Repurposing the Antibacterial Agents Peptide 19-4LF and Peptide 19-2.5 for Treatment of Cutaneous Leishmaniasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compounds. Physicochemical Properties and Bioavailability
2.2. Animals
2.3. Cells and Culture Conditions
2.4. Cytotoxicity Assay
2.5. Activity against Intracellular Amastigotes
2.6. Gene Expression Changes upon Treatment
2.6.1. RNA Retrieval from L. major Infected BMDMs
2.6.2. RNA Retrieval from L. major Infected Mice
2.6.3. RNA Extraction and Gene Expression Analysis
2.7. Parasite Burden Evaluation from Infected Mice
2.8. Statistical Analyses
3. Results
3.1. Both Peptides 19-2.5 and 19-4 LF Displayed Leishmanicidal Activities against L. major Intracellular Amastigotes
3.2. 19-2.5 and 19-4 LF Reduced the Expression Levels of Genes Related to Proliferation and Drug Resistance of L. major Amastigotes
3.3. Both Peptides Significantly Reduced the Parasite Burden In Vivo When Topically Administered
3.4. Both 19-2.5 and 19-4 LF Modulated the Expression of Host Cell Genes In Vivo
3.5. P2X7 Receptor Gene Expression Was Highly Reduced by Both Peptides in Skin Lesions of BALB/c Mice
3.6. The Combination of Both Peptides with the Leishmanicidal Drugs Paromomycin and Amphotericin B Greatly Enhanced In Vitro Their Activity against L. major Amastigotes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naghavi, M.; Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Adetokunboh, O.; Afshin, A.; Agrawal, A.; et al. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1151–1210, Erratum in Lancet 2017, 390, e38. [Google Scholar] [CrossRef] [Green Version]
- Hartley, M.-A.; Kohl, K.; Ronet, C.; Fasel, N. The Therapeutic Potential of Immune Cross-Talk in Leishmaniasis. Clin. Microbiol. Infect. 2013, 19, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Expert Committee on the Control of the Leishmaniases and World Health Organization. Control of the leishmaniases. In Proceedings of the WHO Expert Commitee on the Control of Leishmaniases, Geneva, Switzerland, 22–26 March 2010. [Google Scholar]
- Karunaweera, N.D.; Ferreira, M.U. Leishmaniasis: Current Challenges and Prospects for Elimination with Special Focus on the South Asian Region. Parasitology 2018, 145, 425–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kevric, I.; Cappel, M.A.; Keeling, J.H. New World and Old World Leishmania Infections: A Practical Review. Derm. Clin. 2015, 33, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Morales, A.J.; Silvestre, J.; Cazorla-Perfetti, D.J. Imported Leishmaniasis in Australia. J. Travel Med. 2009, 16, 144–145. [Google Scholar] [CrossRef] [PubMed]
- WHO. Leishmaniasis. Available online: https://www.who.int/health-topics/leishmaniasis#tab=tab_1 (accessed on 27 October 2021).
- Sunter, J.; Gull, K. Shape, Form, Function and Leishmania Pathogenicity: From Textbook Descriptions to Biological Understanding. Open Biol. 2021, 7, 170165. [Google Scholar] [CrossRef] [Green Version]
- Reithinger, R.; Dujardin, J.-C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous Leishmaniasis. Lancet Infect. Dis. 2007, 7, 581–596. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention (CDC) Leishmaniasis. Epidemiology & Risk Factors. Available online: https://www.cdc.gov/parasites/leishmaniasis/epi.html (accessed on 26 October 2021).
