Antibacterial Properties of Gold Nanoparticles in the Modification of Medical Implants: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Electronic Resources/Bibliographic and Full Text Databases
2.2. Study Selection
2.3. Data Extraction and Synthesis
3. Results
3.1. Implant Materials for Medical Applications Studied in Selected Articles
3.2. The Modification Methods of AuNPs to Implant Materials
3.3. Application Sites and Antibacterial Research of Medical Implants in Selected Articles
3.4. The Antibacterial Mechanism of Gold Nanoparticles
3.5. Biocompatibility of Implant Materials Modified by Au Nanoparticles
4. Discussion
4.1. Antibacterial Importance of Medical Implants
4.2. The Characteristics of AuNPs Determine the Antibacterial Effects
4.3. Influence of NIR on Antibacterial Effects of AuNPs
4.4. Antimicrobial Mechanism
4.5. Biocompatibility of Implant Materials Modified by AuNPs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdallah, M.N.; Badran, Z.; Ciobanu, O.; Hamdan, N.; Tamimi, F. Strategies for Optimizing the Soft Tissue Seal around Osseointegrated Implants. Adv. Healthc. Mater. 2017, 6, 1700549. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, L.; Leigh, R.; Cavaliere, R.; Osvath, S.R.; Nolan, L.M.; Smyth, D.; Verhoeven, K.; Chole, R.A.; Whitchurch, C.B. Device Design Modifications Informed by In Vitro Testing of Bacterial Attachment Reduce Infection Rates of Cochlear Implants in Clinical Practice. Microorganisms 2021, 9, 1809. [Google Scholar] [CrossRef] [PubMed]
- VanEpps, J.S.; Younger, J.G. Implantable Device-Related Infection. Shock 2016, 46, 597–608. [Google Scholar] [CrossRef] [Green Version]
- Darouiche, R.O. Treatment of infections associated with surgical implants. N. Engl. J. Med. 2004, 350, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10 (Suppl. S12), S122–S129. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.M.; Calandra, T. Antibiotic usage and resistance: Gaining or losing ground on infections in critically ill patients? JAMA 2009, 302, 2367–2368. [Google Scholar] [CrossRef]
- Zmistowski, B.; Karam, J.A.; Durinka, J.B.; Casper, D.S.; Parvizi, J. Periprosthetic joint infection increases the risk of one-year mortality. J. Bone Joint Surg. Am. 2013, 95, 2177–2184. [Google Scholar] [CrossRef] [Green Version]
- Browne, S.K.; Chakraborty, R.; Chen, M.D.; Willcox, D.S.; Black, W.R.; Walsh, N.; Kumar, A. New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides. Int. J. Mol. Sci. 2020, 21, 7047. [Google Scholar] [CrossRef]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef]
- Jin, G.; Qin, H.; Cao, H.; Qian, S.; Zhao, Y.; Peng, X.; Zhang, X.; Liu, X.; Chu, P.K. Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials 2014, 35, 7699–7713. [Google Scholar] [CrossRef]
- Hassan, M.; Kjos, M.; Nes, I.F.; Diep, D.B.; Lotfipour, F. Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. J. Appl. Microbiol. 2012, 113, 723–736. [Google Scholar] [CrossRef]
- Park, S.-C.; Park, Y.; Hahm, K.-S. The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int. J. Mol. Sci. 2011, 12, 5971–5992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med. Res. Rev. 2022, 42, 1377–1422. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Wang, L.; Ran, B.; Jia, Y.; Zhang, L.; Yang, G.; Shao, H.; Jiang, X. Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application via an Electrospun Scaffold. ACS Nano 2017, 11, 5737–5745. [Google Scholar] [CrossRef] [PubMed]
