Mori, T.; Tsuchiya, R.; Doi, M.; Nagatani, N.; Tanaka, T. Solubilization of Ultraviolet Absorbers by Cyclodextrin and Their Potential Application in Cosmetics. J. Incl. Phenom. Macrocycl. Chem. 2019, 93, 91–96. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Jia, W.; Chao, J.; Zhang, L. Theoretical and Experimental Study of the Inclusion Complexes of Ferulic Acid with Cyclodextrins. Supramol. Chem. 2009, 21, 597–602. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Cai, Y.; Yuan, C.; Chen, S.; Ding, T.; Liu, D.; Hu, Y. Ferulic Acid-β-Cyclodextrin Inclusion Complexes: Application on the Preservation of Hairtail (Trichiurus lepturus). Int. J. Food Prop. 2020, 23, 282–296. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cao, Y.; Sun, B.; Wang, C. Characterisation of Inclusion Complex of Trans-Ferulic Acid and Hydroxypropyl-β-Cyclodextrin. Food Chem. 2011, 124, 1069–1075. [Google Scholar] [CrossRef]
- Olga, G.; Styliani, C.; Ioannis, R.G. Coencapsulation of Ferulic and Gallic Acid in Hp-b-Cyclodextrin. Food Chem. 2015, 185, 33–40. [Google Scholar] [CrossRef]
- Hsu, C.M.; Yu, S.C.; Tsai, F.J.; Tsai, Y. Characterization of in Vitro and in Vivo Bioactivity of a Ferulic Acid-2-Hydroxypropyl-β-Cyclodextrin Inclusion Complex. Colloids Surf. B Biointerfaces 2019, 180, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Celebioglu, A.; Uyar, T. Development of Ferulic Acid /Cyclodextrin Inclusion Complex Nano Fi Bers for Fast-Dissolving Drug Delivery System. Int. J. Pharm. 2020, 584, 119395. [Google Scholar] [CrossRef]
- Casolaro, M.; Anselmi, C.; Picciocchi, G. The Protonation Thermodynamics of Ferulic Acid/γ-Cyclodextrin Inclusion Compounds. Thermochim. Acta 2005, 425, 143–147. [Google Scholar] [CrossRef]
- Çelik, S.E.; Özyürek, M.; Tufan, A.N.; Güçü, K.; Apak, R. Spectroscopic Study and Antioxidant Properties of the Inclusion Complexes of Rosmarinic Acid with Natural and Derivative Cyclodextrins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 78, 1615–1624. [Google Scholar] [CrossRef] [PubMed]
- Medronho, B.; Valente, A.J.M.; Costa, P.; Romano, A. Inclusion Complexes of Rosmarinic Acid and Cyclodextrins: Stoichiometry, Association Constants, and Antioxidant Potential. Colloid Polym. Sci. 2014, 292, 885–894. [Google Scholar] [CrossRef]
- Aksamija, A.; Polidori, A.; Plasson, R.; Dangles, O.; Tomao, V. The Inclusion Complex of Rosmarinic Acid into Beta-Cyclodextrin: A Thermodynamic and Structural Analysis by NMR and Capillary Electrophoresis. Food Chem. 2016, 208, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Fateminasab, F.; Bordbar, A.K.; Shityakov, S.; Saboury, A.A. Molecular Insights into Inclusion Complex Formation between β- and γ-Cyclodextrins and Rosmarinic Acid. J. Mol. Liq. 2020, 90, 113802. [Google Scholar] [CrossRef]