- Blum, J.; Lockwood, D.N.J.; Visser, L.; Harms, G.; Bailey, M.S.; Caumes, E.; Clerinx, J.; van Thiel, P.P.A.M.; Morizot, G.; Hatz, C.; et al. Local or Systemic Treatment for New World Cutaneous Leishmaniasis? Re-Evaluating the Evidence for the Risk of Mucosal Leishmaniasis. Int. Health 2012, 4, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.F.; Schubach, A.O.; Martins, M.M.; Passos, S.L.; Oliveira, R.V.; Marzochi, M.C.; Andrade, C.A. Systematic Review of the Adverse Effects of Cutaneous Leishmaniasis Treatment in the New World. Acta Trop. 2011, 118, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.; Pavlotsky, F.; Leshem, E.; Ephros, M.; Trau, H.; Schwartz, E. Liposomal Amphotericin B Treatment of Cutaneous Leishmaniasis Due to Leishmania Tropica. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Neto, V.V.; Cunha-Junior, E.F.; Faioes, V.D.S.; Martins, T.P.; Lopes Silva, R.; Leon, L.L.; Torres-Santos, E.C. Leishmaniasis Treatment: Update of Possibilities for Drug Repurposing. Front. Biosci. 2018, 23, 967–996. [Google Scholar]
- Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial Peptides: Key Components of the Innate Immune System. Crit. Rev. Biotechnol. 2012, 32, 143–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilchie, A.L.; Wuerth, K.; Hancock, R.E.W. Immune Modulation by Multifaceted Cationic Host Defense (Antimicrobial) Peptides. Nat. Chem. Biol. 2013, 9, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robles-Loaiza, A.A.; Pinos-Tamayo, E.A.; Mendes, B.; Teixeira, C.; Alves, C.; Gomes, P.; Almeida, J.R. Peptides to Tackle Leishmaniasis: Current Status and Future Directions. Int. J. Mol. Sci. 2021, 22, 4400. [Google Scholar] [CrossRef] [PubMed]
- El-Dirany, R.; Shahrour, H.; Dirany, Z.; Abdel-Sater, F.; Gonzalez-Gaitano, G.; Brandenburg, K.; Martinez de Tejada, G.; Nguewa, P.A. Activity of Anti-Microbial Peptides (AMPs) against Leishmania and Other Parasites: An Overview. Biomolecules 2021, 11, 984. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, X.; Tan, T.; Li, W.; Shan, A. Design of Embedded-Hybrid Antimicrobial Peptides with Enhanced Cell Selectivity and Anti-Biofilm Activity. PLoS ONE 2014, 9, e98935. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente-Núñez, C.; Cardoso, M.H.; de Souza Cândido, E.; Franco, O.L.; Hancock, R.E.W. Synthetic Antibiofilm Peptides. Biochim. Biophys. Acta 2016, 1858, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Iosu, R.-O.; Ina, K.; Yani, K.; Jörg, H.; Rainer, B.; Mathias, H.; Tobias, S.; Manfred, R.; Susana, S.-G.; et al. New Antiseptic Peptides To Protect against Endotoxin-Mediated Shock. Antimicrob. Agents Chemother. 2010, 54, 3817–3824. [Google Scholar] [CrossRef] [Green Version]
- Kaconis, Y.; Kowalski, I.; Howe, J.; Brauser, A.; Richter, W.; Razquin-Olazarán, I.; Iñigo-Pestaña, M.; Garidel, P.; Rössle, M.; Martinez de Tejada, G.; et al. Biophysical Mechanisms of Endotoxin Neutralization by Cationic Amphiphilic Peptides. Biophys. J. 2011, 100, 2652–2661. [Google Scholar] [CrossRef] [Green Version]