- Edwards, I.A.; Henriques, S.T.; Blaskovich, M.A.; Elliott, A.G.; Cooper, M.A. Investigations into the membrane activity of arenicin antimicrobial peptide AA139. Biochim. Biophys. Acta Gen. Subj. 2022, 1866, 130156. [Google Scholar] [CrossRef]
- Jiao, Y.; Niu, L.-N.; Ma, S.; Li, J.; Tay, F.R.; Chen, J.-H. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci. 2017, 71, 53–90. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Xu, Q.; Guo, J.; Qin, J.; Mao, H.; Wang, B.; Yan, F. Structure-Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(ionic liquids) and Poly(ionic liquid) Membranes: Effect of Alkyl Chain Length and Cations. ACS Appl. Mater. Interfaces 2016, 8, 12684–12692. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Pathak, R.; Kumar, B.; Gautam, H.K.; Kumar, P. Enhanced antimicrobial activity of amphiphilic cationic polymers against a broad range of bacterial strains and skin microbes. Colloid Polym. Sci. 2017, 295, 1177–1185. [Google Scholar] [CrossRef]
- Samal, S.K.; Dash, M.; Van Vlierberghe, S.; Kaplan, D.L.; Chiellini, E.; van Blitterswijk, C.; Moroni, L.; Dubruel, P. Cationic polymers and their therapeutic potential. Chem. Soc. Rev. 2012, 41, 7147–7194. [Google Scholar] [CrossRef]
- Ye, L.; Cao, Z.; Liu, X.; Cui, Z.; Li, Z.; Liang, Y.; Zhu, S.; Wu, S. Noble metal-based nanomaterials as antibacterial agents. J. Alloys Compd. 2022, 904, 164091. [Google Scholar] [CrossRef]
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces 2010, 79, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Tang, H.; Jiang, X. Deploying Gold Nanomaterials in Combating Multi-Drug-Resistant Bacteria. ACS Nano 2022, 16, 10066–10087. [Google Scholar] [CrossRef]
- Sampathi, S.; Tiriya, P.K.; Dodoala, S.; Junnuthula, V.; Dyawanapelly, S. Development of Biocompatible Ciprofloxacin–Gold Nanoparticle Coated Sutures for Surgical Site Infections. Pharmaceutics 2022, 14, 2130. [Google Scholar]
- Moon, K.S.; Park, Y.B.; Bae, J.M.; Oh, S. Near-infrared laser-mediated drug release and antibacterial activity of gold nanorod-sputtered titania nanotubes. J. Tissue Eng. 2018, 9, 2041731418790315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Rev. Esp. Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Marsich, E.; Travan, A.; Donati, I.; Di Luca, A.; Benincasa, M.; Crosera, M.; Paoletti, S. Biological response of hydrogels embedding gold nanoparticles. Colloids Surf. B Biointerfaces 2011, 83, 331–339. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Yang, J.; Liu, W. Bacteria activated-macrophage membrane-coated tough nanocomposite hydrogel with targeted photothermal antibacterial ability for infected wound healing. Chem. Eng. J. 2021, 420, 127638. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Ju, M.; Milbrandt, N.B.; Tsai, Y.H.; Navarreto-Lugo, M.; Visperas, A.; Klika, A.; Barsoum, W.; Higuera-Rueda, C.A.; Samia, A.C.S. Photoactivated Gold Nanorod Hydrogel Composite Containing d-Amino Acids for the Complete Eradication of Bacterial Biofilms on Metal Alloy Implant Materials. ACS Appl. Nano Mater. 2020, 3, 5862–5873. [Google Scholar] [CrossRef]
- Xu, W.; Qi, M.; Li, X.; Liu, X.; Wang, L.; Yu, W.; Liu, M.; Lan, A.; Zhou, Y.; Song, Y. TiO2 nanotubes modified with Au nanoparticles for visible-light enhanced antibacterial and anti-inflammatory capabilities. J. Electroanal. Chem. 2019, 842, 66–73. [Google Scholar] [CrossRef]
