Stability and Antibiotic Potency Improvement of Levofloxacin by Producing New Salts with 2,6- and 3,5-Dihydroxybenzoic Acid and Their Comprehensive Structural Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Stoichiometric Screening Using a Phase Diagram
2.2.2. Sample Preparation
2.2.3. Solid-State Characterization
Electrothermal Analysis
Differential Scanning Calorimetry (DSC) Analysis
Powder X-ray Diffractometry (PXRD) Measurement
2.2.4. Structural Study
FTIR Measurement
H-NMR Analysis
SCXRD Analysis
2.2.5. Stability Study
Test of Stability towards Lighting and Humidity
2.2.6. Antimicrobial Activity Study
- -
- The phosphate buffer solution pH 6.8 was made from 13.872 g of potassium dihydrogen phosphate (KH2PO4) and 35.084 g of disodium hydrogen phosphate (Na2HPO4) and dissolved in distilled water to produce a 1000 mL buffer solution.
- -
- The phosphate-buffered saline solution pH 7.4 was prepared by dissolving 8.0 g of NaCl in 800 mL of distilled water in a 1000 mL volumetric flask. Afterward, 0.2 g of potassium chloride (KCl), 1.44 g of Na2HPO4, and 0.245 g of KH₂PO₄ were added to the solution, which was then adjusted to 1000 mL.
- -
- Distilled water was boiled for 15 min to evaporate all CO2 and measured as ~ pH 7.0 medium.
- -
- The pH value of each solution was determined using a pH meter (Mettler Toledo, Darmstadt, Germany).
2.2.7. Statistics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Active pharmaceutical ingredients |
BA | Benzoic acid |
DSC | Differential scanning calorimetry |
FICI | Fractional inhibitory concentration index |
FTIR | Fourier transform infrared |
DHBA | Dihydroxybenzoic acid |
LF | Levofloxacin |
LF-26 | Levofloxacin-2,6 DHBA multicomponent system; levofloxacin 2,6 dihydroxybenzoate |
LF-35 | Levofloxacin-3,5 multicomponent system; levofloxacin 3,5 dihydroxybenzoate |
MIC | Minimum inhibition concentration |
PM | Physical mixture |
PXRD | Powder X-ray diffractometry |
NMR | Nuclear magnetic resonance |
SCXRD | Single-crystal X-ray diffractometry |
pKa | -Log of acid dissociation constant value |
ICH | International Conference on Harmonization |
Q1B | ICH Topic Q1B Photostability Testing of New Active Substances and Medicinal Products |
CLSI | Clinical and Laboratory Standards Institute |
ATS | 2,2’-azino-bis(3-ethyl benzothiazoline-6-sulphonic acid) |
FRAP | Ferric Reducing Antioxidant Power |
CUPRAC | Cupric Ion Reducing Antioxidant Capacity |
RSD | Relative Standard Deviation |
CFU | Colony Forming Unit |
References
- Bag, P.P.; Ghosh, S.; Khan, H.; Devarapalli, R.; Malla, R.C. Drug–drug salt forms of ciprofloxacin with diflunisal and indoprofen. Cryst. Eng. Comm. 2014, 16, 7393–7396. [Google Scholar] [CrossRef] [Green Version]
- Nagalapalli, R.; Yaga, B.S. Synthesis, crystal structure, and Hirshfeld surface analysis of ciprofloxacin-salicylic acid molecular salt. J. Crystallogr. 2014, 2014, 36174. [Google Scholar] [CrossRef] [Green Version]