- Martinez de Tejada, G.; Heinbockel, L.; Ferrer-Espada, R.; Heine, H.; Alexander, C.; Bárcena-Varela, S.; Goldmann, T.; Correa, W.; Wiesmüller, K.-H.; Gisch, N.; et al. Lipoproteins/Peptides Are Sepsis-Inducing Toxins from Bacteria That Can Be Neutralized by Synthetic Anti-Endotoxin Peptides. Sci. Rep. 2015, 5, 14292. [Google Scholar] [CrossRef] [PubMed]
- Heinbockel, L.; Sánchez-Gómez, S.; Martinez de Tejada, G.; Dömming, S.; Brandenburg, J.; Kaconis, Y.; Hornef, M.; Dupont, A.; Marwitz, S.; Goldmann, T.; et al. Preclinical Investigations Reveal the Broad-Spectrum Neutralizing Activity of Peptide Pep19-2.5 on Bacterial Pathogenicity Factors. Antimicrob. Agents Chemother. 2013, 57, 1480–1487. [Google Scholar] [CrossRef] [Green Version]
- Schuerholz, T.; Doemming, S.; Hornef, M.; Martin, L.; Simon, T.P.; Heinbockel, L.; Brandenburg, K.; Marx, G. The Anti-Inflammatory Effect of the Synthetic Antimicrobial Peptide 19-2.5 in a Murine Sepsis Model: A Prospective Randomized Study. Crit. Care 2013, 17, R3. [Google Scholar] [CrossRef] [Green Version]
- Heinbockel, L.; Marwitz, S.; Barcena Varela, S.; Ferrer-Espada, R.; Reiling, N.; Goldmann, T.; Gutsmann, T.; Mier, W.; Schürholz, T.; Drömann, D.; et al. Therapeutical Administration of Peptide Pep19-2.5 and Ibuprofen Reduces Inflammation and Prevents Lethal Sepsis. PLoS ONE 2015, 10, e0133291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jannadi, H.; Correa, W.; Zhang, Z.; Brandenburg, K.; Oueslati, R.; Rouabhia, M. Antimicrobial Peptides Pep19–2.5 and Pep19-4LF Inhibit Streptococcus Mutans Growth and Biofilm Formation. Microb. Pathog. 2019, 133, 103546. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, N.; Heinbockel, L.; Correa, W.; Gutsmann, T.; Goldmann, T.; Englisch, U.; Brandenburg, K. Peptide Drug Stability: The Anti-Inflammatory Drugs Pep19-2.5 and Pep19-4LF in Cream Formulation. Eur. J. Pharm. Sci. 2018, 115, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.J.; Samy, J.G.; Khalilullah, H.; Nomani, S.; Saraswat, P.; Gaur, R.; Singh, A. Molecular Properties Prediction and Synthesis of Novel 1,3,4-Oxadiazole Analogues as Potent Antimicrobial and Antitubercular Agents. Bioorg. Med. Chem. Lett. 2011, 21, 7246–7250. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Moreno, E.; Calvo, A.; Blanco, L.; Fernández-Rubio, C.; Sanmartín, C.; Nguewa, P.; Irache, J.M.; Larrea, E.; Espuelas, S. Combination of Paromomycin plus Human Anti-TNF-α Antibodies to Control the Local Inflammatory Response in BALB/ Mice with Cutaneous Leishmaniasis Lesions. J. Dermatol Sci. 2018, 92, 78–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Rubio, C.; Campbell, D.; Vacas, A.; Ibañez, E.; Moreno, E.; Espuelas, S.; Calvo, A.; Palop, J.A.; Plano, D.; Sanmartin, C.; et al. Leishmanicidal Activities of Novel Methylseleno-Imidocarbamates. Antimicrob. Agents Chemother. 2015, 59, 5705–5713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Rubio, C.; Larrea, E.; Guerrero, J.P.; Herrero, E.S.; Gamboa, I.; Berrio, C.; Plano, D.; Amin, S.; Sharma, A.K.; Nguewa, P.A. Leishmanicidal Activity of Isoselenocyanate Derivatives. Antimicrob. Agents Chemother. 2019, 63, e00904–e00918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, D.L.; Perkins, P.V. Identification of an Infective Stage of Leishmania Promastigotes. Science 1984, 223, 1417–1419. [Google Scholar] [CrossRef] [PubMed]