- Yang, T.; Qian, S.; Qiao, Y.; Liu, X. Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles. Colloids Surf. B Biointerfaces 2016, 145, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Sun, J.; Li, W.; Dong, B.; Song, Y.; Xu, W.; Zhou, Y.; Wang, L. Engineering nanotubular titania with gold nanoparticles for antibiofilm enhancement and soft tissue healing promotion. J. Electroanal. Chem. 2020, 871, 114362. [Google Scholar] [CrossRef]
- Wang, G.; Feng, H.; Jin, W.; Gao, A.; Peng, X.; Li, W.; Wu, H.; Li, Z.; Chu, P.K. Long-term antibacterial characteristics and cytocompatibility of titania nanotubes loaded with Au nanoparticles without photocatalytic effects. Appl. Surf. Sci. 2017, 414, 230–237. [Google Scholar] [CrossRef]
- Afsari, M.; Youzbashi, A.A.; Nuranian, H.; Zahraee, S.M. Remarkable improvement of visible light photocatalytic activity of TiO2 nanotubes doped sequentially with noble metals for removing of organic and microbial pollutants. Mater. Res. Bull. 2017, 94, 15–21. [Google Scholar] [CrossRef]
- Moon, K.-S.; Bae, J.-M.; Jin, S.; Oh, S. Infrared-Mediated Drug Elution Activity of Gold Nanorod-Grafted TiO2 Nanotubes. J. Nanomater. 2014, 2014, 1–8. [Google Scholar]
- Alenezi, A.; Hulander, M.; Atefyekta, S.; Andersson, M. Development of a photon induced drug-delivery implant coating. Mater. Sci. Eng. C 2019, 98, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wang, D.; Liu, X. Assembled gold nanorods for the photothermal killing of bacteria. Colloids Surf. B Biointerfaces 2019, 173, 833–841. [Google Scholar] [CrossRef]
- Chu, G.; Zhang, C.; Liu, Y.; Cao, Z.; Wang, L.; Chen, Y.; Zhou, W.; Gao, G.; Wang, K.; Cui, D. A Gold Nanocluster Constructed Mixed-Metal Metal-Organic Network Film for Combating Implant-Associated Infections. ACS Nano 2020, 14, 15633–15645. [Google Scholar] [CrossRef]
- De Miguel, I.; Prieto, I.; Albornoz, A.; Sanz, V.; Weis, C.; Turon, P.; Quidant, R. Plasmon-Based Biofilm Inhibition on Surgical Implants. Nano Lett. 2019, 19, 2524–2529. [Google Scholar] [CrossRef]
- Tang, Y.; Sun, H.; Qin, Z.; Yin, S.; Tian, L.; Liu, Z. Bioinspired photocatalytic ZnO/Au nanopillar-modified surface for enhanced antibacterial and antiadhesive property. Chem. Eng. J. 2020, 398, 125575. [Google Scholar] [CrossRef]
- Russo, T.; Gloria, A.; de Santis, R.; D’Amora, U.; Balato, G.; Vollaro, A.; Oliviero, O.; Improta, G.; Triassi, M.; Ambrosio, L. Preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. Bioact. Mater. 2017, 2, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, L.; Acuña, D.; Riveros, A.L.; Kogan, M.J.; Azócar, M.I.; Páez, M.; Leal, M.; Urzúa, M.; Cerda, E. Porous Nanogold/Polyurethane Scaffolds with Improved Antibiofilm, Mechanical, and Thermal Properties and with Reduced Effects on Cell Viability: A Suitable Material for Soft Tissue Applications. ACS Appl. Mater. Interfaces 2018, 10, 13361–13372. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Prema, D.; Venkataprasanna, K.; Balagangadharan, K.; Selvamurugan, N.; Venkatasubbu, G.D. Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering. Int. J. Biol. Macromol. 2020, 154, 62–71. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Sathishkumar, G.; Gopinath, K.; Zhang, K.; Lu, Z.; Li, C.; Kang, E.-T.; Xu, L. One-step self-assembly of biogenic Au NPs/PEG-based universal coatings for antifouling and photothermal killing of bacterial pathogens. Chem. Eng. J. 2021, 421, 130005. [Google Scholar] [CrossRef]