- Veras, K.S.; Silveira Fachel, F.N.; Delagustin, M.G.; Teixeira, H.F.; Barcellos, T.; Henriques, A.T.; Bassani, V.L.; Koester, L.S. Complexation of Rosmarinic Acid with Hydroxypropyl-β-Cyclodextrin and Methyl-β-Cyclodextrin: Formation of 2:1 Complexes with Improved Antioxidant Activity. J. Mol. Struct. 2019, 1195, 582–590. [Google Scholar] [CrossRef]
- Jambhekar, S.S.; Breen, P. Cyclodextrins in Pharmaceutical Formulations II: Solubilization, Binding Constant, and Complexation Efficiency. Drug Discov. Today 2016, 21, 363–368. [Google Scholar] [CrossRef]
- Cirri, M.; Maestrelli, F.; Orlandini, S.; Furlanetto, S.; Pinzauti, S.; Mura, P. Determination of Stability Constant Values of Flurbiprofen-Cyclodextrin Complexes Using Different Techniques. J. Pharm. Biomed. Anal. 2005, 37, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Tønnesen, H.H.; Vogensen, S.B.; Loftsson, T.; Másson, M. Studies of Curcumin and Curcuminoids. XXXVI. The Stoichiometry and Complexation Constants of Cyclodextrin Complexes as Determined by the Phase-Solubility Method and UV-Vis Titration. J. Incl. Phenom. Macrocycl. Chem. 2010, 66, 335–348. [Google Scholar] [CrossRef]
- Chadha, R.; Kashid, N.; Saini, A. Account of Analytical Techniques Employed for the Determination of Thermodynamics of Inclusion Complexation of Drugs with Cyclodextrins. J. Sci. Ind. Res. 2004, 63, 211–229. [Google Scholar] [CrossRef]
- Mitra, A.; Seaton, P.J.; Capitani, J.F.; Assarpour, A. Unprecedented Concentration Dependent Chemical Shift Variation in 1H NMR Studies: A Problem in Structure Elucidation and the Study of Molecular Recognition. J. Indian Chem. Soc. 1998, 75, 823–830. [Google Scholar]
- Hoenigman, S.M.; Evans, C.E. Improved Accuracy and Precision in the Determination of Association Constants. Anal. Chem. 1996, 68, 3274–3276. [Google Scholar] [CrossRef]
- Schönbeck, C.; Westh, P.; Madsen, J.C.; Larsen, K.L.; Städe, L.W.; Holm, R. Hydroxypropyl-Substituted β-Cyclodextrins: Influence of Degree of Substitution on the Thermodynamics of Complexation with Tauroconjugated and Glycoconjugated Bile Salts. Langmuir 2010, 26, 17949–17957. [Google Scholar] [CrossRef] [PubMed]
- Loukas, Y.L. Evaluation of the Methods for the Determination of the Stability Constant of Cyclodextrin-Chlorambucil Inclusion Complexes. J. Pharm. Biomed. Anal. 1997, 16, 275–280. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. J. Pharm. Sci. 1996, 85, 1017–1025. [Google Scholar] [CrossRef]
- Rekharsky, M.V.; Inoue, Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998, 98, 1875–1918. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Cyclodextrins as Functional Excipients: Methods to Enhance Complexation Efficiency. J. Pharm. Sci. 2012, 101, 3019–3032. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Hreinsdóttir, D.; Másson, M. The Complexation Efficiency. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 545–552. [Google Scholar] [CrossRef]