- Puig-Rigall, J.; Fernández-Rubio, C.; González-Benito, J.; Houston, J.E.; Radulescu, A.; Nguewa, P.; González-Gaitano, G. Structural Characterization by Scattering and Spectroscopic Methods and Biological Evaluation of Polymeric Micelles of Poloxamines and TPGS as Nanocarriers for Miltefosine Delivery. Int. J. Pharm. 2020, 578, 119057. [Google Scholar] [CrossRef]
- Pfalzgraff, A.; Bárcena-Varela, S.; Heinbockel, L.; Gutsmann, T.; Brandenburg, K.; Martinez-de-Tejada, G.; Weindl, G. Antimicrobial Endotoxin-Neutralizing Peptides Promote Keratinocyte Migration via P2X7 Receptor Activation and Accelerate Wound Healing in Vivo. Br. J. Pharm. 2018, 175, 3581–3593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, E.; Schwartz, J.; Larrea, E.; Conde, I.; Font, M.; Sanmartín, C.; Irache, J.M.; Espuelas, S. Assessment of β-Lapachone Loaded in Lecithin-Chitosan Nanoparticles for the Topical Treatment of Cutaneous Leishmaniasis in L. Major Infected BALB/c Mice. Nanomedicine 2015, 11, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- Vacas, A.; Fernández-Rubio, C.; Larrea, E.; Peña-Guerrero, J.; Nguewa, P.A. LmjF.22.0810 from Leishmania Major Modulates the Th2-Type Immune Response and Is Involved in Leishmaniasis Outcome. Biomedicines 2020, 8, 452. [Google Scholar] [CrossRef] [PubMed]
- Marchini, J.F.M.; Cruz, A.K.; Beverley, S.M.; Tosi, L.R.O. The H Region HTBF Gene Mediates Terbinafine Resistance in Leishmania Major. Mol. Biochem. Parasitol. 2003, 131, 77–81. [Google Scholar] [CrossRef]
- Leprohon, P.; Légaré, D.; Girard, I.; Papadopoulou, B.; Ouellette, M. Modulation of Leishmania ABC Protein Gene Expression through Life Stages and among Drug-Resistant Parasites. Eukaryot Cell 2006, 5, 1713–1725. [Google Scholar] [CrossRef] [Green Version]
- Etges, R.; Bouvier, J.; Bordier, C. The Major Surface Protein of Leishmania Promastigotes Is a Protease. J. Biol. Chem. 1986, 261, 9098–9101. [Google Scholar] [CrossRef]
- Patino, L.H.; Muskus, C.; Ramírez, J.D. Transcriptional Responses of Leishmania (Leishmania) Amazonensis in the Presence of Trivalent Sodium Stibogluconate. Parasit Vectors 2019, 12, 348. [Google Scholar] [CrossRef] [Green Version]
- Maspi, N.; Abdoli, A.; Ghaffarifar, F. Pro- and Anti-Inflammatory Cytokines in Cutaneous Leishmaniasis: A Review. Pathog. Glob. Health 2016, 110, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Kleinert, H.; Forstermann, U. Inducible Nitric Oxide Synthase. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, B.B., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–12. ISBN 978-0-08-055232-3. [Google Scholar]
- Feriotto, G.; Tagliati, F.; Giriolo, R.; Casciano, F.; Tabolacci, C.; Beninati, S.; Khan, M.T.H.; Mischiati, C. Caffeic Acid Enhances the Anti-Leukemic Effect of Imatinib on Chronic Myeloid Leukemia Cells and Triggers Apoptosis in Cells Sensitive and Resistant to Imatinib. Int. J. Mol. Sci. 2021, 22, 1644. [Google Scholar] [CrossRef] [PubMed]