- Zhao, Y.-Q.; Sun, Y.; Zhang, Y.; Ding, X.; Zhao, N.; Yu, B.; Zhao, H.; Duan, S.; Xu, F.-J. Well-Defined Gold Nanorod/Polymer Hybrid Coating with Inherent Antifouling and Photothermal Bactericidal Properties for Treating an Infected Hernia. ACS Nano 2020, 14, 2265–2275. [Google Scholar] [CrossRef] [PubMed]
- Grisoli, P.; de Vita, L.; Milanese, C.; Taglietti, A.; Fernandez, Y.D.; Bouzin, M.; D’Alfonso, L.; Sironi, L.; Rossi, S.; Vigani, B.; et al. PVA Films with Mixed Silver Nanoparticles and Gold Nanostars for Intrinsic and Photothermal Antibacterial Action. Nanomaterials 2021, 11, 1387. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Li, Y.; Deng, H.; Hu, Y.; Li, B. Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids Surf. B Biointerfaces 2014, 116, 432–438. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Bai, Q.; Sui, N.; Zhu, Z. Gold nanoclusters decorated amine-functionalized graphene oxide nanosheets for capture, oxidative stress, and photothermal destruction of bacteria. Colloids Surf. B Biointerfaces 2020, 196, 111313. [Google Scholar] [CrossRef]
- Banerjee, S.; Bagchi, B.; Bhandary, S.; Kool, A.; Hoque, N.A.; Thakur, P.; Das, S. A facile vacuum assisted synthesis of nanoparticle impregnated hydroxyapatite composites having excellent antimicrobial properties and biocompatibility. Ceram. Int. 2018, 44, 1066–1077. [Google Scholar] [CrossRef]
- Grandi, S.; Cassinelli, V.; Bini, M.; Saino, E.; Mustarelli, P.; Arciola, C.R.; Imbriani, M.; Visai, L. Bone reconstruction: Au nanocomposite bioglasses with antibacterial properties. Int. J. Artif. Organs 2011, 34, 920–928. [Google Scholar] [CrossRef]
- Rezk, A.I.; Sasikala, A.R.K.; Nejad, A.G.; Mousa, H.M.; Oh, Y.M.; Park, C.H.; Kim, C.S. Strategic design of a Mussel-inspired in situ reduced Ag/Au-Nanoparticle Coated Magnesium Alloy for enhanced viability, antibacterial property and decelerated corrosion rates for degradable implant Applications. Sci. Rep. 2019, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, R.A.; Fadl-Allah, S.A.; El-Bagoury, N.; El-Rab, S.M.G. Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles. Appl. Surf. Sci. 2014, 292, 390–399. [Google Scholar] [CrossRef]
- Khantamat, O.; Li, C.-H.; Yu, F.; Jamison, A.C.; Shih, W.-C.; Cai, C.; Lee, T.R. Gold Nanoshell-Decorated Silicone Surfaces for the Near-Infrared (NIR) Photothermal Destruction of the Pathogenic Bacterium E. faecalis. ACS Appl. Mater. Interfaces 2015, 7, 3981–3993. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhao, Y.; Tian, Y.; Zhang, W.; Lü, X.; Jiang, X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 2012, 33, 2327–2333. [Google Scholar] [CrossRef] [PubMed]
- Sankar, G.G.; Murthy, P.S.; Das, A.; Sathya, S.; Nankar, R.; Venugopalan, V.P.; Doble, M. Polydimethyl siloxane based nanocomposites with antibiofilm properties for biomedical applications. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Becher, P.M.; Goßling, A.; Fluschnik, N.; Schrage, B.; Seiffert, M.; Schofer, N.; Blankenberg, S.; Kirchhof, P.; Westermann, D.; Kalbacher, D. Temporal trends in incidence, patient characteristics, microbiology and in-hospital mortality in patients with infective endocarditis: A contemporary analysis of 86,469 cases between 2007 and 2019. Clin. Res. Cardiol. 2022, 1–11. [Google Scholar] [CrossRef]
- Ahmed, W.; Zhai, Z.; Gao, C. Adaptive antibacterial biomaterial surfaces and their applications. Mater. Today Bio 2019, 2, 100017. [Google Scholar] [CrossRef]
- Escobar, A.; Muzzio, N.; Moya, S.E. Antibacterial Layer-by-Layer Coatings for Medical Implants. Pharmaceutics 2020, 13, 16. [Google Scholar] [CrossRef]