- Anselmi, C.; Centini, M.; Ricci, M.; Buonocore, A.; Granata, P.; Tsuno, T.; Facino, R.M. Analytical Characterization of a Ferulic Acid/γ-Cyclodextrin Inclusion Complex. J. Pharm. Biomed. Anal. 2006, 40, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Salústio, P.J.; Pontes, P.; Conduto, C.; Sanches, I.; Carvalho, C.; Arrais, J.; Marques, H.M.C. Advanced Technologies for Oral Controlled Release: Cyclodextrins for Oral Controlled Release. AAPS PharmSciTech 2011, 12, 1276–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, I.; Ahmed, S.; Anwar, Z.; Sheraz, M.A.; Sikorski, M. Photostability and Photostabilization of Drugs and Drug Products. Int. J. Photoenergy 2016, 2016, 8135608. [Google Scholar] [CrossRef] [Green Version]
- Sovizi, M.R. Thermal Behavior of Drugs: Investigation on Decomposition Kinetic of Naproxen and Celecoxib. J. Therm. Anal. Calorim. 2010, 102, 285–289. [Google Scholar] [CrossRef]
- Razboršek, M.I. Stability Studies on Trans-Rosmarinic Acid and GC-MS Analysis of Its Degradation Product. J. Pharm. Biomed. Anal. 2011, 55, 1010–1016. [Google Scholar] [CrossRef]
- Mäkilä, L.; Laaksonen, O.; Alanne, A.L.; Kortesniemi, M.; Kallio, H.; Yang, B. Stability of Hydroxycinnamic Acid Derivatives, Flavonol Glycosides, and Anthocyanins in Black Currant Juice. J. Agric. Food Chem. 2016, 64, 4584–4598. [Google Scholar] [CrossRef]
- Santos, N.A.; Cordeiro, A.M.T.M.; Damasceno, S.S.; Aguiar, R.T.; Rosenhaim, R.; Carvalho Filho, J.R.; Santos, I.M.G.; Maia, A.S.; Souza, A.G. Commercial Antioxidants and Thermal Stability Evaluations. Fuel 2012, 97, 638–643. [Google Scholar] [CrossRef]
- Mota, F.L.; Queimada, A.J.; Pinho, S.P.; Macedo, E.A. Aqueous Solubility of Some Natural Phenolic Compounds. Ind. Eng. Chem. Res. 2008, 47, 5182–5189. [Google Scholar] [CrossRef]
HCA | Type of CD | References |
---|---|---|
CA | αCD | [30,33,34,35,36,37,38] |
βCD | [30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49] | |
HPβCD | [30,33,34,44,45,50,51,52] | |
SBEβCD | [53] | |
MβCD | [30,45] | |
Crysmeb® | [33,34] | |
DIMEB | [54] | |
RAMEB | [33,34] | |
γCD | [30,36,55,56] | |
Polymeric βCD | [57] | |
CGA | αCD | [31,58] |
βCD | [31,40,42,48,58,59,60,61,62,63,64,65,66,67,68] | |
HPβCD | [58,60,66,69] | |
MβCD | [58] | |
γCD | [31,58] | |
Polymeric βCD | [31] | |
m-COA | αCD | [70,71] |
βCD | [70,71,72] | |
o-COA | αCD | [70,71] |
βCD | [70,71,72] | |
p-COA | αCD | [33,34,70,71] |
TRIMEA | [54] | |
βCD | [33,34,43,46,47,49,70,71,72] | |
HPβCD | [33,34,50,73] | |
Crysmeb® | [33,34] | |
DIMEB | [54] | |
RAMEB | [33,34] | |