- Figliuolo, V.R.; Chaves, S.P.; Savio, L.E.B.; Thorstenberg, M.L.P.; Machado Salles, É.; Takiya, C.M.; D’Império-Lima, M.R.; de Matos Guedes, H.L.; Rossi-Bergmann, B.; Coutinho-Silva, R. The Role of the P2X7 Receptor in Murine Cutaneous Leishmaniasis: Aspects of Inflammation and Parasite Control. Purinergic Signal. 2017, 13, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña-Guerrero, J.; Fernández-Rubio, C.; Burguete-Mikeo, A.; El-Dirany, R.; García-Sosa, A.T.; Nguewa, P. Discovery and Validation of Lmj_04_BRCT Domain, a Novel Therapeutic Target: Identification of Candidate Drugs for Leishmaniasis. Int. J. Mol. Sci. 2021, 22, 10493. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.; Novais, F.O. Cutaneous Leishmaniasis: Immune Responses in Protection and Pathogenesis. Nat. Rev. Immunol. 2016, 16, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Menzies, F.M.; MacPhail, D.; Henriquez, F.L. The Role of Chemokines and Their Receptors during Protist Parasite Infections. Parasitology 2016, 143, 1890–1901. [Google Scholar] [CrossRef]
- Majumder, N.; Ganguly, S.; Ghosh, A.K.; Kundu, S.; Banerjee, A.; Saha, S. Chlorogenic Acid Acts upon Leishmania Donovani Arresting Cell Cycle and Modulating Cytokines and Nitric Oxide in Vitro. Parasite Immunol. 2020, 42, e12719. [Google Scholar] [CrossRef]
- Buates, S.; Matlashewski, G. General Suppression of Macrophage Gene Expression During Leishmania Donovani Infection. J. Immunol. 2001, 166, 3416–3422. [Google Scholar] [CrossRef] [Green Version]
- Amaral, E.P.; Ribeiro, S.C.M.; Lanes, V.R.; Almeida, F.M.; de Andrade, M.R.M.; Bomfim, C.C.B.; Salles, E.M.; Bortoluci, K.R.; Coutinho-Silva, R.; Hirata, M.H.; et al. Pulmonary Infection with Hypervirulent Mycobacteria Reveals a Crucial Role for the P2X7 Receptor in Aggressive Forms of Tuberculosis. PLoS Pathog. 2014, 10, e1004188. [Google Scholar] [CrossRef]
- Neves, A.R.; Castelo-Branco, M.T.L.; Figliuolo, V.R.; Bernardazzi, C.; Buongusto, F.; Yoshimoto, A.; Nanini, H.F.; Coutinho, C.M.L.M.; Carneiro, A.J.V.; Coutinho-Silva, R.; et al. Overexpression of ATP-Activated P2X7 Receptors in the Intestinal Mucosa Is Implicated in the Pathogenesis of Crohn’s Disease. Inflamm. Bowel Dis. 2014, 20, 444–457. [Google Scholar] [CrossRef]
- Santos, A.A.; Rodrigues-Junior, V.; Zanin, R.F.; Borges, T.J.; Bonorino, C.; Coutinho-Silva, R.; Takyia, C.M.; Santos, D.S.; Campos, M.M.; Morrone, F.B. Implication of Purinergic P2X7 Receptor in M. Tuberculosis Infection and Host Interaction Mechanisms: A Mouse Model Study. Immunobiology 2013, 218, 1104–1112. [Google Scholar] [CrossRef]
- Chaves, M.M.; Sinflorio, D.A.; Thorstenberg, M.L.; Martins, M.D.A.; Moreira-Souza, A.C.A.; Rangel, T.P.; Silva, C.L.M.; Bellio, M.; Canetti, C.; Coutinho-Silva, R. Non-Canonical NLRP3 Inflammasome Activation and IL-1β Signaling Are Necessary to L. Amazonensis Control Mediated by P2X7 Receptor and Leukotriene B4. PLoS Pathog. 2019, 15, e1007887. [Google Scholar] [CrossRef] [PubMed]