- Raj, D.S.; Dhamodharan, D.; Thanigaivel, S.; Vickram, A.S.; Byun, H.-S. Nanoemulsion as an Effective Inhibitor of Biofilm-forming Bacterial Associated Drug Resistance: An Insight into COVID Based Nosocomial Infections. Biotechnol. Bioprocess Eng. 2022, 27, 543–555. [Google Scholar] [CrossRef]
- Caldwell, M.D. Bacteria and Antibiotics in Wound Healing. Surg. Clin. North Am. 2020, 100, 757–776. [Google Scholar] [CrossRef]
- Shinde, D.B.; Pawar, R.; Vitore, J.; Kulkarni, D.; Musale, S.; Giram, P. Natural and synthetic functional materials for broad spectrum applications in antimicrobials, antivirals and cosmetics. Polym. Adv. Technol. 2021, 32, 4204–4222. [Google Scholar] [CrossRef]
- Ciracì, C.; Hill, R.T.; Mock, J.J.; Urzhumov, Y.; Fernández-Domínguez, A.I.; Maier, S.A.; Pendry, J.B.; Chilkoti, A.; Smith, D.R. Probing the Ultimate Limits of Plasmonic Enhancement. Science 2012, 337, 1072–1074. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.L.; Coronado, E.A.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. Am. Chem. Soc. 2003, 3, 668–677. [Google Scholar]
- Chen, J.; Ye, Z.; Yang, F.; Yin, Y. Plasmonic Nanostructures for Photothermal Conversion. Small Sci. 2020, 1, 2000055. [Google Scholar] [CrossRef]
- Ray, P.; Lodha, T.; Biswas, A.; Sau, T.K.; Ramana, C.V. Particle specific physical and chemical effects on antibacterial activities: A comparative study involving gold nanostars, nanorods and nanospheres. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127915. [Google Scholar] [CrossRef]
- Mocan, L.; A Tabaran, F.; Mocan, T.; Pop, T.; Mosteanu, O.; Agoston-Coldea, L.; Matea, C.T.; Gonciar, D.; Zdrehus, C.; Iancu, C. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles. Int. J. Nanomed. 2017, 12, 2255–2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brasili, F.; Capocefalo, A.; Palmieri, D.; Capitani, F.; Chiessi, E.; Paradossi, G.; Bordi, F.; Domenici, F. Assembling patchy plasmonic nanoparticles with aggregation-dependent antibacterial activity. J. Colloid Interface Sci. 2020, 580, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, J.; Wu, X.; Tong, Z.; Deng, Z. Tailor-made Au@Ag core–shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity. Nanotechnology 2013, 24, 205102. [Google Scholar] [CrossRef]
- Amina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020, 15, 9823–9857. [Google Scholar] [CrossRef]
- Jahangiri-Manesh, A.; Mousazadeh, M.; Taji, S.; Bahmani, A.; Zarepour, A.; Zarrabi, A.; Sharifi, E.; Azimzadeh, M. Gold Nanorods for Drug and Gene Delivery: An Overview of Recent Advancements. Pharmaceutics 2022, 14, 664. [Google Scholar] [CrossRef]
- Chang, W.; Wang, J.; Zhang, J.; Ling, Q.; Li, Y.; Wang, J. High Performance Gold Nanorods@DNA Self-Assembled Drug-Loading System for Cancer Thermo-Chemotherapy in the Second Near-Infrared Optical Window. Pharmaceutics 2022, 14, 1110. [Google Scholar] [CrossRef] [PubMed]
- Jaque, D.; Maestro, L.M.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.L.; Rodriguez, E.M.; Sole, J.G. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530. [Google Scholar] [CrossRef]
- Wu, M.-C.; Deokar, A.R.; Liao, J.-H.; Shih, P.-Y.; Ling, Y.-C. Graphene-Based Photothermal Agent for Rapid and Effective Killing of Bacteria. ACS Nano 2013, 7, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.; Yuan, Y.; Li, X.; Zhang, Y. ZnO Nanopillar Coated Surfaces with Substrate-Dependent Superbactericidal Property. Small 2018, 14, e1703159. [Google Scholar] [CrossRef]