- Nugrahani, I.; Tjengal, B.; Gusdinar, T.; Horikawa, A.; Uekusa, H. A comprehensive study of a new 1.75 hydrate of ciprofloxacin salicylate: SCXRD structure determination, solid characterization, water stability, solubility, and dissolution study. Crystals 2020, 10, 349. [Google Scholar] [CrossRef]
- Shinozaki, T.; Ono, M.; Higashi, K.; Moribe, K. A novel drug-drug cocrystal of levofloxacin and metacetamol: Reduced hygroscopicity and improved photostability of levofloxacin. J. Pharm. Sci. 2019, 108, 2383–2390. [Google Scholar] [CrossRef] [PubMed]
- Cerreia, V.P.; Chierotti, M.R.; Gobetto, R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev. 2017, 117, 86–110. [Google Scholar] [CrossRef]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef]
- Gorman, E.M.; Samas, B.; Munson, E.J. Understanding the dehydration of levofloxacin hemihydrate. J. Pharm. Sci. 2012, 101, 3319–3330. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Wang, T.; Huang, X.; Chen, K.; Wang, N.; Yu, S.; Dong, Y.; Hao, H. Thermodynamic and kinetic mechanism of phase transformation of levofloxacin hydrochloride. Particuology 2022, 66, 59–70. [Google Scholar] [CrossRef]
- Tozar, T.; Boni, M.; Staicu, A.; Pascu, M.L. Optical characterization of ciprofloxacin photolytic degradation by UV-pulsed laser radiation. Molecules 2021, 26, 2324. [Google Scholar] [CrossRef]
- Sponza, D.T.; Koyuncuoglu, P. Photodegradation of ciprofloxacin and ofloxacin antibiotics and their photo-metabolites with sunlight. Clin. Microbiol. Infect. Dis. 2019, 4, 1–10. [Google Scholar] [CrossRef]
- Shahnavi, I.A.; Bano, R.; Sheraz, M.A.; Ahmed, S. Photodegradation of levofloxacin in aqueous and organic solvents: A kinetic study. Acta Pharm. 2013, 63, 221–227. [Google Scholar]
- Frackowiak, A.; Kaminski, B.; Urbaniak, B.; Derezinski, P.; Klupczynska, A.; Darul-Duszkiewicz, M.; Kokot, Z.J. A study of ofloxacin and levofloxacin photostability in aqueous solutions. J. Med. Sci. 2016, 85, 238–244. [Google Scholar] [CrossRef]
- Devi, M.L.; Chandrasekhar, K.B. A validated stability-indicating RP-HPLC method for levofloxacin in the presence of degradation products, its process related impurities and identification of oxidative degradant. J. Pharm. Biomed. Anal. 2009, 50, 710–717. [Google Scholar] [CrossRef]
- Czyrski, A.; Anusiak, K.; Tezyk, A. The degradation of levofloxacin in infusions exposed to daylight with an identification of a degradation product with HPLC-MS. Sci. Rep. 2019, 9, 3621. [Google Scholar] [CrossRef] [Green Version]
- Hai, N.T.T.; Marzouqi, F.A.; Selvaraj, R.; Kim, Y. Rapid photocatalytic degradation of acetaminophen and levofloxacin under solar light irradiation. Mater. Res. Express 2020, 6, 125538. [Google Scholar]
- Czyrski, A.; Sznura, J. The application of box-behnken-design in the optimization of HPLC separation of fluoroquinolones. Sci. Rep. 2019, 9, 19458. [Google Scholar] [CrossRef] [Green Version]
- Thai, T.; Salisbury, B.H.; Zito, P.M. Ciprofloxacin; StatPearls: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535454/ (accessed on 25 August 2021).
- Fookes, C. Levofloxacin. 2022. Available online: https://www.drugs.com/mtm/levofloxacin-injection.html (accessed on 18 August 2022).