TRIMEB | [54] | |
FA | αCD | [33,34,38,74,75,76,77,78] |
TRIMEA | [54] | |
βCD | [28,33,34,38,43,46,49,74,77,79,80] | |
AminoβCD | [29,74] | |
HPβCD | [33,34,73,78,79,81,82,83,84] | |
SBEβCD | [53] | |
MβCD | [78] | |
Crysmeb® | [33,34] | |
DIMEB | [54] | |
RAMEB | [33,34] | |
γCD | [74,77,85] | |
HPγCD | [78,84] | |
Polymeric βCD | [32] | |
RA | αCD | [86] |
βCD | [86,87,88,89] | |
HEβCD | [86] | |
MβCD | [86] | |
Crysmeb® | [90] | |
HPβCD | [52,86,90] | |
γCD | [89] |
HCA | CD | Approaches Used for Ratio and/or K Determination | Analytical Methods | Ratio (HCA:CD) | Binding Constant (K) (M−1) | References | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CA | βCD | Benesi–Hildebrand equation | UV | 1:1 | 516 | [39] | ||||||
CA CGA | βCD | Job’s plot Benesi–Hildebrand equation | NMR | 1:1 | CA: 936 CGA: 504 | [40] | ||||||
CA | βCD | Benesi–Hildebrand equation | Fluorescence | 1:1 | 268 (pH 3.05) 253 (pH 7.5) 475 (pH 10.53) 73 (pH 12.5) | [41] | ||||||
CA CGA | βCD | Benesi–Hildebrand equation | Fluorescence | 1:1 | CA: 278 (pH 7) CGA: 424 (pH 7) | [42] | ||||||
CA | βCD HPβCD | Benesi–Hildebrand equation Phase-solubility diagram | Fluorescence UV | 1:1 | βCD: Not expressed | HPβCD 112 (Water) 580 (pH 3) 279 (pH 6.5) 104 (pH 10.5) | [44] | |||||
CA | γCD | Benesi–Hildebrand equation | Fluorescence UV | 1:1 | 943 57.5 (pH 3.05) 168.5 (pH 5) 377.1 (pH 6.5) 1430 (pH 8.96) | 52.4 (25 °C) 113.8 (30 °C) 208.5 (37 °C) 84.3 (45 °C) | [55] | |||||
CA p-COA FA | αCD βCD HPβCD (DS 5.6) RAMEB (DS 12.6) MβCD (Crysmeb®) (DS 4.9) | Phase-solubility diagram | UV | 1:1 | CA | p-COA | FA | [33] | ||||
αCD: 1819 | αCD: 1988 | αCD: 1737 | ||||||||||
βCD: 425 | βCD: 306 | βCD: 326 | ||||||||||
HPβCD: 534 | HPβCD: 1099 | HPβCD: 833 | ||||||||||
RAMEB: 825 | RAMEB: 1228 | RAMEB: 1045 | ||||||||||
Crysmeb®: 552 | Crysmeb®: 900 | Crysmeb®: 512 | ||||||||||
CA FA | SBEβCD (DS 7.0) | Double reciprocal plot | Chemiluminescence | 1:1 | CA: 18,600.00 FA: 47,900.00 | [53] | ||||||
CA | βCD HPβCD (MS 0.6) MβCD (MS 1.6) | Benesi–Hildebrand equation | UV | 1:1 | βCD: 133 (pH 3) 178 (pH 5) | HPβCD: 10 (pH 3) 37 (pH 5) | MβCD: Not expressed | [45] | ||||
CA p-COA FA | αCD βCD HPβCD (DS 5.6) RAMEB (DS 12.6) MβCD (Crysmeb®) (DS 4.9) | Phase-solubility diagram | UV | 1:1 | CA αCD: 1540 βCD: 318 HPβCD: 526 RAMEB: 991 Crysmeb®: 404 | p-COA αCD: 1816 βCD: 338 HPβCD: 787 RAMEB: 1030 Crysmeb®: 668 | FA αCD: 1769 βCD: 246 HPβCD: 451 RAMEB: 908 Crysmeb®: 474 | [34] | ||||
CA p-COA FA | βCD | Phase-solubility diagram | UV | 1:1 | CA: 176 p-COA: 160 FA: 133 | [46] | ||||||
CA FA | αCD βCD | Benesi–Hildebrand equation | Fluorescence UV | 1:1 | Fluorescence | UV | [38] | |||||