- Lee, M.-J.; Kwon, J.-S.; Jiang, H.B.; Choi, E.H.; Park, G.; Kim, K.-M. The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure. Sci. Rep. 2019, 9, 1938. [Google Scholar] [CrossRef] [Green Version]
- Chwalibog, A.; Sawosz, E.; Hotowy, A.; Szeliga, J.; Mitura, S.; Mitura, K.; Grodzik, M.; Orlowski, P.; Sokolowska, A. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J. Nanomed. 2010, 5, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Mine, Y.; Ma, F.; Lauriau, S. Antimicrobial Peptides Released by Enzymatic Hydrolysis of Hen Egg White Lysozyme. J. Agric. Food Chem. 2004, 52, 1088–1094. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, X. Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale 2013, 5, 8340–8350. [Google Scholar] [CrossRef]
- Okkeh, M.; Bloise, N.; Restivo, E.; De Vita, L.; Pallavicini, P.; Visai, L. Gold Nanoparticles: Can They Be the Next Magic Bullet for Multidrug-Resistant Bacteria? Nanomaterials 2021, 11, 312. [Google Scholar] [CrossRef]
- Zheng, K.; Setyawati, M.I.; Leong, D.T.; Xie, J. Antimicrobial Gold Nanoclusters. ACS Nano 2017, 11, 6904–6910. [Google Scholar] [CrossRef]
- Fong, Y.Y.; Gascooke, J.R.; Visser, B.R. Laser-Based Formation and Properties of Gold Nanoparticles in Aqueous Solution: Formation Kinetics and Surfactant-Modified Particle Size Distributions. J. Phys. Chem. C Nanomater. Interfaces 2010, 114, 15931–15940. [Google Scholar] [CrossRef]
- Burgess, N.K.; Dao, T.P.; Stanley, A.M.; Fleming, K.G. Beta-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J. Biol. Chem. 2008, 283, 26748–26758. [Google Scholar] [CrossRef]
- Lepock, J.R.; Cheng, K.H.; Al-Qysi, H.; Sim, I.; Koch, C.J.; Kruuv, J. Hyperthermia-induced inhibition of respiration and mitochondrial protein denaturation in CHL cells. Int. J. Hyperth. 1987, 3, 123–132. [Google Scholar] [CrossRef]
- Pagar, R.R.; Musale, S.R.; Pawar, G.; Kulkarni, D.; Giram, P.S. Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials, ACS Biomater. Sci. Eng. 2022, 8, 2161–2195. [Google Scholar]
- Qu, Y.; Lü, X. Aqueous synthesis of gold nanoparticles and their cytotoxicity in human dermal fibroblasts–fetal. Biomed. Mater. 2009, 4, 025007. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Lu, W.; Zhang, R.; Huang, Q.; Tian, M.; Li, L.; Liang, D.; Li, C. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 2009, 30, 1928–1936. [Google Scholar] [CrossRef] [Green Version]
- Sonavane, G.; Tomoda, K.; Sano, A.; Ohshima, H.; Terada, H.; Makino, K. In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size. Colloids Surf. B Biointerfaces 2008, 65, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Hung, Y.-C.; Liau, I.; Huang, G.S. Assessment of the In Vivo Toxicity of Gold Nanoparticles. Nanoscale Res. Lett. 2009, 4, 858–864. [Google Scholar] [CrossRef] [Green Version]
- De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008, 29, 1912–1919. [Google Scholar] [CrossRef]
- GSonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B Biointerfaces 2008, 66, 274–280. [Google Scholar] [CrossRef]
- Niu, C.; Yuan, K.; Ma, R.; Gao, L.; Jiang, W.; Hu, X.; Lin, W.; Zhang, X.; Huang, Z. Gold nanoparticles promote osteogenic differentiation of human periodontal ligament stem cells via the p38 MAPK signaling pathway. Mol. Med. Rep. 2017, 16, 4879–4886. [Google Scholar] [CrossRef]