- Golovnev, N.N.; Molokeev, M.S.; Lesnikov, M.K.; Atuchin, V.V. Two salts and the salt cocrystal of ciprofloxacin with thiobarbituric and barbituric acids: The structure and properties. J. Phys. Org. Chem. 2018, 31, e3773. [Google Scholar] [CrossRef] [Green Version]
- Surov, A.O.; Manin, A.N.; Voronin, A.P.; Drozd, K.V.; Simagina, A.A.; Churakov, A.V.; Perlovich, G.L. Pharmaceutical salts of ciprofloxacin with dicarboxylic acid. Eur. J. Pharm. Sci. 2015, 77, 112–121. [Google Scholar] [CrossRef]
- Islam, N.U.; Umar, M.N.; Khan, E.; Al-Joufi, F.A.; Abed, S.N.; Said, M.; Ullah, H.; Iftikhar, M.; Zahoor, M.; Khan, F.A. Levofloxacin cocrystal/ salt with phthalimide and caffeic acid as promising solid-state approach to improve antimicrobial efficiency. Antibiotics 2022, 11, 797. [Google Scholar] [CrossRef]
- Islam, N.U.; Khan, E.; Umar, M.N.; Shah, A.; Zahoor, M.; Ullah, R.; Bari, A. Enhancing dissolution rate and antibacterial efficiency of azithromycin through drug-drug cocrystals with paracetamol. Antibiotics 2021, 10, 939. [Google Scholar] [CrossRef]
- Khan, F.A.; Zahoor, M.; Islam, N.U.; Hameed, R. Synthesis of cefixime and azithromycin nanoparticles: An attempt to enhance their antimicrobial activity and dissolution rate. J. Nanomater. 2016, 2016, 6909085. [Google Scholar] [CrossRef] [Green Version]
- Nugrahani, I.; Laksana, A.N.; Uekusa, H.; Oyama, H. New organic salt from levofloxacin-citric acid: What is the impact on the stability and antibiotic potency? Molecules 2022, 27, 2166. [Google Scholar] [CrossRef] [PubMed]
- Kalinowska, M.; Goł, E.E.; Grzegorz´swiderski, G.M.S.; Eczy´nska-Wielgosz, E.; Lewandowska, H.; Pietryczuk, A.; Cudowski, A.; Astel, A.; Świsłocka, R.; Samsonowicz, M.; et al. Plant-derived and dietary hydroxybenzoic acids—A comprehensive study of structural, anti-/pro-oxidant, lipophilic, antimicrobial, and cytotoxic activity in MDA-MB-231 and MCF-7 cell lines. Nutrients 2021, 13, 3017. [Google Scholar] [CrossRef] [PubMed]
- Afnan; Saleem, A.; Akhtar, M.F.; Sharif, A.; Akhtar, B.; Siddique, R.; Ashraf, G.M.; Alghamdi, B.S.; Alharthy, S.A. Anticancer, cardio-protective and anti-inflammatory potential of natural-sources-derived phenolic acids. Molecules 2022, 27, 7286. [Google Scholar] [CrossRef] [PubMed]
- Paterson, J.R.; Blacklock, C.; Campbell, G.; Wiles, D.; Lawrence, J.R. The identification of salicylates as normal constituents of serum: A link between Diet and health? J. Clin. Pathol. 1998, 51, 502–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuvan, K.C.; ALrasheedy, A.A.; Ibrahim, M.I.M. A case report from Nepalese community pharmacy on levofloxacin induced severe abdominal pain. Saudi Pharm. J. 2013, 21, 323–325. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.C.; Chang, S.S.; Lee, M.T.G.; Lee, S.H.; Tsai, Y.W.; Lin, S.C.; Chen, S.; Weng, Y.; Porta, L.; Wu, J.; et al. Risk of gastrointestinal perforation in patients taking oral fluoroquinolone therapy: An analysis of nationally representative cohort. PLoS ONE 2017, 12, e0183813. [Google Scholar] [CrossRef] [Green Version]
- 2,6-Dihydroxybenzoic Acid | C7H6O4—Chemical Book. Available online: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB9209110.htm (accessed on 13 September 2021).
- Ghahfarokhi, A.M.; Farhoosh, R. Antioxidant activity and mechanism of inhibitory action of gentisic and alfa-resorcylic acids. Sci. Rep. 2020, 10, 19487. [Google Scholar] [CrossRef]
- Xu, X.; Luo, A.; Lu, X.; Liu, M.; Wang, H.; Song, H.; Wei, C.; Wang, Y.; Duan, X. p-Hydroxybenzoic acid alleviates inflammatory responses and intestinal mucosal damage in DSS-induced colitis by activating ERβ signaling. J. Funct. Foods 2021, 87, 104835. [Google Scholar] [CrossRef]
- Sarmah, K.K.; Rajbongshi, T.; Bhowmick, S.; Thakuria, R. First-line antituberculosis drug, pyrazinamide, its pharmaceutically relevant cocrystals and a salt. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2017, 73, 1007–1016. [Google Scholar] [CrossRef]
- Fu, Q.; Han, Y.; Xie, Y.F.; Gong, N.B.; Guo, F. Carbamazepine cocrystals with several aromatic carboxylic acids in different stoichiometries: Structures and solid-state characterization. J. Mol. Struct. 2018, 1168, 145–152. [Google Scholar] [CrossRef]
- Bofill, L.; de Sande, D.; Barbas, R.; Prohens, R. New cocrystal of ubiquinol with high stability to oxidation. Cryst. Growth. Des. 2020, 20, 5583–5588. [Google Scholar] [CrossRef]
- Horstman, E.M.; Bertke, J.A.; Kim, E.H.; Gonzalez, L.C.; Zhang, G.G.Z.; Gong, Y.; Kenis, P.J.A. Crystallization and characterization of cocrystals of piroxicam and 2,5-dihydroxybenzoic acid. Cryst. Eng. Comm. 2015, 17, 5299–5306. [Google Scholar] [CrossRef]
- Benkovic, E.T.; Turk, E.; Kreft, S. Simple modification of Karl-Fischer titration method for determination of water content in colored samples. J. Anal. Met. Chem. 2022, 2012, 379724. [Google Scholar]
- Stability Testing: Photostability Testing of New Drug Substances and Products Q1B. Available online: https://database.ich.org/sites/default/files/Q1B%20Guideline.pdf (accessed on 23 May 2022).