CA αCD: 387 (pH 7) βCD: 431 (pH 7) | FA αCD: 479 (pH 7) βCD: 625 (pH 7) | CA αCD: 288 (pH 7) βCD: 363 (pH 7) | FA αCD: 249 (pH 7) βCD: 541 (pH 7) | |||||||||
CA | αCD βCD | Phase-solubility diagram | HPLC | 1:1 | αCD: 1547.5 βCD: 371.4 | [35] | ||||||
CA | αCD βCD γCD | Phase-solubility diagram | UV | 1:1 | αCD | βCD | γCD | [36] | ||||
1512 (water) | 390 (water) | 297 (water) | ||||||||||
256 (5% ethanol) | 363 (5% ethanol) | 190 (5% ethanol) | ||||||||||
74 (15% ethanol) | 174 (15% ethanol) | 89 (15% ethanol) | ||||||||||
27 (25% ethanol) | 44 (25% ethanol) | 42 (25% ethanol) | ||||||||||
7 (35% ethanol) | 19 (35% ethanol) | 11 (35% ethanol) | ||||||||||
CA RA | HPβCD | Mass analysis Titration | ESI–MS ITC | 1:1 | CA: 760 RA: 1800 | [52] | ||||||
CA | αCD βCD | Phase-solubility diagram | UV | 1:1 | αCD | βCD | [37] | |||||
1463 (water) | 587 (water) | |||||||||||
770 (1% ethanol) | 383 (1% ethanol) | |||||||||||
295 (5% ethanol) | 327 (5% ethanol) | |||||||||||
136 (15% ethanol) | 234 (15% ethanol) | |||||||||||
20 (25% ethanol) | 163 (25% ethanol) | |||||||||||
1176 (1% DMSO) | 540 (1% DMSO) | |||||||||||
736 (5% DMSO) | 293 (5% DMSO) | |||||||||||
235 (15% DMSO) | 153 (15% DMSO) | |||||||||||
109 (25% DMSO) | 65 (25% DMSO) | |||||||||||
56 (35% DMSO) | 36 (35% DMSO) | |||||||||||
21 (45% DMSO) | 15 (45% DMSO) | |||||||||||
CGA | αCD βCD γCD Polymeric βCD | Job’s plot | NMR | 1:1 | αCD 509 (pH 3.6/3 °C) 426 (pH 3.6/13 °C) 321 (pH 3.6/25 °C) 249 (pH 3.6/37 °C) 1144 (pH 6.5/3 °C) 887 (pH 6.5/13 °C) 626 (pH 6.5/25 °C) 446 (pH 6.5/37 °C) | βCD 873 (pH 3.6/3 °C) 672 (pH 3.6/13 °C) 526 (pH 3.6/25 °C) 416 (pH 3.6/37 °C) 799 (pH 6.5/3 °C) 663 (pH 6.5/13 °C) 597 (pH 6.5/25 °C) 468 (pH 6.5/37 °C) | γCD 555 (pH 3.6/3 °C) 412 (pH 3.6/13 °C) 400 (pH 3.6/25 °C) 46 (pH 6.5/3 °C) 31 (pH 6.5/13 °C) 16 (pH 6.5/25 °C) | Polymeric βCD 332 (pH 3.6/3 °C) 428 (pH 3.6/13 °C) 501 (pH 3.6/25 °C) 499 (pH 3.6/37 °C) 509 (pH 3.6/40 °C) 360 (pH 3.6/50 °C) 297 (pH 3.6/60 °C) 197 (pH 6.5/3 °C) 422 (pH 6.5/13 °C) 544 (pH 6.5/25 °C) 570 (pH 6.5/37 °C) 593 (pH 6.5/40 °C) 552 (pH 6.5/50 °C) 330 (pH 6.5/60 °C) | [31] | |||
CGA | βCD | Nonlinear least-squares method Benesi–Hildebrand equation | Fluorescence | 1:1 | Nonlinear 465 (pH 7) | Benesi–Hildebrand equation 420 (pH 7) | [61] | |||||
CGA | βCD | Nonlinear least-squares method Benesi-Hildebrand equation | Fluorescence | 1:1 | Nonlinear 277 (5 °C/pH 5) 260.3 (10 °C/pH 5) 253.2 (15 °C/pH 5) 207.2 (25 °C/pH 5) | Benesi–Hildebrand equation 663.5 (5 °C/pH 5) 504.3 (10 °C/pH 5) 390.8 (5 °C/pH 5) 351.2 (25 °C/pH 5) | [64] | |||||
CGA | HPβCD | Benesi-Hildebrand equation | Fluorescence | 1:1 | 155.7 (pH 5) | [69] | ||||||