Materials | Application | Au Size | Au Concentration | External Stimulation | Antibacterial Effect | Other Effects | Ref. |
---|---|---|---|---|---|---|---|
nAu-Hydrogel | Wound dressings | <20 nm | 1 mM HAuCl4 solution | - | Considerable antimicrobial activity for S. aureus and P. aeruginosa. | The thickness of capsule is higher (∼80–100 μm) in the case of AC-nAu. | [27] |
Au@PDA nanocomposite Hydrogel | Wound dressings | Length, 40 nm; diameter, 10 nm | 42 mg/g of Au@PDA | Near-infrared (NIR), 2 W cm−2 808 nm, 5 min | 98% killing efficiency against S. aureus and E. coli. | Promote wound healing of infected full-skin defect. | [28] |
AuNRs_mPEG Hydrogel | Prosthetic joint infection replacement | Length, 110 nm; diameter, 30 nm | 300 ppm | NIR, 1 W cm−2 808 nm, 20 min | 20 min of PTT following the initial 2 h D-AA treatment is sufficient to remove S. aureus biofilm. | - | [29] |
TNTs/AuNPs | Dental implants | 20 nm | - | - | The average antibacterial efficiency of TNT-Au2 sample is 97.34% (P. gingivalis) and 92.13% (F. nucleatum). | High anti-inflammatory efficiency. | [30] |
TNTs/AuNPs | Bone defect implants | - | 5.3 at. % 8.5 at. % | - | An antibacterial effect towards both S. aureus and E. coli. | Promote initial adhesion, the spreading and proliferation of rBMSCs. | [31] |
TNTs/AuNPs | Dental implants | - | 6.52 at. % 2.01 at. % 1.59 at. % | - | Enhanced antibacterial activity with Au content increasing, >99% inhibition against multispecies biofilm. | Promote fibroblast adhesion, proliferation, and migration. | [32] |
TNTs/AuNPs | Bone defect implants | 10 nm and 20 nm | 15–40% | - | Long-term antibacterial characteristics against S. aureus. | Good cytocompatibility. | [33] |
TNTs/Ag and Au NPs | Bone defect implants | 5–20 nm | 0.30% | - | Ag and Au have a synergistic effect on E. coli. | - | [34] |
TNTs/AuNRs | Bone defect implants | Diameter, 10 nm; aspect ratio, 3.83 | <12 wt % | NIR, 200 mW, 830 nm, 30 s | Tetracycline was released effectively by NIR, showed the annihilation effect of Streptococcus mutans. | - | [35] |
TNTs/AuNRs | Bone defect implants | Diameter 10 nm | 2.8 nM | NIR, 1 W cm−2 850 nm, 30 min | Vancomycin released from the coating induced by NIR, resulting in a clear inhibition zone to Staphylococcus epidermidis. | - | [36] |
TNTs/AuNRs | Bone defect implants | Diameter, 35 nm; length, 100 nm | 5.03 wt % | NIR, 200 mW, 830 nm, 30 min | The zone index of S. mutans grown with 2 wt% TC/PCL-coated GNRs-TNT following NIR laser irradiation for 1 min (16.25 ± 1.39 cm) was significantly higher. | - | [25] |
Ti-AuNRs | Bone defect implants | Diameter, 11 nm; length, 50 nm | 0.02 M, 0.12 mL HAuCl4 solution | NIR, 0.5 W cm−2, 808 nm, 20 min | The antibacterial activity of Ti-GNR-NIR group is highest in E. coli, P. aeruginosa, S. aureus, and S. epidermidis. | An ignorable toxicity to MC3T3-E1 cells. | [37] |
Network Films-AuNCs | Bone defect implants | - | 3 mM HAuCl4 solution | - | Disrupt the MRSA and ESBL E. coli membrane. | No obvious tissue defect. | [38] |
Surgical mesh-AuNRs | Hernia repair surgical mesh | - | 250 GNRs/μm2 | NIR, 0.435 W cm−2, 810 nm, 30 s | Alter the integrity of biofilm. | - | [39] |
PDMS- ZnO/Au | Urinary catheters | - | 10 mg/mL HAuCl4 solution | Visible light | A killing rate of 65.5% in the dark and >99.9% under visible light irradiation and obstruct the attachment of E. coli bacteria. | - | [40] |