- Kee, J.L.; Hayes, E.R. The United States Pharmacopeia Revision Bulletin, 43rd ed.; (USP 43-NF38); Pharmacopeial Convention Inc.: Rockville, MD, USA, 2020. [Google Scholar]
- Wayne, P.A. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Garcia, L. Synergism testing: Broth microdilution checkerboard and broth macrodilution methods. In Clinical Microbiology Procedures Handbook, 3rd ed.; American Society of Microbiology: Washington, DC, USA, 2014; pp. 140–162. [Google Scholar]
- Fadwa, A.O.; Albaraq, A.M.; Alkoblan, D.K.; Mateen, A. Determination of synergistic effects of antibiotics and ZnO NPs against isolated E. coli and A. baumannii bacterial strains from clinical samples. Saudi J. Biol. Sci. 2021, 28, 5332–5337. [Google Scholar] [CrossRef]
- 2,6-Dihydroxybenzoic Acid | C7H6O4—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2_6-Dihydroxybenzoic-acid (accessed on 30 August 2021).
- 3,5-Dihydroxybenzoic Acid | C7H6O4—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/3_5-Dihydroxybenzoic-acid (accessed on 30 August 2021).
- Search Results—Access Structures. Available online: https://www.ccdc.cam.ac.uk/structures/Search?Compound=3,5-dihydroxybenzoic%20acid&DatabaseToSearch=Published (accessed on 13 September 2021).
- Search Results—Access Structures. Available online: https://www.ccdc.cam.ac.uk/structures/Search?Compound=ciprofloxacin%20hydrochloride&DatabaseToSearch=Published (accessed on 13 September 2021).
- Zhang, X.; Sun, F.; Zhang, T.; Jia, J.; Su, H.; Wang, C.; Zhu, G. Three pharmaceuticals cocrystals of adefovir: Syntheses, structures and dissolution study. J. Mol. Struct. 2015, 1100, 395–400. [Google Scholar] [CrossRef]
- Alnaqbi, A.Y.M.S.; Bhongade, B.A.; Azzawi, A.A. New validated diffuse reflectance infrared Fourier transform spectroscopic method for the quantification of levofloxacin in pharmaceutical dosage form. Indian J. Pharm. Sci. 2021, 83, 430–436. [Google Scholar] [CrossRef]
- Mashhadi, S.M.A.; Yunus, U.; Bhatti, M.H.; Tahir, M.N. Isoniazid cocrystals with anti-oxidant hydroxybenzoic acids. J. Mol. Struct. 2014, 1076, 446–452. [Google Scholar] [CrossRef]
- Brzeska, J.; Elert, A.M.; Morawska, M.; Sikorska, W. Branched polyurethanes based on synthetic polyhydroxybutyrate with tunable structure and properties. Polymers 2018, 10, 826. [Google Scholar] [CrossRef] [Green Version]
- Salem, A.A.; Mossa, H.A.; Barsoum, B.N. Quantitative determinations of levofloxacin and rifampicin in pharmaceutical and urine samples using nuclear magnetic resonance spectroscopy. Spectro. Acta 2005, 62, 466–472. [Google Scholar] [CrossRef]
- Childs, S.L.; Stahly, G.P.; Park, A. The salt−cocrystal continuum: The influence of crystal structure on ionization state. Mol. Pharm. 2007, 4, 323–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surov, A.O.; Vasilev, N.A.; Voronin, A.P.; Churakov, A.V.; Emmerling, F.; Perlovich, G.L. Ciprofloxacin salts with benzoic acid derivatives: Structural aspects, solid-state properties, and solubility performance. Cryst. Eng. Comm. 2020, 22, 4238–4249. [Google Scholar] [CrossRef]