CGA | αCD βCD γCD HPβCD (DS 5) MβCD (DS 5.4) | - | Fluorescence | 1:1 | αCD 20.83–203.66 (25 °C/pH 3) 32.63–530.06 (25 °C/pH 5) 35.68–757.86 (25 °C/pH 9) | βCD 15.37–286.59 (25 °C/pH 3) 14.56–311.75 (25 °C/pH 5) 16.38–170.71 (25 °C/pH 9) | γCD 6.46–20.53 (25 °C/pH 3) 0.58 (25 °C/pH 5) 5.55–25.26 (25 °C/pH 9) | HPβCD 23.56–471.22 (25°C/pH 3) 21.20–439.52 (25 °C/pH 5) 16.47–163.31 (25 °C/pH 9) | MβCD 19.42–397.49 (25 °C/pH 3) 20.27–381.87 (25 °C/pH 5) 19.41–389.86 (25 °C/pH 9) | [58] | ||
m-COA o-COA p-COA | αCD βCD | Job’s plot Scott’s equation | UV | 1:1 | m-COA | o-COA | p-COA | [70] | ||||
αCD: 1320 (pH 1.6) | αCD: 1100 (pH 1.6) | αCD: 1990 (pH 1.6) | ||||||||||
αCD: 90 (pH 8.2) | αCD: Not expressed (pH 8.2) | αCD: 110 (pH 8.2) | ||||||||||
βCD: 426 (pH 1.6) | βCD: 380 (pH 1.6) | βCD: 570 (pH 1.6) | ||||||||||
βCD: 232 (pH 8.2) | βCD: Not expressed (pH 8.2) | βCD: 412 (pH 8.2) | ||||||||||
m-COA o-COA p-COA | βCD | Phase-solubility diagram | HPLC | 1:1 | m-COA: 390 o-COA: 49,250 p-COA: 2810 | [72] | ||||||
m-COA o-COA p-COA | αCD βCD | Mass analysis | ESI–MS | 1:1 | m-COA | o-COA | p-COA | [71] | ||||
αCD: | αCD: | αCD: | ||||||||||
20,000–40,000 (pH 4–5) | 3000–11,000 (pH 4–5) | 20,000–50,000 (pH 4–5) | ||||||||||
βCD: | βCD: | βCD: | ||||||||||
11,000–50,000 (pH 4–5) | 6000–22,000 (pH 4–5) | 6000–20,000 (pH 4–5) | ||||||||||
FA | αCD | Nonlinear least-squares method | Fluorescence | 1:1 | αCD: 1113 (pH 7.2) | [74] | ||||||
βCD | βCD: 4090 (pH 7.2) | |||||||||||
γCD | γCD: 707 (pH 7.2) | |||||||||||
NH2(CH2)2NHβCD | NH2(CH2)2NHβCD: 1580 (pH 7.2) | |||||||||||
NH2(CH2)2NH(CH2)2NHβCD | NH2(CH2)2NH(CH2)2NHβCD: 356 (pH 7.2) | |||||||||||
FA | αCD | Job’s plot Nonlinear regression method | NMR | 1:1 | 1162 (pH 4) | [75] | ||||||
FA | βCD HPβCD | Benesi–Hildebrand equation Phase-solubility diagram | Fluorescence | 1:1 | βCD | HPβCD | [79] | |||||
87 | 98 | |||||||||||
102 (pH 3.05) | 128 (pH 3.05) | |||||||||||
205 (pH 7.5) | 590 (pH 7.5) | |||||||||||
Not expressed (pH 10.53) | 93 (pH 10.53) | |||||||||||
FA | HPβCD | Phase-solubility diagram | HPLC | 1:1 | 166.3 | [81] | ||||||
FA | αCD | Nonlinear regression method | ITC | - | αCD: 53.2 (pH 9) | [77] | ||||||
βCD | βCD: 176.5 (pH 9) | |||||||||||
γCD | γCD: 19.4 (pH 9) | |||||||||||
FA | αCD | Phase-solubility diagram Job’s plot | HPLC UV | 1:1 (αCD, MβCD, and HPβCD) 2:1 (HPγCD) | αCD: 250 | [78] | ||||||
MβCD | MβCD: 238 | |||||||||||
HPβCD | HPβCD: 218.5 | |||||||||||
HPγCD | HPγCD: 477.5 | |||||||||||
FA | HPβCD (DS ~0.9) | Phase-solubility diagram | UV | 1:1 | HPβCD: 468 | [84] | ||||||
HPγCD (DS ~0.6) | HPγCD: 2490 | |||||||||||
RA | αCD | Benesi–Hildebrand equation | Fluorescence | 1:1 | αCD: 82 (pH7) | [86] | ||||||
βCD | βCD: 164 (pH7) | |||||||||||
HEβCD | HEβCD: 168 (pH7) | |||||||||||
HPβCD | HPβCD: 267 (pH7) | |||||||||||
MβCD | MβCD: 328 (pH7) | |||||||||||