Bone cement-AuNPs | Total knee arthroplasty and total hip replacement | 10–20 nm | 0.25 wt % 0.5 wt %, 1 wt % | - | Live bacteria reduced up to 54% and 56% for MRSA and Pseudomonas, respectively, on bone cement samples obtained by adding 1% by weight of AuNPs. | 0.25 wt% AuNPs improved the punching performances, without altering the compressive properties of bone cement. | [41] |
PU-AuNPs | Menisci | - | 0.16 wt % 0.32 wt % 0.64 wt % | - | 0.64 wt % inhibiting 99.99% of Klebsiella spp. and S. epidermidis. | Do not exhibit toxic effects on fibroblast cells. | [42] |
CS/PVA/GO/HAP/Au nanocomposite | Bone tissue engineering scaffolds | - | - | - | An increase of 3–7 mm zone of inhibition was seen in Cs/PVA/GO/HAP/Au film. | High hemocompatibility, not toxic, active differentiation of mMSCs. | [43] |
PDMS-TA-PEG-Au | Biomedical devices | 40–70 nm | - | NIR, 1.5 W cm−2, 808 nm, 10 min | Resists MRSA bacterial adhesion, kills S. aureus and E. coli bacteria in vitro and in vivo. | Biocompatible with low cytotoxicity. | [44] |
PU-Au-PEG | Hernia repair | Diameter, 10 nm; length, 40 nm | 10.84 wt % 12.52 wt % | NIR, 1.2 W cm−2, 808 nm, 10 min | Kills P. aeruginosa and S. aureus, inhibits biofilm formation, eliminates infection of the hernia. | Good biocompatibility. | [45] |
PVA-AuNS | Wound dressings | - | 9 × 10−3 M | NIR, 0.3 W cm−2, 800 nm, 30 min | S. aureus and E. coli film can be killed if laser treatment as short as 30 min is applied. | - | [46] |
Nanofibrous mats-AuNPs | Tissue engineering scaffolds | 20 nm | - | - | Better antibacterial effect against S. aureus than E. coli. | - | [47] |
PDMS-AuNPs-GO-NH2 | Urinary catheters | 1.4 nm | - | - | The bactericidal efficiency of Au-GO-NH2 modified PDMS > 99.99%. | - | [48] |
HAp/AuNPs | Bone defect implants | - | - | - | Strong antimicrobial activity (cell mortality > 95%) against E. coli and S. aureus. | Approximately 90% viability at MIC strength of the nanoparticles. | [49] |
58S bioglasses/AuNPs | Drug delivery | <10 nm | 0.1 wt.% 1 wt.% | - | Enhances this effect on the S. aureus but not on the E. coli, the antibacterial effect is dose-dependent. | - | [50] |
Mg alloy-AuNPs/PD | Bone fixation plates, screws, wires, pins, and stents | 150 nm | - | - | The coating with Ag and Au NPs showed the highest antibacterial effects. | Improved the corrosion resistance of the bare alloy. | [51] |
NiTi-AuNPs/CS | Orthopedics and dentistry | - | - | - | AuNPs/CS/NiTi shows highest growth inhibition for S. aureus. | High corrosion resistance at all pHs. | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, X.; Yan, J.; Tang, H.; Xia, D.; Lin, H. Antibacterial Properties of Gold Nanoparticles in the Modification of Medical Implants: A Systematic Review. Pharmaceutics 2022, 14, 2654. https://doi.org/10.3390/pharmaceutics14122654
Zhan X, Yan J, Tang H, Xia D, Lin H. Antibacterial Properties of Gold Nanoparticles in the Modification of Medical Implants: A Systematic Review. Pharmaceutics. 2022; 14(12):2654. https://doi.org/10.3390/pharmaceutics14122654
Chicago/Turabian StyleZhan, Xinxin, Jianglong Yan, Hao Tang, Dandan Xia, and Hong Lin. 2022. "Antibacterial Properties of Gold Nanoparticles in the Modification of Medical Implants: A Systematic Review" Pharmaceutics 14, no. 12: 2654. https://doi.org/10.3390/pharmaceutics14122654
APA StyleZhan, X., Yan, J., Tang, H., Xia, D., & Lin, H. (2022). Antibacterial Properties of Gold Nanoparticles in the Modification of Medical Implants: A Systematic Review. Pharmaceutics, 14(12), 2654. https://doi.org/10.3390/pharmaceutics14122654