- Kima, P.E.; Soong, L. Interferon Gamma in Leishmaniasis. Front. Immunol. 2013, 4, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivier, M.; Gregory, D.J.; Forget, G. Subversion Mechanisms by Which Leishmania Parasites Can Escape the Host Immune Response: A Signaling Point of View. Clin. Microbiol. Rev. 2005, 18, 293–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, J.; Sun, J.; Qi, H.; Soong, L. Analysis of T Helper Cell Responses during Infection with Leishmania Amazonensis. The American journal of tropical medicine and hygiene. Am. J. Trop. Med. Hyg. 2002, 66, 338–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magni, L.; Bouazzi, R.; Heredero Olmedilla, H.; Petersen, P.S.S.; Tozzi, M.; Novak, I. The P2X7 Receptor Stimulates IL-6 Release from Pancreatic Stellate Cells and Tocilizumab Prevents Activation of STAT3 in Pancreatic Cancer Cells. Cells 2021, 10, 1928. [Google Scholar] [CrossRef]
- Solle, M.; Labasi, J.; Perregaux, D.G.; Stam, E.; Petrushova, N.; Koller, B.H.; Griffiths, R.J.; Gabel, C.A. Altered Cytokine Production in Mice Lacking P2X7Receptors. J. Biol. Chem. 2001, 276, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Sen, A.; Das, P.; Saha, P. Leishmania Donovani Cyclin 1 (LdCyc1) Forms a Complex with Cell Cycle Kinase Subunit CRK3 (LdCRK3) and Is Possibly Involved in S-Phase-Related Activities. FEMS Microbiol. Lett. 2006, 256, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Grant, K.M.; Dunion, M.H.; Yardley, V.; Skaltsounis, A.-L.; Marko, D.; Eisenbrand, G.; Croft, S.L.; Meijer, L.; Mottram, J.C. Inhibitors of Leishmania Mexicana CRK3 Cyclin-Dependent Kinase: Chemical Library Screen and Antileishmanial Activity. Antimicrob. Agents Chemother. 2004, 48, 3033–3042. [Google Scholar] [CrossRef] [Green Version]
- Cleghorn, L.A.T.; Woodland, A.; Collie, I.T.; Torrie, L.S.; Norcross, N.; Luksch, T.; Mpamhanga, C.; Walker, R.G.; Mottram, J.C.; Brenk, R.; et al. Identification of Inhibitors of the Leishmania Cdc2-Related Protein Kinase CRK3. ChemMedChem 2011, 6, 2214–2224. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.G.; Thomson, G.; Malone, K.; Nowicki, M.W.; Brown, E.; Blake, D.G.; Turner, N.J.; Walkinshaw, M.D.; Grant, K.M.; Mottram, J.C. High Throughput Screens Yield Small Molecule Inhibitors of Leishmania CRK3:CYC6 Cyclin-Dependent Kinase. PLoS Negl. Trop. Dis. 2011, 5, e1033. [Google Scholar] [CrossRef]
- Wyllie, S.; Thomas, M.; Patterson, S.; Crouch, S.; de Rycker, M.; Lowe, R.; Gresham, S.; Urbaniak, M.D.; Otto, T.D.; Stojanovski, L.; et al. Cyclin-Dependent Kinase 12 Is a Drug Target for Visceral Leishmaniasis. Nature 2018, 560, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Franssen, S.U.; Durrant, C.; Stark, O.; Moser, B.; Downing, T.; Imamura, H.; Dujardin, J.-C.; Sanders, M.J.; Mauricio, I.; Miles, M.A.; et al. Global Genome Diversity of the Leishmania Donovani Complex. Elife 2020, 9, e51243. [Google Scholar] [CrossRef] [PubMed]
- Franssen, S.U.; Takele, Y.; Adem, E.; Sanders, M.J.; Müller, I.; Kropf, P.; Cotton, J.A. Diversity and Within-Host Evolution of Leishmania Donovani from Visceral Leishmaniasis Patients with and without HIV Coinfection in Northern Ethiopia. mBio 2021, 12, e0097121. [Google Scholar] [CrossRef] [PubMed]
- Isnard, A.; Shio, M.T.; Olivier, M. Impact of Leishmania Metalloprotease GP63 on Macrophage Signaling. Front Cell Infect Microbiol. 2012, 2, 72. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.; Ayala, J.-M.; Alvarez, F.; Piccirillo, C.; Dong, G.; Langlais, D.; Olivier, M. The Role of Leishmania GP63 in the Modulation of Innate Inflammatory Response to Leishmania Major Infection. PLoS ONE 2022, 16, e0262158. [Google Scholar] [CrossRef]
