Identification of the Major Degradation Pathways of Selumetinib
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Solutions
2.3. Instrumental
3. Results and Discussion
3.1. General Susceptibility of Selumetinib to Various Stress Conditions
3.2. Structural Characterization of DP1 and DP2
3.2.1. Specific Fragmentation Pattern of Selumetinib
Characterization of Selumitinib Daughter Ions Not Detected for DP1 and DP2 (m/z 394.971, 361.010 and 165.070)
Characterization of Selumetinib Daughter Ions Common with DP1 and DP2 (m/z 379.960, 344.991, 301.041, and 203.921)
3.2.2. Structural Elucidation of the Main Degradation Products of Selumetinib
3.3. Main Degradation Pathways of Selumetinib
3.4. Investigation of Measures to Reduce the Degradation of Selumetinib
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shinde, A.; Panchal, K.; Katke, S.; Paliwal, R.; Chaurasiya, A. Tyrosine kinase inhibitors as next generation oncological therapeutics: Current strategies, limitations and future perspectives. Therapies 2022, 77, 425–443. [Google Scholar] [CrossRef] [PubMed]
- Attwood, M.M.; Fabbro, D.; Sokolov, A.V.; Knapp, S.; Schiöth, H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov. 2021, 20, 839–861. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res. 2021, 165, 105463. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Aguilera, C.C.; Valero, T.; Lorente-Macías, Á.; Baillache, D.J.; Croke, S.; Unciti-Broceta, A. Small Molecule Kinase Inhibitor Drugs (1995–2021): Medical Indication, Pharmacology, and Synthesis. J. Med. Chem. 2022, 65, 1047–1131. [Google Scholar] [CrossRef] [PubMed]
- Spyk, S.; Thomas, N.; Cooper, D.N.; Upadhyaya, M. Neurofibromatosis type 1-associated tumours: Their somatic mutational spectrum and pathogenesis. Hum. Genom. 2011, 5, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casey, D.; Demko, S.; Sinha, A.; Mishra-Kalyani, P.S.; Shen, Y.; Khasar, S.; Goheer, M.A.; Helms, W.S.; Pan, L.; Xu, Y.; et al. FDA Approval Summary: Selumetinib for Plexiform Neurofibroma. Clin. Cancer Res. 2021, 27, 4142–4146. [Google Scholar] [CrossRef] [PubMed]
- Boyd, K.P.; Korf, B.R.; Theos, A. Neurofibromatosis type 1. J. Am. Acad. Dermatol. 2009, 61, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cannon, A.; Chen, M.-J.; Li, P.; Boyd, K.P.; Theos, A.; Redden, D.T.; Korf, B. Cutaneous neurofibromas in Neurofibromatosis type I: A quantitative natural history study. Orphanet J. Rare Dis. 2018, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Inoue, J.; Fujiwara, K.; Hamamoto, H.; Kobayashi, K.; Inazawa, J. Improving the Efficacy of EGFR Inhibitors by Topical Treatment of Cutaneous Squamous Cell Carcinoma with miR-634 Ointment. Mol. Ther.-Oncolytics 2020, 19, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Daifallah, A.E.M.; Shankar, S.; Beer, J.; Marshall, C.; Dentchev, T.; Seykora, F.; D’Armas, S.; Hahn, J.; Lee, V.; et al. Topical kinase inhibitors induce regression of cutaneous squamous cell carcinoma. Exp. Derm. 2019, 28, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Worm, M.; Bauer, A.; Elsner, P.; Mahler, V.; Molin, S.; Nielsen, T.S.S. Efficacy and safety of topical delgocitinib in patients with chronic hand eczema: Data from a randomized, double-blind, vehicle-controlled phase II a study. Br. J. Derm. 2020, 182, 1103–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lledó Riquelme, M.; Campos-Mollo, E.; Fernández-Sánchez, L. Topical axitinib is a potent inhibitor of corneal neovascularization. Clin. Experiment. Ophthalmol. 2018, 46, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Saindane, K.K.; Talapadatur, H.; Munipalli, V.K.; Singh, R.M.; Fegade, B.; Bhaskar, V. Stability Indicating RP-HPLC Method for the Estimation of Selumetinib in Capsule Dosage Form. IJPSRR 2022, 74, 166–174. [Google Scholar] [CrossRef]
- Blessy, M.; Patel, R.D.; Prajapati, P.N.; Agrawal, Y.K. Development of forced degradation and stability indicating studies of drugs—A review. J. Pharm. Anal. 2014, 4, 159–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baertschi, S.W.; Alsante, K.M.; Reed, R.A. (Eds.) Stress testing: A predictive tool. In Pharmaceutical Stress Testing; CRC Press: Boca Raton, FL, USA, 2016; pp. 22–60. ISBN 978-0-429-13608-5. [Google Scholar]
- Liu, Y.; Romijn, E.P.; Verniest, G.; Laukens, K.; De Vijlder, T. Mass spectrometry-based structure elucidation of small molecule impurities and degradation products in pharmaceutical development. TrAC Trends Anal. Chem. 2019, 121, 115686. [Google Scholar] [CrossRef]
- Görög, S. Critical review of reports on impurity and degradation product profiling in the last decade. TrAC Trends Anal. Chem. 2018, 101, 2–16. [Google Scholar] [CrossRef]
- Görög, S. Identification in drug quality control and drug research. TrAC Trends Anal. Chem. 2015, 69, 114–122. [Google Scholar] [CrossRef]
- Glover, S.A.; Rosser, A.A. HERON reactions of anomeric amides: Understanding the driving force: HERON REACTIONS. J. Phys. Org. Chem. 2015, 28, 215–222. [Google Scholar] [CrossRef]
- Niki, E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radic. Biol. Med. 2014, 66, 3–12. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchema, T.S.e.; Annereau, M.; Vieillard, V.; Boquet, R.; Coelho, G.A.; Castelli, F.; Solgadi, A.; Paul, M.; Yagoubi, N.; Secretan, P.-H.; et al. Identification of the Major Degradation Pathways of Selumetinib. Pharmaceutics 2022, 14, 2651. https://doi.org/10.3390/pharmaceutics14122651
Bouchema TSe, Annereau M, Vieillard V, Boquet R, Coelho GA, Castelli F, Solgadi A, Paul M, Yagoubi N, Secretan P-H, et al. Identification of the Major Degradation Pathways of Selumetinib. Pharmaceutics. 2022; 14(12):2651. https://doi.org/10.3390/pharmaceutics14122651
Chicago/Turabian StyleBouchema, Tahar Sif eddine, Maxime Annereau, Victoire Vieillard, Raphael Boquet, Gisele Abreu Coelho, Florence Castelli, Audrey Solgadi, Muriel Paul, Najet Yagoubi, Philippe-Henri Secretan, and et al. 2022. "Identification of the Major Degradation Pathways of Selumetinib" Pharmaceutics 14, no. 12: 2651. https://doi.org/10.3390/pharmaceutics14122651
APA StyleBouchema, T. S. e., Annereau, M., Vieillard, V., Boquet, R., Coelho, G. A., Castelli, F., Solgadi, A., Paul, M., Yagoubi, N., Secretan, P. -H., & Do, B. (2022). Identification of the Major Degradation Pathways of Selumetinib. Pharmaceutics, 14(12), 2651. https://doi.org/10.3390/pharmaceutics14122651