- Karnjana, K.; Nobsathian, S.; Soowannayan, C.; Zhao, W.; Tang, Y.J.; Wongprasert, K. Purification and evaluation of N-benzyl cinnamamide from red seaweed gracilaria fisheri as an inhibitor of vibrio harveyi AI-2 quorum sensing. Mar. Drugs 2020, 18, 80. [Google Scholar] [CrossRef] [PubMed]
- Kitaoka, H.; Wada, C.; Moroi, R.; Hakusui, H. Effect of dehydration on the formation of levofloxacin pseudopolymorphs. Chem. Pharm. Bull. 1995, 43, 649–653. [Google Scholar] [CrossRef] [Green Version]
- Braun, D.E.; Koztecki, L.H.; McMahon, J.A.; Price, S.L.; Reutzel-Edens, S.M. Navigating the waters of unconventional crystalline hydrates. Mol. Pharm. 2015, 12, 3069–3088. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Misna, T.; Pittman, C.U.; Mohan, D. pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [Green Version]
- Kalinowska, M.; Mazur, L.; Jabłońska-Trypuć, A.; Lewandowski, W. A new calcium 2,5-dihydroxybenzoate: Synthesis, characterization and antioxidant studies and stress mediated cytotoxity in MCF-7 cells. J. Saudi Chem. Soc. 2018, 22, 742–756. [Google Scholar] [CrossRef]
- Ministry of Health of Indonesia. Indonesian Pharmacopoeia, 6th ed.; Ministry of Health, Republic of Indonesia: Jakarta, Indonesia, 2020.
- Tao, Q.; Hao, Q.Q.; Voronin, A.P.; Dai, X.L.; Huang, Y.; Perlovich, G.L.; Lu, T.; Chen, J. Polymorphic forms of a molecular salt of phenazopyridine with 3,5-dihydroxybenzoic acid: Crystal structures, theoretical calculations, thermodynamic stability, and solubility aspects. Cryst. Growth Des. 2019, 19, 5636–5647. [Google Scholar] [CrossRef]
- Santoso, S.P.; Ismadji, S.; Angkawijaya, A.E.; Soetaredjo, F.E.; Go, A.W.; Ju, Y.H. Complexes of 2,6-dihydroxybenzoic acid with divalent metal ions: Synthesis, crystal structure, spectral studies, and biological activity enhancement. J. Mol. Liq. 2016, 221, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Sousa, I.; Claro, V.; Pereira, J.L.; Amaral, A.L.; Cunha-Silva, L.; de Castro, B.; Feio, M.J.; Pereira, E.; Gameiro, P. Synthesis, characterization and antibacterial studies of a copper(II) levofloxacin ternary complex. J. Inorg. Biochem. 2012, 110, 64–71. [Google Scholar] [CrossRef]
- Sultana, N.; Arayne, M.S.; Rizvi, S.B.S.; Haroon, U.; Mesaik, M.A. Synthesis, spectroscopic, and biological evaluation of some levofloxacin metal complexes. Med. Chem. Res. 2013, 22, 1371–1377. [Google Scholar] [CrossRef]
- Campos, F.M.; Couto, J.A.; Figueiredo, A.R.; Tóth, I.V.; Rangel, A.O.S.S.; Hogg, T.A. Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int. J. Food Microbiol. 2009, 135, 144–151. [Google Scholar] [CrossRef]