- Costa-Da-silva, A.C.; de Oliveira Nascimento, D.; Ferreira, J.R.M.; Guimarães-Pinto, K.; Freire-De-lima, L.; Morrot, A.; Decote-Ricardo, D.; Filardy, A.A.; Freire-De-lima, C.G. Immune Responses in Leishmaniases: An Overview. Trop. Med. Infect Dis. 2022, 7, 54. [Google Scholar] [CrossRef]
Gene | Sense Primer (5′→3′) | Antisense Primer (5′→3′) |
---|---|---|
Yip1 | AAGCTCCTTGGCAGCAAGAT | TGTGTCGGAAAAAGCGCAAG |
ABCC6 | TGTCCTCTCAACACGCATCC | TCGCAGAGCTCTTCAGTTGG |
gp63 | ACTGCCCGTTTGTTATCGAC | CCGGCGTACGACTTGACTAT |
Cyclin 1 | CCCCAACACCGCTGACTAAT | TCCGACTGGCGGTCTATGTA |
Cyclin 6 | AGTACCCTGCACGCCTACTA | TTGTTGTTGGCGCAGGAAAG |
Lm18S | CCAAAGTGTGGAGATCGAAG | GGCCGGTAAAGGCCGAATAG |
GAPDH | ACCACCATCCACTCCTACA | CGTGCTCGGGATGATGTTTA |
Gene | Sense Primer (5′→3′) | Antisense Primer (5′→3′) |
---|---|---|
IL12p35 | CACGCTACCTCCTCTTTTTG | AGGCAACTCTCGTTCTTGTG |
TNFα | CTTCCAGAACTCCAGGCGGT | GGTTTGCTACGACGTGGG |
iNOS | TCCTACACCACACCAAACTG | AATCTCTGCCTATCCGTCTC |
IL4 | GCTATTGATGGGTCTCAACC | TCTGTGGTGTTCTTGTTGC |
IL6 | ACAAAGCCAGAGTCCTTCAG | TGGATGGTCTTGGTCCTTAG |
TNFR1 | CGATAAAGCCACACCCACAA | ACCTTTGCCCACTTTTCACC |
IL4Rα | TGACCTACAAGGAACCCAGGC | GAACAGGCAAAACAACGGGAT |
IL6R | GGAGATCCTGGAGGGTGACA | CGTTGTGGCTGGACTTGCTT |
CDKN1A | TTGTCGCTGTCTTGCACTCT | GGCACTTCAGGGTTTTCTC |
β-actin | CGCGTCCACCCGCGAG | CCTGGTGCCTAGGGCG |
Peptide. | LogP (≤5) | TPSA | MW (≤500) | nON (≤10) | nOHNH (≤5) | Vol (Å3) | Linpinski’s Violation (≤1) |
---|---|---|---|---|---|---|---|
19-2.5 | −5.27 | 999.61 | 2712.28 | 59 | 48 | 2500.49 | 3 |
19-4LF | −5.28 | 938.93 | 2463.03 | 55 | 45 | 2316.94 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Dirany, R.; Fernández-Rubio, C.; Peña-Guerrero, J.; Moreno, E.; Larrea, E.; Espuelas, S.; Abdel-Sater, F.; Brandenburg, K.; Martínez-de-Tejada, G.; Nguewa, P. Repurposing the Antibacterial Agents Peptide 19-4LF and Peptide 19-2.5 for Treatment of Cutaneous Leishmaniasis. Pharmaceutics 2022, 14, 2528. https://doi.org/10.3390/pharmaceutics14112528
El-Dirany R, Fernández-Rubio C, Peña-Guerrero J, Moreno E, Larrea E, Espuelas S, Abdel-Sater F, Brandenburg K, Martínez-de-Tejada G, Nguewa P. Repurposing the Antibacterial Agents Peptide 19-4LF and Peptide 19-2.5 for Treatment of Cutaneous Leishmaniasis. Pharmaceutics. 2022; 14(11):2528. https://doi.org/10.3390/pharmaceutics14112528
Chicago/Turabian StyleEl-Dirany, Rima, Celia Fernández-Rubio, José Peña-Guerrero, Esther Moreno, Esther Larrea, Socorro Espuelas, Fadi Abdel-Sater, Klaus Brandenburg, Guillermo Martínez-de-Tejada, and Paul Nguewa. 2022. "Repurposing the Antibacterial Agents Peptide 19-4LF and Peptide 19-2.5 for Treatment of Cutaneous Leishmaniasis" Pharmaceutics 14, no. 11: 2528. https://doi.org/10.3390/pharmaceutics14112528
APA StyleEl-Dirany, R., Fernández-Rubio, C., Peña-Guerrero, J., Moreno, E., Larrea, E., Espuelas, S., Abdel-Sater, F., Brandenburg, K., Martínez-de-Tejada, G., & Nguewa, P. (2022). Repurposing the Antibacterial Agents Peptide 19-4LF and Peptide 19-2.5 for Treatment of Cutaneous Leishmaniasis. Pharmaceutics, 14(11), 2528. https://doi.org/10.3390/pharmaceutics14112528