RA | βCD | Job’s plot Nonlinear least-square method | NMR | 1:1 | βCD:1184–2028 (pH 7.8) | [87] | ||||||
RA | βCD | Job’s plot Scott’s equation Nonlinear method | NMR CE | 1:1 | Scott’s plot 300–468 (pH 1) 260–393 (pH 2.9) 202–319 (pH 6) | Nonlinear 176 and 197 (pH 7) | [88] | |||||
RA | HPβCD (DS 0.8) MβCD (Crysmeb®) (DS 0.57) | Phase-solubility diagram | HPLC | 2:1 | HPβCD: 62,010 Crysmeb®: 61,454 | [90] | ||||||
RA | βCD γCD | Phase-solubility diagram | UV | 1:1 | βCD | γCD | [89] | |||||
109.79 (15 °C/pH 7.4) | 88.70 (15 °C/pH 7.4) | |||||||||||
100.46 (18 °C/pH 7.4) | 81.55 (18 °C/pH 7.4) | |||||||||||
86.70 (21 °C/pH 7.4) | 70.26 (21 °C/pH 7.4) | |||||||||||
79.07 (25 °C/pH 7.4) | 63.62 (25 °C/pH 7.4) |
HCA | CD | Results | References | ||
---|---|---|---|---|---|
CA | βCD HPβCD | Improvement of water solubility in phase-solubility assay *. | [44] | ||
CA p-COA FA | αCD βCD HPβCD (DS 5.6) RAMEB (DS 12.6) MβCD (Crysmeb®) (DS 4.9) | Improvement of water solubility (CD at 10 mM) (phase-solubility assay): | [33] | ||
CA | p-COA | FA | |||
αCD: 5.5-fold | αCD: 4.8-fold | αCD: 5.2-fold | |||
βCD: 3.5-fold | βCD: 2.8-fold | βCD: 3.1-fold | |||
HPβCD: 3.8-fold | HPβCD: 4.4-fold | HPβCD: 4.4-fold | |||
RAMEB: 4.4-fold | RAMEB: 4.4-fold | RAMEB: 4.8-fold | |||
MβCD: 3.8-fold | MβCD: 4.0-fold | MβCD: 3.8-fold | |||
CA p-COA FA | αCD βCD HPβCD (DS 5.6) RAMEB (DS 12.6) MβCD (Crysmeb®) (DS 4.9) | Improvement of water solubility (CD at 10 mM) (phase-solubility assay): | [34] | ||
CA | p-COA | FA | |||
αCD: 5.5-fold | αCD: 4.8-fold | αCD: 5.2-fold | |||
βCD: 3.5-fold | βCD: 2.8-fold | βCD: 3.1-fold | |||
HPβCD: 3.8-fold | HPβCD: 4.4-fold | HPβCD: 4.4-fold | |||
RAMEB: 4.4-fold | RAMEB: 4.4-fold | RAMEB: 4.8-fold | |||
MβCD: 3.8-fold | MβCD: 4.0-fold | MβCD: 3.8-fold | |||
CA p-COA FA | βCD | Improvement of water solubility in phase-solubility assay *. | [46] | ||
CA | αCD | Improvement of water solubility in phase-solubility assay *. | [35] | ||
Enhance of dissolution: | |||||
CA:αCD PM: 1.54-fold | |||||
βCD | CA:αCD GM: 4.16-fold | ||||
CA:βCD PM: 2.46-fold | |||||
CA:βCD GM: 4.16-fold | |||||
CA | αCD | Improvement of water solubility in phase-solubility assay *. | [36] | ||
βCD | |||||
γCD | |||||
CA | αCD | Improvement of water solubility in phase-solubility assay *. | [37] | ||
βCD | |||||
m-COA o-COA p-COA | βCD | Improvement of water solubility in phase-solubility assay *. | [72] | ||
FA | βCD | Improvement of water solubility in phase-solubility assay *. | [79] | ||
HPβCD | |||||
FA | HPβCD | Improvement of water solubility (CD at 8.4 mM) (phase-solubility assay): HPβCD: 15-fold | [81] | ||
FA | αCD MβCD HPβCD HPγCD | Improvement of water solubility (CD at 16 mM) (phase-solubility assay): | [78] | ||
αCD: 5.0-fold | |||||
MβCD: 4.8-fold | |||||