- Lu, W.-J.; Huang, Y.-J.; Lin, H.-J.; Chang, C.-J.; Hsu, P.-H.; Ooi, G.-X.; Huang, M.-Y.; Lin, H.-T.V. Phenolic Compound Ethyl 3,4-Dihydroxybenzoate Retards Drug Efflux and Potentiates Antibiotic Activity. Antibiotics 2022, 11, 497. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Valiveti, C.K.; Dachineni, R.; Kumar, D.R.; Lick, T.; Bhat, G.J. Aspirin metabolites 2,3-DHBA and 2,5-DHBA inhibit cancer cell growth: Implications in colorectal cancer prevention. Mol. Med. Rep. 2020, 21, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Merkl, R.; Hrádková, I.; Filip, V.; Šmidrkal, J. Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J. Food Sci. 2010, 28, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Juurlink, B.H.J.; Azouz, H.J.; Aldalati, A.M.Z.; Altinawi, B.M.H.; Ganguly, P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr. J. 2014, 13, 63. [Google Scholar] [CrossRef]
- Howes, M.J.R. Phytochemicals as anti-inflammatory nutraceuticals and phytopharmaceuticals. Immun. Inflamm. Health Dis. 2017, 363–388. [Google Scholar]
- Miklasínska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.W.T.J. Phenolic compounds diminish antibiotic resistance of staphylococcus aureus clinical strains. Int. J. Environ. Res. Pub. Health 2018, 15, 2321. [Google Scholar] [CrossRef]
Parameter | LF-26 | LF-35·0.5H2O |
---|---|---|
Compound name | Levofloxacin 2.6-dihydroxybenzoate | Levofloxacin 3.5-dihydroxybenzoate hemihydrate |
Moiety formula | C18H20FN3O4·C7H6O4 | C25H26.5FN3O8.25 |
Formula weight | 525 | 519.5 |
Crystal system | Triclinic | Monoclinic |
Space group | P1 | P21 |
a (Å) | 6.9081 (1) | 11.8145 (2) |
b (Å) | 12.6342 (2) | 13.9434 (3) |
c (Å) | 13.9348 (1) | 14.5712 (3) |
α (°) | 104.886 (1) | 90 |
β (°) | 91.446 (1) | 101.5950 (10) |
γ (°) | 95.242 (1) | 90 |
Volume (Å3) | 1168.97 | 2351.41 |
Z, Z’ | 2, 2 | 4, 4 |
T (K) | 93 | 93 |
R-factor (%) | 4.13 | 4.89 |
CCDC Deposition number | 2180214 | 2180221 |
Sample Name | Original | Week 1 | Week 2 | Week 3 | Week 4 |
---|---|---|---|---|---|
LF | |||||
LF-26 | |||||
LF-35 |
Sample Name | Conc. Value (PPM) | Found Value of LF (PPM) | Concentration Percentage | Mean Concentration | RSD (n = 3) |
---|---|---|---|---|---|
LF | 400 | 399.8 | 99.9 | 99.8% | 0.3% |
400.1 | 100.0% | ||||
397.9 | 99.5% | ||||
LF-26 | 200 | 198.9 | 99.4% | 99.8% | 0.36% |
199.4 | 99.7% | ||||
200.3 | 100.1% | ||||
LF-35 | 600 | 599.2 | 99.9% | 99.9% | 0.16% |
598.8 | 99.8% | ||||
600.6 | 100.1% |
Sample Name | Conc. Value (PPM) | Found Value of LF (PPM) | Concentration Percentage | Mean Concentration | RSD (n = 3) |
---|---|---|---|---|---|
LF | 400 | 375.2 | 93.8% | 93.9% | 0.21% |
376.4 | 94.1% | ||||
374.9 | 93.7% | ||||
LF-26 | 200 | 197.5 | 98.8% | 98.5% | 0.26% |
196.8 | 98.4% | ||||
196.5 | 98.3% | ||||
LF-35 | 600 | 600.1 | 100.0% | 99.9% | 0.12% |
598.8 | 99.8% | ||||
599.9 | 100.0% |
MIC (μg/mL) (n = 3) | ||||||||
---|---|---|---|---|---|---|---|---|