HPβCD: 4.5-fold | |||||
HPγCD: 8.3-fold | |||||
FA | HPβCD (DS ~0.9) HPγCD (DS ~0.6) | Improvement of water solubility (CD at 8 mM) (phase-solubility assay): | [84] | ||
HPβCD: 2.6-fold | |||||
HPγCD: 3.5-fold | |||||
RA | HPβCD (DS 0.8) MβCD (Crysmeb®) (DS 0.57) | Improvement of water solubility (CD at 10 mM) (phase-solubility assay): | [90] | ||
HPβCD: 3.33-fold | |||||
MβCD: 3.47-fold | |||||
RA | βCD γCD | Improvement of water solubility in phase-solubility assay *. | [89] | ||
FA | βCD | Improvement of water solubility in solid complex: 2.29-fold | [28] | ||
FA | βCD polymer | Improvement of water solubility in solid complex: 3.71–14.48-fold | [32] | ||
CA | γCD | Increase of dissolution: CA:γCD PM: Profile similar to CA (less than 80% dissolved at 120 min) CA:γCD CP, FD, and GM: 100% dissolved at 30 min | [56] | ||
FA | HPβCD | Increase of dissolution: | [83] | ||
FA:HPβCD PM: 70% dissolved at 30 min | |||||
FA:HPβCD FD: 90% dissolved at ~10 min | |||||
CGA | βCD | Maintenance of stability: 92.46–100% of CGA content remaining. | [67] | ||
p-COA | βCD | Improvement of intracellular accumulation of p-COA and its transport toward basolateral side in Caco-2 cells. | [47] | ||
FA | HPβCD | Increase of intracellular accumulation of FA in Hep3B cells. | [83] | ||
CGA | βCD | Enhancement of the pharmacological activity which was attributed to the improvement of absorption. | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veras, K.S.; Fachel, F.N.S.; Bassani, V.L.; Teixeira, H.F.; Koester, L.S. Cyclodextrin-Based Delivery Systems and Hydroxycinnamic Acids: Interactions and Effects on Crucial Parameters Influencing Oral Bioavailability—A Review. Pharmaceutics 2022, 14, 2530. https://doi.org/10.3390/pharmaceutics14112530
Veras KS, Fachel FNS, Bassani VL, Teixeira HF, Koester LS. Cyclodextrin-Based Delivery Systems and Hydroxycinnamic Acids: Interactions and Effects on Crucial Parameters Influencing Oral Bioavailability—A Review. Pharmaceutics. 2022; 14(11):2530. https://doi.org/10.3390/pharmaceutics14112530
Chicago/Turabian StyleVeras, Kleyton Santos, Flávia Nathiely Silveira Fachel, Valquiria Linck Bassani, Helder Ferreira Teixeira, and Letícia Scherer Koester. 2022. "Cyclodextrin-Based Delivery Systems and Hydroxycinnamic Acids: Interactions and Effects on Crucial Parameters Influencing Oral Bioavailability—A Review" Pharmaceutics 14, no. 11: 2530. https://doi.org/10.3390/pharmaceutics14112530
APA StyleVeras, K. S., Fachel, F. N. S., Bassani, V. L., Teixeira, H. F., & Koester, L. S. (2022). Cyclodextrin-Based Delivery Systems and Hydroxycinnamic Acids: Interactions and Effects on Crucial Parameters Influencing Oral Bioavailability—A Review. Pharmaceutics, 14(11), 2530. https://doi.org/10.3390/pharmaceutics14112530