Sample Name | S. aureus (~105 CFU/mL) | E. coli (~105 CFU/mL) | ||||||
In pH 6.8 Medium | Final pH | In pH 7.4 Medium | Final pH | In pH 6.8 Medium | Final pH | In pH 7.4 Medium | Final pH | |
LF | 0.125 | 6.74 ± 0.02 | 0.125 | 7.29 ± 0.08 | 0.125 | 6.65 ± 0.05 | 0.125 | 7.35 ± 0.04 |
2.6-DHBA | >64 | 6.45 ± 0.05 | >64 | 7.12 ± 0.03 | >64 | 6.55 ± 0.001 | >64 | 7.32 ± 0.05 |
3.5-DHBA | >64 | 6.52 ± 0.01 | >64 | 7.25 ± 0.007 | >64 | 6.75 ± 0.03 | >64 | 7.27 ± 0.06 |
LF-26 | 0.0625 | 6.58 ± 0.03 | 0.0625 | 7.25 ± 0.007 | 0.0625 | 6.65 ± 0.04 | 0.0625 | 7.31 ± 0.002 |
PM LF-26 | 0.0625 | 6.64 ± 0.02 | 0.0625 | 7.25 ± 0.002 | 0.0625 | 6.67 ± 0.07 | 0.0625 | 7.30 ± 0.01 |
LF-35 | 0.0625 | 6.68 ± 0.01 | 0.0625 | 7.35 ± 0.03 | 0.0625 | 6.72 ± 0.04 | 0.0625 | 7.37 ± 0.3 |
PM LF-35 | 0.0625 | 6.75 ± 0.02 | 0.0625 | 7.35 ± 0.01 | 0.0625 | 6.68 ± 0.02 | 0.0625 | 7.33 ± 0.01 |
Sample Name | S. aureus (n = 3) | |||||||
---|---|---|---|---|---|---|---|---|
In pH 6.8 | In pH 7.4 | |||||||
FICI of DHBA | FICI of LF | ΣFICI | Interpretation | FICI of DHBA | FICI of LF | ΣFICI | Interpretation | |
2.6 DHBA | 0.062 | 0.395 | 0.457 | S | 0.062 | 0.395 | 0.457 | S |
3.5 DHBA | 0.062 | 0.395 | 0.457 | S | 0.062 | 0.395 | 0.457 | S |
Sample Name | E. coli (n = 3) | |||||||
In pH 6.8 | In pH 7.4 | |||||||
FICI of DHBA | FICI of LF | ΣFIC | Interpretation | FICI of DHBA | FICI of LF | ΣFICI | Interpretation | |
2.6 DHBA | 0.062 | 0.395 | 0.457 | S | 0.062 | 0.395 | 0.457 | S |
3.5 DHBA | 0.062 | 0.395 | 0.457 | S | 0.062 | 0.395 | 0.457 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nugrahani, I.; Sulaiman, M.R.; Eda, C.; Uekusa, H.; Ibrahim, S. Stability and Antibiotic Potency Improvement of Levofloxacin by Producing New Salts with 2,6- and 3,5-Dihydroxybenzoic Acid and Their Comprehensive Structural Study. Pharmaceutics 2023, 15, 124. https://doi.org/10.3390/pharmaceutics15010124
Nugrahani I, Sulaiman MR, Eda C, Uekusa H, Ibrahim S. Stability and Antibiotic Potency Improvement of Levofloxacin by Producing New Salts with 2,6- and 3,5-Dihydroxybenzoic Acid and Their Comprehensive Structural Study. Pharmaceutics. 2023; 15(1):124. https://doi.org/10.3390/pharmaceutics15010124
Chicago/Turabian StyleNugrahani, Ilma, Muhammad Ramadhan Sulaiman, Chiaki Eda, Hidehiro Uekusa, and Slamet Ibrahim. 2023. "Stability and Antibiotic Potency Improvement of Levofloxacin by Producing New Salts with 2,6- and 3,5-Dihydroxybenzoic Acid and Their Comprehensive Structural Study" Pharmaceutics 15, no. 1: 124. https://doi.org/10.3390/pharmaceutics15010124
APA StyleNugrahani, I., Sulaiman, M. R., Eda, C., Uekusa, H., & Ibrahim, S. (2023). Stability and Antibiotic Potency Improvement of Levofloxacin by Producing New Salts with 2,6- and 3,5-Dihydroxybenzoic Acid and Their Comprehensive Structural Study. Pharmaceutics, 15(1), 124. https://doi.org/10.3390/pharmaceutics15010124